xref: /netbsd-src/sys/arch/cesfic/cesfic/pmap_bootstrap.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.12 2007/10/17 19:54:07 garbled Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.12 2007/10/17 19:54:07 garbled Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/msgbuf.h>
43 #include <sys/proc.h>
44 
45 #include <machine/frame.h>
46 #include <machine/cpu.h>
47 #include <machine/vmparam.h>
48 #include <machine/pte.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa - KERNBASE))
53 
54 extern char *etext;
55 extern int Sysptsize;
56 extern char *proc0paddr;
57 extern st_entry_t *Sysseg;
58 extern pt_entry_t *Sysptmap, *Sysmap;
59 
60 extern int physmem;
61 extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
62 extern int protection_codes[];
63 
64 void	pmap_bootstrap __P((vm_offset_t, vm_offset_t));
65 
66 /*
67  * Special purpose kernel virtual addresses, used for mapping
68  * physical pages for a variety of temporary or permanent purposes:
69  *
70  *	CADDR1, CADDR2:	pmap zero/copy operations
71  *	vmmap:		/dev/mem, crash dumps, parity error checking
72  *	msgbufp:	kernel message buffer
73  */
74 void *CADDR1, *CADDR2;
75 char *vmmap;
76 void *msgbufaddr;
77 
78 /*
79  * Bootstrap the VM system.
80  *
81  * Called with MMU off so we must relocate all global references by `firstpa'
82  * (don't call any functions here!)  `nextpa' is the first available physical
83  * memory address.  Returns an updated first PA reflecting the memory we
84  * have allocated.  MMU is still off when we return.
85  *
86  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
87  * XXX a PIC compiler would make this much easier.
88  */
89 void
90 pmap_bootstrap(nextpa, firstpa)
91 	vm_offset_t nextpa;
92 	vm_offset_t firstpa;
93 {
94 	vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
95 	u_int nptpages, kstsize;
96 	st_entry_t protoste, *ste;
97 	pt_entry_t protopte, *pte, *epte;
98 
99 	/*
100 	 * Calculate important physical addresses:
101 	 *
102 	 *	kstpa		kernel segment table	1 page (!040)
103 	 *						N pages (040)
104 	 *
105 	 *	kptpa		statically allocated
106 	 *			kernel PT pages		Sysptsize+ pages
107 	 *
108 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
109 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
110 	 *   the total to a page boundary with IO maps at the end. ]
111 	 *
112 	 *	kptmpa		kernel PT map		1 page
113 	 *
114 	 *	lkptpa		last kernel PT page	1 page
115 	 *
116 	 *	p0upa		proc 0 u-area		UPAGES pages
117 	 *
118 	 * The KVA corresponding to any of these PAs is:
119 	 *	(PA - firstpa + KERNBASE).
120 	 */
121 	if (RELOC(mmutype, int) == MMU_68040)
122 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
123 	else
124 		kstsize = 1;
125 	kstpa = nextpa;
126 	nextpa += kstsize * PAGE_SIZE;
127 	kptmpa = nextpa;
128 	nextpa += PAGE_SIZE;
129 	lkptpa = nextpa;
130 	nextpa += PAGE_SIZE;
131 	p0upa = nextpa;
132 	nextpa += USPACE;
133 	kptpa = nextpa;
134 	nptpages = RELOC(Sysptsize, int);
135 	nextpa += nptpages * PAGE_SIZE;
136 
137 	/*
138 	 * Initialize segment table and kernel page table map.
139 	 *
140 	 * On 68030s and earlier MMUs the two are identical except for
141 	 * the valid bits so both are initialized with essentially the
142 	 * same values.  On the 68040, which has a mandatory 3-level
143 	 * structure, the segment table holds the level 1 table and part
144 	 * (or all) of the level 2 table and hence is considerably
145 	 * different.  Here the first level consists of 128 descriptors
146 	 * (512 bytes) each mapping 32mb of address space.  Each of these
147 	 * points to blocks of 128 second level descriptors (512 bytes)
148 	 * each mapping 256kb.  Note that there may be additional "segment
149 	 * table" pages depending on how large MAXKL2SIZE is.
150 	 *
151 	 * Portions of the last segment of KVA space (0xFFF00000 -
152 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
153 	 * for UPAGES is used for mapping the current process u-area
154 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
155 	 * to the last physical page of RAM to give us a region in which
156 	 * PA == VA.  We use the first part of this page for enabling
157 	 * and disabling mapping.  The last part of this page also contains
158 	 * info left by the boot ROM.
159 	 *
160 	 * XXX cramming two levels of mapping into the single "segment"
161 	 * table on the 68040 is intended as a temporary hack to get things
162 	 * working.  The 224mb of address space that this allows will most
163 	 * likely be insufficient in the future (at least for the kernel).
164 	 */
165 	if (RELOC(mmutype, int) == MMU_68040) {
166 		int num;
167 
168 		/*
169 		 * First invalidate the entire "segment table" pages
170 		 * (levels 1 and 2 have the same "invalid" value).
171 		 */
172 		pte = (u_int *)kstpa;
173 		epte = &pte[kstsize * NPTEPG];
174 		while (pte < epte)
175 			*pte++ = SG_NV;
176 
177 		/*
178 		 * Initialize level 2 descriptors (which immediately
179 		 * follow the level 1 table).  We need:
180 		 *	NPTEPG / SG4_LEV3SIZE
181 		 * level 2 descriptors to map each of the nptpages
182 		 * pages of PTEs.  Note that we set the "used" bit
183 		 * now to save the HW the expense of doing it.
184 		 */
185 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
186 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
187 		epte = &pte[num];
188 		protoste = kptpa | SG_U | SG_RW | SG_V;
189 		while (pte < epte) {
190 			*pte++ = protoste;
191 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
192 		}
193 
194 		/*
195 		 * Initialize level 1 descriptors.  We need:
196 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
197 		 * level 1 descriptors to map the `num' level 2's.
198 		 */
199 		pte = (u_int *)kstpa;
200 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
201 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
202 		while (pte < epte) {
203 			*pte++ = protoste;
204 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
205 		}
206 
207 		/*
208 		 * Initialize the final level 1 descriptor to map the last
209 		 * block of level 2 descriptors.
210 		 */
211 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
212 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
213 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
214 		/*
215 		 * Now initialize the final portion of that block of
216 		 * descriptors to map kptmpa and the "last PT page".
217 		 */
218 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2];
219 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
220 		protoste = kptmpa | SG_U | SG_RW | SG_V;
221 		while (pte < epte) {
222 			*pte++ = protoste;
223 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
224 		}
225 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
226 		protoste = lkptpa | SG_U | SG_RW | SG_V;
227 		while (pte < epte) {
228 			*pte++ = protoste;
229 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
230 		}
231 
232 		/*
233 		 * Initialize Sysptmap
234 		 */
235 		pte = (u_int *)kptmpa;
236 		epte = &pte[nptpages];
237 		protopte = kptpa | PG_RW | PG_CI | PG_V;
238 		while (pte < epte) {
239 			*pte++ = protopte;
240 			protopte += PAGE_SIZE;
241 		}
242 
243 		/*
244 		 * Invalidate all but the last remaining entry.
245 		 */
246 		epte = &((u_int *)kptmpa)[NPTEPG-2];
247 		while (pte < epte) {
248 			*pte++ = PG_NV;
249 		}
250 		/*
251 		 * Initialize the last to point to kptmpa and the page
252 		 * table page allocated earlier.
253 		 */
254 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
255 		pte++;
256 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
257 	} else {
258 		/*
259 		 * Map the page table pages in both the HW segment table
260 		 * and the software Sysptmap.
261 		 */
262 		ste = (u_int *)kstpa;
263 		pte = (u_int *)kptmpa;
264 		epte = &pte[nptpages];
265 		protoste = kptpa | SG_RW | SG_V;
266 		protopte = kptpa | PG_RW | PG_CI | PG_V;
267 		while (pte < epte) {
268 			*ste++ = protoste;
269 			*pte++ = protopte;
270 			protoste += PAGE_SIZE;
271 			protopte += PAGE_SIZE;
272 		}
273 		/*
274 		 * Invalidate all but the last remaining entries in both.
275 		 */
276 		epte = &((u_int *)kptmpa)[NPTEPG-2];
277 		while (pte < epte) {
278 			*ste++ = SG_NV;
279 			*pte++ = PG_NV;
280 		}
281 		/*
282 		 * Initialize the last to point to kptmpa and the page
283 		 * table page allocated earlier.
284 		 */
285 		*ste = kptmpa | SG_RW | SG_V;
286 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
287 		ste++;
288 		pte++;
289 		*ste = lkptpa | SG_RW | SG_V;
290 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
291 	}
292 	/*
293 	 * Invalidate all but the final entry in the last kernel PT page
294 	 * (u-area PTEs will be validated later).  The final entry maps
295 	 * the last page of physical memory.
296 	 */
297 	pte = (u_int *)lkptpa;
298 	epte = &pte[NPTEPG];
299 	while (pte < epte)
300 		*pte++ = PG_NV;
301 
302 	/*
303 	 * Initialize kernel page table.
304 	 * Start by invalidating the `nptpages' that we have allocated.
305 	 */
306 	pte = (u_int *)kptpa;
307 	epte = &pte[nptpages * NPTEPG];
308 	while (pte < epte)
309 		*pte++ = PG_NV;
310 
311 	/*
312 	 * Validate PTEs for kernel text (RO).
313 	 */
314 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
315 	epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
316 	protopte = firstpa | PG_RO | PG_V;
317 	while (pte < epte) {
318 		*pte++ = protopte;
319 		protopte += PAGE_SIZE;
320 	}
321 	/*
322 	 * Validate PTEs for kernel data/bss, dynamic data allocated
323 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
324 	 * u-area and page table allocated below (RW).
325 	 */
326 	epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
327 	protopte = (protopte & ~PG_PROT) | PG_RW;
328 	/*
329 	 * Enable copy-back caching of data pages
330 	 */
331 	if (RELOC(mmutype, int) == MMU_68040)
332 		protopte |= PG_CCB;
333 
334 	while (pte < epte) {
335 		*pte++ = protopte;
336 		protopte += PAGE_SIZE;
337 	}
338 
339 	/*
340 	 * Calculate important exported kernel virtual addresses
341 	 */
342 	/*
343 	 * Sysseg: base of kernel segment table
344 	 */
345 	RELOC(Sysseg, st_entry_t *) =
346 		(st_entry_t *)(kstpa - firstpa + KERNBASE);
347 	/*
348 	 * Sysptmap: base of kernel page table map
349 	 */
350 	RELOC(Sysptmap, pt_entry_t *) =
351 		(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
352 	/*
353 	 * Sysmap: kernel page table (as mapped through Sysptmap)
354 	 * Allocated at the end of KVA space.
355 	 */
356 	RELOC(Sysmap, pt_entry_t *) =
357 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
358 
359 	/*
360 	 * Setup u-area for process 0.
361 	 */
362 	/*
363 	 * Zero the u-area.
364 	 * NOTE: `pte' and `epte' aren't PTEs here.
365 	 */
366 	pte = (u_int *)p0upa;
367 	epte = (u_int *)(p0upa + USPACE);
368 	while (pte < epte)
369 		*pte++ = 0;
370 	/*
371 	 * Remember the u-area address so it can be loaded in the
372 	 * proc struct p_addr field later.
373 	 */
374 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
375 
376 	/*
377 	 * VM data structures are now initialized, set up data for
378 	 * the pmap module.
379 	 *
380 	 * Note about avail_end: msgbuf is initialized just after
381 	 * avail_end in machdep.c.  Since the last page is used
382 	 * for rebooting the system (code is copied there and
383 	 * excution continues from copied code before the MMU
384 	 * is disabled), the msgbuf will get trounced between
385 	 * reboots if it's placed in the last physical page.
386 	 * To work around this, we move avail_end back one more
387 	 * page so the msgbuf can be preserved.
388 	 */
389 	RELOC(avail_start, vm_offset_t) = nextpa;
390 	RELOC(avail_end, vm_offset_t) = firstpa
391 	  + m68k_ptob(RELOC(physmem, int))
392 	  - m68k_round_page(MSGBUFSIZE)
393 	  - PAGE_SIZE; /* if that start of last page??? */
394 	RELOC(virtual_avail, vm_offset_t) =
395 		KERNBASE + (nextpa - firstpa);
396 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
397 
398 	/*
399 	 * Initialize protection array.
400 	 * XXX don't use a switch statement, it might produce an
401 	 * absolute "jmp" table.
402 	 */
403 	{
404 		int *kp;
405 
406 		kp = &RELOC(protection_codes, int);
407 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
408 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
409 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
410 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
411 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
412 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
413 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
414 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
415 	}
416 
417 	/*
418 	 * Kernel page/segment table allocated above,
419 	 * just initialize pointers.
420 	 */
421 	{
422 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
423 
424 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
425 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
426 		simple_lock_init(&kpm->pm_lock);
427 		kpm->pm_count = 1;
428 		kpm->pm_stpa = (st_entry_t *)kstpa;
429 		/*
430 		 * For the 040 we also initialize the free level 2
431 		 * descriptor mask noting that we have used:
432 		 *	0:		level 1 table
433 		 *	1 to `num':	map page tables
434 		 *	MAXKL2SIZE-1:	maps kptmpa and last-page page table
435 		 */
436 		if (RELOC(mmutype, int) == MMU_68040) {
437 			int num;
438 
439 			kpm->pm_stfree = ~l2tobm(0);
440 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
441 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
442 			while (num)
443 				kpm->pm_stfree &= ~l2tobm(num--);
444 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
445 			for (num = MAXKL2SIZE;
446 			     num < sizeof(kpm->pm_stfree)*NBBY;
447 			     num++)
448 				kpm->pm_stfree &= ~l2tobm(num);
449 		}
450 	}
451 
452 	/*
453 	 * Allocate some fixed, special purpose kernel virtual addresses
454 	 */
455 	{
456 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
457 
458 		RELOC(CADDR1, void *) = (void *)va;
459 		va += PAGE_SIZE;
460 		RELOC(CADDR2, void *) = (void *)va;
461 		va += PAGE_SIZE;
462 		RELOC(vmmap, void *) = (void *)va;
463 		va += PAGE_SIZE;
464 		RELOC(msgbufaddr, void *) = (void *)va;
465 		va += m68k_round_page(MSGBUFSIZE);
466 		RELOC(virtual_avail, vm_offset_t) = va;
467 	}
468 }
469