xref: /netbsd-src/sys/arch/cesfic/cesfic/pmap_bootstrap.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.7 2005/12/11 12:17:04 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.7 2005/12/11 12:17:04 christos Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/msgbuf.h>
43 #include <sys/proc.h>
44 
45 #include <machine/frame.h>
46 #include <machine/cpu.h>
47 #include <machine/vmparam.h>
48 #include <machine/pte.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa - KERNBASE))
53 
54 extern char *etext;
55 extern int Sysptsize;
56 extern char *proc0paddr;
57 extern st_entry_t *Sysseg;
58 extern pt_entry_t *Sysptmap, *Sysmap;
59 
60 extern int physmem;
61 extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
62 extern int protection_codes[];
63 
64 void	pmap_bootstrap __P((vm_offset_t, vm_offset_t));
65 
66 /*
67  * Special purpose kernel virtual addresses, used for mapping
68  * physical pages for a variety of temporary or permanent purposes:
69  *
70  *	CADDR1, CADDR2:	pmap zero/copy operations
71  *	vmmap:		/dev/mem, crash dumps, parity error checking
72  *	msgbufp:	kernel message buffer
73  */
74 caddr_t		CADDR1, CADDR2, vmmap;
75 extern caddr_t	msgbufaddr;
76 
77 /*
78  * Bootstrap the VM system.
79  *
80  * Called with MMU off so we must relocate all global references by `firstpa'
81  * (don't call any functions here!)  `nextpa' is the first available physical
82  * memory address.  Returns an updated first PA reflecting the memory we
83  * have allocated.  MMU is still off when we return.
84  *
85  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
86  * XXX a PIC compiler would make this much easier.
87  */
88 void
89 pmap_bootstrap(nextpa, firstpa)
90 	vm_offset_t nextpa;
91 	vm_offset_t firstpa;
92 {
93 	vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
94 	u_int nptpages, kstsize;
95 	st_entry_t protoste, *ste;
96 	pt_entry_t protopte, *pte, *epte;
97 
98 	/*
99 	 * Calculate important physical addresses:
100 	 *
101 	 *	kstpa		kernel segment table	1 page (!040)
102 	 *						N pages (040)
103 	 *
104 	 *	kptpa		statically allocated
105 	 *			kernel PT pages		Sysptsize+ pages
106 	 *
107 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
108 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
109 	 *   the total to a page boundary with IO maps at the end. ]
110 	 *
111 	 *	kptmpa		kernel PT map		1 page
112 	 *
113 	 *	lkptpa		last kernel PT page	1 page
114 	 *
115 	 *	p0upa		proc 0 u-area		UPAGES pages
116 	 *
117 	 * The KVA corresponding to any of these PAs is:
118 	 *	(PA - firstpa + KERNBASE).
119 	 */
120 	if (RELOC(mmutype, int) == MMU_68040)
121 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
122 	else
123 		kstsize = 1;
124 	kstpa = nextpa;
125 	nextpa += kstsize * PAGE_SIZE;
126 	kptmpa = nextpa;
127 	nextpa += PAGE_SIZE;
128 	lkptpa = nextpa;
129 	nextpa += PAGE_SIZE;
130 	p0upa = nextpa;
131 	nextpa += USPACE;
132 	kptpa = nextpa;
133 	nptpages = RELOC(Sysptsize, int);
134 	nextpa += nptpages * PAGE_SIZE;
135 
136 	/*
137 	 * Initialize segment table and kernel page table map.
138 	 *
139 	 * On 68030s and earlier MMUs the two are identical except for
140 	 * the valid bits so both are initialized with essentially the
141 	 * same values.  On the 68040, which has a mandatory 3-level
142 	 * structure, the segment table holds the level 1 table and part
143 	 * (or all) of the level 2 table and hence is considerably
144 	 * different.  Here the first level consists of 128 descriptors
145 	 * (512 bytes) each mapping 32mb of address space.  Each of these
146 	 * points to blocks of 128 second level descriptors (512 bytes)
147 	 * each mapping 256kb.  Note that there may be additional "segment
148 	 * table" pages depending on how large MAXKL2SIZE is.
149 	 *
150 	 * Portions of the last segment of KVA space (0xFFF00000 -
151 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
152 	 * for UPAGES is used for mapping the current process u-area
153 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
154 	 * to the last physical page of RAM to give us a region in which
155 	 * PA == VA.  We use the first part of this page for enabling
156 	 * and disabling mapping.  The last part of this page also contains
157 	 * info left by the boot ROM.
158 	 *
159 	 * XXX cramming two levels of mapping into the single "segment"
160 	 * table on the 68040 is intended as a temporary hack to get things
161 	 * working.  The 224mb of address space that this allows will most
162 	 * likely be insufficient in the future (at least for the kernel).
163 	 */
164 	if (RELOC(mmutype, int) == MMU_68040) {
165 		int num;
166 
167 		/*
168 		 * First invalidate the entire "segment table" pages
169 		 * (levels 1 and 2 have the same "invalid" value).
170 		 */
171 		pte = (u_int *)kstpa;
172 		epte = &pte[kstsize * NPTEPG];
173 		while (pte < epte)
174 			*pte++ = SG_NV;
175 
176 		/*
177 		 * Initialize level 2 descriptors (which immediately
178 		 * follow the level 1 table).  We need:
179 		 *	NPTEPG / SG4_LEV3SIZE
180 		 * level 2 descriptors to map each of the nptpages
181 		 * pages of PTEs.  Note that we set the "used" bit
182 		 * now to save the HW the expense of doing it.
183 		 */
184 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
185 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
186 		epte = &pte[num];
187 		protoste = kptpa | SG_U | SG_RW | SG_V;
188 		while (pte < epte) {
189 			*pte++ = protoste;
190 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
191 		}
192 
193 		/*
194 		 * Initialize level 1 descriptors.  We need:
195 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
196 		 * level 1 descriptors to map the `num' level 2's.
197 		 */
198 		pte = (u_int *)kstpa;
199 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
200 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
201 		while (pte < epte) {
202 			*pte++ = protoste;
203 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
204 		}
205 
206 		/*
207 		 * Initialize the final level 1 descriptor to map the last
208 		 * block of level 2 descriptors.
209 		 */
210 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
211 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
212 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
213 		/*
214 		 * Now initialize the final portion of that block of
215 		 * descriptors to map kptmpa and the "last PT page".
216 		 */
217 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2];
218 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
219 		protoste = kptmpa | SG_U | SG_RW | SG_V;
220 		while (pte < epte) {
221 			*pte++ = protoste;
222 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
223 		}
224 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
225 		protoste = lkptpa | SG_U | SG_RW | SG_V;
226 		while (pte < epte) {
227 			*pte++ = protoste;
228 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
229 		}
230 
231 		/*
232 		 * Initialize Sysptmap
233 		 */
234 		pte = (u_int *)kptmpa;
235 		epte = &pte[nptpages];
236 		protopte = kptpa | PG_RW | PG_CI | PG_V;
237 		while (pte < epte) {
238 			*pte++ = protopte;
239 			protopte += PAGE_SIZE;
240 		}
241 
242 		/*
243 		 * Invalidate all but the last remaining entry.
244 		 */
245 		epte = &((u_int *)kptmpa)[NPTEPG-2];
246 		while (pte < epte) {
247 			*pte++ = PG_NV;
248 		}
249 		/*
250 		 * Initialize the last to point to kptmpa and the page
251 		 * table page allocated earlier.
252 		 */
253 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
254 		pte++;
255 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
256 	} else {
257 		/*
258 		 * Map the page table pages in both the HW segment table
259 		 * and the software Sysptmap.
260 		 */
261 		ste = (u_int *)kstpa;
262 		pte = (u_int *)kptmpa;
263 		epte = &pte[nptpages];
264 		protoste = kptpa | SG_RW | SG_V;
265 		protopte = kptpa | PG_RW | PG_CI | PG_V;
266 		while (pte < epte) {
267 			*ste++ = protoste;
268 			*pte++ = protopte;
269 			protoste += PAGE_SIZE;
270 			protopte += PAGE_SIZE;
271 		}
272 		/*
273 		 * Invalidate all but the last remaining entries in both.
274 		 */
275 		epte = &((u_int *)kptmpa)[NPTEPG-2];
276 		while (pte < epte) {
277 			*ste++ = SG_NV;
278 			*pte++ = PG_NV;
279 		}
280 		/*
281 		 * Initialize the last to point to kptmpa and the page
282 		 * table page allocated earlier.
283 		 */
284 		*ste = kptmpa | SG_RW | SG_V;
285 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
286 		ste++;
287 		pte++;
288 		*ste = lkptpa | SG_RW | SG_V;
289 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
290 	}
291 	/*
292 	 * Invalidate all but the final entry in the last kernel PT page
293 	 * (u-area PTEs will be validated later).  The final entry maps
294 	 * the last page of physical memory.
295 	 */
296 	pte = (u_int *)lkptpa;
297 	epte = &pte[NPTEPG];
298 	while (pte < epte)
299 		*pte++ = PG_NV;
300 
301 	/*
302 	 * Initialize kernel page table.
303 	 * Start by invalidating the `nptpages' that we have allocated.
304 	 */
305 	pte = (u_int *)kptpa;
306 	epte = &pte[nptpages * NPTEPG];
307 	while (pte < epte)
308 		*pte++ = PG_NV;
309 
310 	/*
311 	 * Validate PTEs for kernel text (RO).
312 	 */
313 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
314 	epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
315 	protopte = firstpa | PG_RO | PG_V;
316 	while (pte < epte) {
317 		*pte++ = protopte;
318 		protopte += PAGE_SIZE;
319 	}
320 	/*
321 	 * Validate PTEs for kernel data/bss, dynamic data allocated
322 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
323 	 * u-area and page table allocated below (RW).
324 	 */
325 	epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
326 	protopte = (protopte & ~PG_PROT) | PG_RW;
327 	/*
328 	 * Enable copy-back caching of data pages
329 	 */
330 	if (RELOC(mmutype, int) == MMU_68040)
331 		protopte |= PG_CCB;
332 
333 	while (pte < epte) {
334 		*pte++ = protopte;
335 		protopte += PAGE_SIZE;
336 	}
337 
338 	/*
339 	 * Calculate important exported kernel virtual addresses
340 	 */
341 	/*
342 	 * Sysseg: base of kernel segment table
343 	 */
344 	RELOC(Sysseg, st_entry_t *) =
345 		(st_entry_t *)(kstpa - firstpa + KERNBASE);
346 	/*
347 	 * Sysptmap: base of kernel page table map
348 	 */
349 	RELOC(Sysptmap, pt_entry_t *) =
350 		(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
351 	/*
352 	 * Sysmap: kernel page table (as mapped through Sysptmap)
353 	 * Immediately follows `nptpages' of static kernel page table.
354 	 */
355 	RELOC(Sysmap, pt_entry_t *) =
356 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
357 
358 	/*
359 	 * Setup u-area for process 0.
360 	 */
361 	/*
362 	 * Zero the u-area.
363 	 * NOTE: `pte' and `epte' aren't PTEs here.
364 	 */
365 	pte = (u_int *)p0upa;
366 	epte = (u_int *)(p0upa + USPACE);
367 	while (pte < epte)
368 		*pte++ = 0;
369 	/*
370 	 * Remember the u-area address so it can be loaded in the
371 	 * proc struct p_addr field later.
372 	 */
373 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
374 
375 	/*
376 	 * VM data structures are now initialized, set up data for
377 	 * the pmap module.
378 	 *
379 	 * Note about avail_end: msgbuf is initialized just after
380 	 * avail_end in machdep.c.  Since the last page is used
381 	 * for rebooting the system (code is copied there and
382 	 * excution continues from copied code before the MMU
383 	 * is disabled), the msgbuf will get trounced between
384 	 * reboots if it's placed in the last physical page.
385 	 * To work around this, we move avail_end back one more
386 	 * page so the msgbuf can be preserved.
387 	 */
388 	RELOC(avail_start, vm_offset_t) = nextpa;
389 	RELOC(avail_end, vm_offset_t) = firstpa
390 	  + m68k_ptob(RELOC(physmem, int))
391 	  - m68k_round_page(MSGBUFSIZE)
392 	  - PAGE_SIZE; /* if that start of last page??? */
393 	RELOC(virtual_avail, vm_offset_t) =
394 		KERNBASE + (nextpa - firstpa);
395 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
396 
397 	/*
398 	 * Initialize protection array.
399 	 * XXX don't use a switch statement, it might produce an
400 	 * absolute "jmp" table.
401 	 */
402 	{
403 		int *kp;
404 
405 		kp = &RELOC(protection_codes, int);
406 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
407 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
408 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
409 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
410 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
411 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
412 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
413 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
414 	}
415 
416 	/*
417 	 * Kernel page/segment table allocated above,
418 	 * just initialize pointers.
419 	 */
420 	{
421 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
422 
423 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
424 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
425 		simple_lock_init(&kpm->pm_lock);
426 		kpm->pm_count = 1;
427 		kpm->pm_stpa = (st_entry_t *)kstpa;
428 		/*
429 		 * For the 040 we also initialize the free level 2
430 		 * descriptor mask noting that we have used:
431 		 *	0:		level 1 table
432 		 *	1 to `num':	map page tables
433 		 *	MAXKL2SIZE-1:	maps kptmpa and last-page page table
434 		 */
435 		if (RELOC(mmutype, int) == MMU_68040) {
436 			int num;
437 
438 			kpm->pm_stfree = ~l2tobm(0);
439 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
440 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
441 			while (num)
442 				kpm->pm_stfree &= ~l2tobm(num--);
443 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
444 			for (num = MAXKL2SIZE;
445 			     num < sizeof(kpm->pm_stfree)*NBBY;
446 			     num++)
447 				kpm->pm_stfree &= ~l2tobm(num);
448 		}
449 	}
450 
451 	/*
452 	 * Allocate some fixed, special purpose kernel virtual addresses
453 	 */
454 	{
455 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
456 
457 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
458 		va += PAGE_SIZE;
459 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
460 		va += PAGE_SIZE;
461 		RELOC(vmmap, caddr_t) = (caddr_t)va;
462 		va += PAGE_SIZE;
463 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
464 		va += m68k_round_page(MSGBUFSIZE);
465 		RELOC(virtual_avail, vm_offset_t) = va;
466 	}
467 }
468