1 /* $NetBSD: zs.c,v 1.4 2015/06/09 22:47:59 matt Exp $ */ 2 3 /*- 4 * Copyright (c) 1996 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Gordon W. Ross. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Zilog Z8530 Dual UART driver (machine-dependent part) 34 * 35 * Runs two serial lines per chip using slave drivers. 36 * Plain tty/async lines use the zs_async slave. 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.4 2015/06/09 22:47:59 matt Exp $"); 41 42 #include "opt_ddb.h" 43 44 #include <sys/param.h> 45 #include <sys/conf.h> 46 #include <sys/cpu.h> 47 #include <sys/device.h> 48 #include <sys/intr.h> 49 #include <sys/tty.h> 50 #include <sys/systm.h> 51 52 #include <dev/cons.h> 53 #include <dev/ic/z8530reg.h> 54 55 #include <mips/cpuregs.h> 56 57 #include <machine/autoconf.h> 58 #include <machine/z8530var.h> 59 60 #include <cobalt/cobalt/console.h> 61 62 #include "ioconf.h" 63 64 /* 65 * Some warts needed by z8530tty.c - 66 * The default parity REALLY needs to be the same as the PROM uses, 67 * or you can not see messages done with printf during boot-up... 68 */ 69 int zs_def_cflag = (CREAD | CS8 | HUPCL); 70 71 #define ZS_DEFSPEED 115200 72 #define PCLK (115200 * 96) /* 11.0592MHz */ 73 74 #define ZS_DELAY() delay(2) 75 76 /* The layout of this is hardware-dependent (padding, order). */ 77 /* A/~B (Channel A/Channel B) pin is connected to DAdr0 */ 78 #define ZS_CHAN_A 0x01 79 #define ZS_CHAN_B 0x00 80 81 /* D/~C (Data/Control) pin is connected to DAdr1 */ 82 #define ZS_CSR 0x00 /* ctrl, status, and indirect access */ 83 #define ZS_DATA 0x02 /* data */ 84 85 86 /* Definition of the driver for autoconfig. */ 87 static int zs_match(device_t, cfdata_t, void *); 88 static void zs_attach(device_t, device_t, void *); 89 static int zs_print(void *, const char *name); 90 91 CFATTACH_DECL_NEW(zsc, sizeof(struct zsc_softc), 92 zs_match, zs_attach, NULL, NULL); 93 94 static int zshard(void *); 95 #if 0 96 static int zs_get_speed(struct zs_chanstate *); 97 #endif 98 static int zs_getc(void *); 99 static void zs_putc(void *, int); 100 101 /* console status from cninit */ 102 static struct zs_chanstate zs_conschan_store; 103 static struct zs_chanstate *zs_conschan; 104 static uint8_t *zs_cons; 105 106 /* default speed for all channels */ 107 static int zs_defspeed = ZS_DEFSPEED; 108 109 static uint8_t zs_init_reg[16] = { 110 0, /* 0: CMD (reset, etc.) */ 111 0, /* 1: No interrupts yet. */ 112 0, /* 2: no IVECT */ 113 ZSWR3_RX_8 | ZSWR3_RX_ENABLE, /* 3: RX params and ctrl */ 114 ZSWR4_CLK_X16 | ZSWR4_ONESB, /* 4: TX/RX misc params */ 115 ZSWR5_TX_8 | ZSWR5_TX_ENABLE, /* 5: TX params and ctrl */ 116 0, /* 6: TXSYNC/SYNCLO */ 117 0, /* 7: RXSYNC/SYNCHI */ 118 0, /* 8: alias for data port */ 119 ZSWR9_MASTER_IE, /* 9: Master interrupt ctrl */ 120 0, /*10: Misc TX/RX ctrl */ 121 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, /*11: Clock Mode ctrl */ 122 BPS_TO_TCONST((PCLK/16), ZS_DEFSPEED), /*12: BAUDLO */ 123 0, /*13: BAUDHI */ 124 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, /*14: Misc ctrl */ 125 ZSWR15_BREAK_IE, /*15: Ext/Status intr ctrl */ 126 }; 127 128 /* register address offset for each channel */ 129 static const int chanoff[] = { ZS_CHAN_A, ZS_CHAN_B }; 130 131 132 static int 133 zs_match(device_t parent, cfdata_t cf, void *aux) 134 { 135 static int matched; 136 137 /* only one zs */ 138 if (matched) 139 return 0; 140 141 /* only Qube 2700 could have Z85C30 serial */ 142 if (cobalt_id != COBALT_ID_QUBE2700) 143 return 0; 144 145 if (!console_present) 146 return 0; 147 148 matched = 1; 149 return 1; 150 } 151 152 /* 153 * Attach a found zs. 154 */ 155 static void 156 zs_attach(device_t parent, device_t self, void *aux) 157 { 158 struct zsc_softc *zsc = device_private(self); 159 struct mainbus_attach_args *maa = aux; 160 struct zsc_attach_args zsc_args; 161 uint8_t *zs_base; 162 struct zs_chanstate *cs; 163 int s, channel; 164 165 zsc->zsc_dev = self; 166 167 /* XXX: MI z8530 doesn't use bus_space(9) yet */ 168 zs_base = (void *)MIPS_PHYS_TO_KSEG1(maa->ma_addr); 169 170 aprint_normal(": optional Z85C30 serial port\n"); 171 172 /* 173 * Initialize software state for each channel. 174 */ 175 for (channel = 0; channel < 2; channel++) { 176 zsc_args.channel = channel; 177 cs = &zsc->zsc_cs_store[channel]; 178 179 zsc->zsc_cs[channel] = cs; 180 181 zs_init_reg[2] = 0; 182 183 if ((zs_base + chanoff[channel]) == zs_cons) { 184 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate)); 185 zs_conschan = cs; 186 zsc_args.hwflags = ZS_HWFLAG_CONSOLE; 187 } else { 188 cs->cs_reg_csr = zs_base + chanoff[channel] + ZS_CSR; 189 cs->cs_reg_data = zs_base + chanoff[channel] + ZS_DATA; 190 memcpy(cs->cs_creg, zs_init_reg, 16); 191 memcpy(cs->cs_preg, zs_init_reg, 16); 192 cs->cs_defspeed = zs_defspeed; 193 zsc_args.hwflags = 0; 194 } 195 196 zs_lock_init(cs); 197 cs->cs_defcflag = zs_def_cflag; 198 199 cs->cs_channel = channel; 200 cs->cs_private = NULL; 201 cs->cs_ops = &zsops_null; 202 cs->cs_brg_clk = PCLK / 16; 203 204 /* Make these correspond to cs_defcflag (-crtscts) */ 205 cs->cs_rr0_dcd = ZSRR0_DCD; 206 cs->cs_rr0_cts = 0; 207 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 208 cs->cs_wr5_rts = 0; 209 210 /* 211 * Clear the master interrupt enable. 212 * The INTENA is common to both channels, 213 * so just do it on the A channel. 214 */ 215 if (channel == 0) { 216 s = splhigh(); 217 zs_write_reg(cs, 9, 0); 218 splx(s); 219 } 220 221 /* 222 * Look for a child driver for this channel. 223 * The child attach will setup the hardware. 224 */ 225 if (!config_found(self, (void *)&zsc_args, zs_print)) { 226 /* No sub-driver. Just reset it. */ 227 uint8_t reset = (channel == 0) ? 228 ZSWR9_A_RESET : ZSWR9_B_RESET; 229 s = splhigh(); 230 zs_write_reg(cs, 9, reset); 231 splx(s); 232 } 233 } 234 235 /* 236 * Now safe to install interrupt handlers. 237 */ 238 icu_intr_establish(maa->ma_irq, IST_EDGE, IPL_SERIAL, zshard, zsc); 239 zsc->zsc_softintr_cookie = softint_establish(SOFTINT_SERIAL, 240 (void (*)(void *))zsc_intr_soft, zsc); 241 242 /* 243 * Set the master interrupt enable and interrupt vector. 244 * (common to both channels, do it on A) 245 */ 246 cs = zsc->zsc_cs[0]; 247 s = splhigh(); 248 /* interrupt vector */ 249 zs_write_reg(cs, 2, 0); 250 /* master interrupt control (enable) */ 251 zs_write_reg(cs, 9, zs_init_reg[9]); 252 splx(s); 253 } 254 255 static int 256 zs_print(void *aux, const char *name) 257 { 258 struct zsc_attach_args *args = aux; 259 260 if (name != NULL) 261 aprint_normal("%s: ", name); 262 263 if (args->channel != -1) 264 aprint_normal(" channel %d", args->channel); 265 266 return UNCONF; 267 } 268 269 static int 270 zshard(void *arg) 271 { 272 struct zsc_softc *zsc = arg; 273 int rval; 274 275 rval = zsc_intr_hard(zsc); 276 277 #if 1 278 /* XXX: there is some race condition? */ 279 if (rval) 280 while (zsc_intr_hard(zsc)) 281 ; 282 #endif 283 284 /* We are at splzs here, so no need to lock. */ 285 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) 286 softint_schedule(zsc->zsc_softintr_cookie); 287 288 return rval; 289 } 290 291 /* 292 * Compute the current baud rate given a ZS channel. 293 */ 294 #if 0 295 static int 296 zs_get_speed(struct zs_chanstate *cs) 297 { 298 int tconst; 299 300 tconst = zs_read_reg(cs, 12); 301 tconst |= zs_read_reg(cs, 13) << 8; 302 return TCONST_TO_BPS(cs->cs_brg_clk, tconst); 303 } 304 #endif 305 306 /* 307 * MD functions for setting the baud rate and control modes. 308 */ 309 int 310 zs_set_speed(struct zs_chanstate *cs, int bps) 311 { 312 int tconst, real_bps; 313 314 if (bps == 0) 315 return 0; 316 317 #ifdef DIAGNOSTIC 318 if (cs->cs_brg_clk == 0) 319 panic("zs_set_speed"); 320 #endif 321 322 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); 323 if (tconst < 0) 324 return EINVAL; 325 326 /* Convert back to make sure we can do it. */ 327 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); 328 329 /* Allow ~4% tolerance here */ 330 if (abs(real_bps - bps) >= bps * 4 / 100) 331 return EINVAL; 332 333 cs->cs_preg[12] = tconst; 334 cs->cs_preg[13] = tconst >> 8; 335 336 /* Caller will stuff the pending registers. */ 337 return 0; 338 } 339 340 int 341 zs_set_modes(struct zs_chanstate *cs, int cflag) 342 { 343 int s; 344 345 /* 346 * Output hardware flow control on the chip is horrendous: 347 * if carrier detect drops, the receiver is disabled, and if 348 * CTS drops, the transmitter is stoped IN MID CHARACTER! 349 * Therefore, NEVER set the HFC bit, and instead use the 350 * status interrupt to detect CTS changes. 351 */ 352 s = splzs(); 353 cs->cs_rr0_pps = 0; 354 if ((cflag & (CLOCAL | MDMBUF)) != 0) { 355 cs->cs_rr0_dcd = 0; 356 if ((cflag & MDMBUF) == 0) 357 cs->cs_rr0_pps = ZSRR0_DCD; 358 } else 359 cs->cs_rr0_dcd = ZSRR0_DCD; 360 if ((cflag & CRTSCTS) != 0) { 361 cs->cs_wr5_dtr = ZSWR5_DTR; 362 cs->cs_wr5_rts = ZSWR5_RTS; 363 cs->cs_rr0_cts = ZSRR0_CTS; 364 } else if ((cflag & MDMBUF) != 0) { 365 cs->cs_wr5_dtr = 0; 366 cs->cs_wr5_rts = ZSWR5_DTR; 367 cs->cs_rr0_cts = ZSRR0_DCD; 368 } else { 369 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; 370 cs->cs_wr5_rts = 0; 371 cs->cs_rr0_cts = 0; 372 } 373 splx(s); 374 375 /* Caller will stuff the pending registers. */ 376 return 0; 377 } 378 379 380 /* 381 * Read or write the chip with suitable delays. 382 */ 383 384 uint8_t 385 zs_read_reg(struct zs_chanstate *cs, uint8_t reg) 386 { 387 uint8_t val; 388 389 *cs->cs_reg_csr = reg; 390 ZS_DELAY(); 391 val = *cs->cs_reg_csr; 392 ZS_DELAY(); 393 return val; 394 } 395 396 void 397 zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) 398 { 399 400 *cs->cs_reg_csr = reg; 401 ZS_DELAY(); 402 *cs->cs_reg_csr = val; 403 ZS_DELAY(); 404 } 405 406 uint8_t 407 zs_read_csr(struct zs_chanstate *cs) 408 { 409 uint8_t val; 410 411 val = *cs->cs_reg_csr; 412 ZS_DELAY(); 413 return val; 414 } 415 416 void 417 zs_write_csr(struct zs_chanstate *cs, uint8_t val) 418 { 419 420 *cs->cs_reg_csr = val; 421 ZS_DELAY(); 422 } 423 424 uint8_t 425 zs_read_data(struct zs_chanstate *cs) 426 { 427 uint8_t val; 428 429 val = *cs->cs_reg_data; 430 ZS_DELAY(); 431 return val; 432 } 433 434 void 435 zs_write_data(struct zs_chanstate *cs, uint8_t val) 436 { 437 438 *cs->cs_reg_data = val; 439 ZS_DELAY(); 440 } 441 442 void 443 zs_abort(struct zs_chanstate *cs) 444 { 445 446 #ifdef DDB 447 Debugger(); 448 #endif 449 } 450 451 /* 452 * Polled input char. 453 */ 454 int 455 zs_getc(void *arg) 456 { 457 struct zs_chanstate *cs = arg; 458 int s, c; 459 uint8_t rr0; 460 461 s = splhigh(); 462 /* Wait for a character to arrive. */ 463 do { 464 rr0 = *cs->cs_reg_csr; 465 ZS_DELAY(); 466 } while ((rr0 & ZSRR0_RX_READY) == 0); 467 468 c = *cs->cs_reg_data; 469 ZS_DELAY(); 470 splx(s); 471 472 return c; 473 } 474 475 /* 476 * Polled output char. 477 */ 478 void 479 zs_putc(void *arg, int c) 480 { 481 struct zs_chanstate *cs = arg; 482 int s; 483 uint8_t rr0; 484 485 s = splhigh(); 486 /* Wait for transmitter to become ready. */ 487 do { 488 rr0 = *cs->cs_reg_csr; 489 ZS_DELAY(); 490 } while ((rr0 & ZSRR0_TX_READY) == 0); 491 492 *cs->cs_reg_data = c; 493 ZS_DELAY(); 494 splx(s); 495 } 496 497 void 498 zscnprobe(struct consdev *cn) 499 { 500 501 cn->cn_pri = (console_present != 0 && cobalt_id == COBALT_ID_QUBE2700) 502 ? CN_NORMAL : CN_DEAD; 503 } 504 505 void 506 zscninit(struct consdev *cn) 507 { 508 struct zs_chanstate *cs; 509 510 extern const struct cdevsw zstty_cdevsw; 511 512 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0); 513 514 zs_cons = (uint8_t *)MIPS_PHYS_TO_KSEG1(ZS_BASE) + ZS_CHAN_A; /* XXX */ 515 516 zs_conschan = cs = &zs_conschan_store; 517 518 /* Setup temporary chanstate. */ 519 cs->cs_reg_csr = zs_cons + ZS_CSR; 520 cs->cs_reg_data = zs_cons + ZS_DATA; 521 522 /* Initialize the pending registers. */ 523 memcpy(cs->cs_preg, zs_init_reg, 16); 524 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS; 525 526 cs->cs_preg[12] = BPS_TO_TCONST(PCLK / 16, ZS_DEFSPEED); 527 cs->cs_preg[13] = 0; 528 cs->cs_defspeed = ZS_DEFSPEED; 529 530 /* Clear the master interrupt enable. */ 531 zs_write_reg(cs, 9, 0); 532 533 /* Reset the whole SCC chip. */ 534 zs_write_reg(cs, 9, ZSWR9_HARD_RESET); 535 536 /* Copy "pending" to "current" and H/W */ 537 zs_loadchannelregs(cs); 538 } 539 540 int 541 zscngetc(dev_t dev) 542 { 543 544 return zs_getc((void *)zs_conschan); 545 } 546 547 void 548 zscnputc(dev_t dev, int c) 549 { 550 551 zs_putc((void *)zs_conschan, c); 552 } 553