xref: /netbsd-src/sys/arch/cesfic/cesfic/pmap_bootstrap.c (revision 6deb2c22d20de1d75d538e8a5c57b573926fd157)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.17 2009/08/11 17:04:15 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.17 2009/08/11 17:04:15 matt Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/msgbuf.h>
44 #include <sys/proc.h>
45 
46 #include <machine/frame.h>
47 #include <machine/cpu.h>
48 #include <machine/vmparam.h>
49 #include <machine/pte.h>
50 
51 #include <uvm/uvm_extern.h>
52 
53 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa - KERNBASE))
54 #define RELOCPTR(v, t)	((t)((uintptr_t)RELOC((v), t) + firstpa - KERNBASE))
55 
56 extern char *etext;
57 extern char *proc0paddr;
58 extern paddr_t avail_start, avail_end;
59 
60 void	pmap_bootstrap(vm_offset_t, vm_offset_t);
61 
62 /*
63  * Special purpose kernel virtual addresses, used for mapping
64  * physical pages for a variety of temporary or permanent purposes:
65  *
66  *	CADDR1, CADDR2:	pmap zero/copy operations
67  *	vmmap:		/dev/mem, crash dumps, parity error checking
68  *	msgbufp:	kernel message buffer
69  */
70 void *CADDR1, *CADDR2;
71 char *vmmap;
72 void *msgbufaddr;
73 
74 /*
75  * Bootstrap the VM system.
76  *
77  * Called with MMU off so we must relocate all global references by `firstpa'
78  * (don't call any functions here!)  `nextpa' is the first available physical
79  * memory address.  Returns an updated first PA reflecting the memory we
80  * have allocated.  MMU is still off when we return.
81  *
82  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
83  * XXX a PIC compiler would make this much easier.
84  */
85 void
86 pmap_bootstrap(vm_offset_t nextpa, vm_offset_t firstpa)
87 {
88 	vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
89 	u_int nptpages, kstsize;
90 	st_entry_t protoste, *ste;
91 	pt_entry_t protopte, *pte, *epte;
92 
93 	/*
94 	 * Calculate important physical addresses:
95 	 *
96 	 *	kstpa		kernel segment table	1 page (!040)
97 	 *						N pages (040)
98 	 *
99 	 *	kptpa		statically allocated
100 	 *			kernel PT pages		Sysptsize+ pages
101 	 *
102 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
103 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
104 	 *   the total to a page boundary with IO maps at the end. ]
105 	 *
106 	 *	kptmpa		kernel PT map		1 page
107 	 *
108 	 *	lkptpa		last kernel PT page	1 page
109 	 *
110 	 *	p0upa		proc 0 u-area		UPAGES pages
111 	 *
112 	 * The KVA corresponding to any of these PAs is:
113 	 *	(PA - firstpa + KERNBASE).
114 	 */
115 	if (RELOC(mmutype, int) == MMU_68040)
116 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
117 	else
118 		kstsize = 1;
119 	kstpa = nextpa;
120 	nextpa += kstsize * PAGE_SIZE;
121 	kptmpa = nextpa;
122 	nextpa += PAGE_SIZE;
123 	lkptpa = nextpa;
124 	nextpa += PAGE_SIZE;
125 	p0upa = nextpa;
126 	nextpa += USPACE;
127 	kptpa = nextpa;
128 	nptpages = RELOC(Sysptsize, int);
129 	nextpa += nptpages * PAGE_SIZE;
130 
131 	/*
132 	 * Initialize segment table and kernel page table map.
133 	 *
134 	 * On 68030s and earlier MMUs the two are identical except for
135 	 * the valid bits so both are initialized with essentially the
136 	 * same values.  On the 68040, which has a mandatory 3-level
137 	 * structure, the segment table holds the level 1 table and part
138 	 * (or all) of the level 2 table and hence is considerably
139 	 * different.  Here the first level consists of 128 descriptors
140 	 * (512 bytes) each mapping 32mb of address space.  Each of these
141 	 * points to blocks of 128 second level descriptors (512 bytes)
142 	 * each mapping 256kb.  Note that there may be additional "segment
143 	 * table" pages depending on how large MAXKL2SIZE is.
144 	 *
145 	 * Portions of the last segment of KVA space (0xFFF00000 -
146 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
147 	 * for UPAGES is used for mapping the current process u-area
148 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
149 	 * to the last physical page of RAM to give us a region in which
150 	 * PA == VA.  We use the first part of this page for enabling
151 	 * and disabling mapping.  The last part of this page also contains
152 	 * info left by the boot ROM.
153 	 *
154 	 * XXX cramming two levels of mapping into the single "segment"
155 	 * table on the 68040 is intended as a temporary hack to get things
156 	 * working.  The 224mb of address space that this allows will most
157 	 * likely be insufficient in the future (at least for the kernel).
158 	 */
159 	if (RELOC(mmutype, int) == MMU_68040) {
160 		int num;
161 
162 		/*
163 		 * First invalidate the entire "segment table" pages
164 		 * (levels 1 and 2 have the same "invalid" value).
165 		 */
166 		pte = (u_int *)kstpa;
167 		epte = &pte[kstsize * NPTEPG];
168 		while (pte < epte)
169 			*pte++ = SG_NV;
170 
171 		/*
172 		 * Initialize level 2 descriptors (which immediately
173 		 * follow the level 1 table).  We need:
174 		 *	NPTEPG / SG4_LEV3SIZE
175 		 * level 2 descriptors to map each of the nptpages
176 		 * pages of PTEs.  Note that we set the "used" bit
177 		 * now to save the HW the expense of doing it.
178 		 */
179 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
180 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
181 		epte = &pte[num];
182 		protoste = kptpa | SG_U | SG_RW | SG_V;
183 		while (pte < epte) {
184 			*pte++ = protoste;
185 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
186 		}
187 
188 		/*
189 		 * Initialize level 1 descriptors.  We need:
190 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
191 		 * level 1 descriptors to map the `num' level 2's.
192 		 */
193 		pte = (u_int *)kstpa;
194 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
195 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
196 		while (pte < epte) {
197 			*pte++ = protoste;
198 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
199 		}
200 
201 		/*
202 		 * Initialize the final level 1 descriptor to map the last
203 		 * block of level 2 descriptors.
204 		 */
205 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
206 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
207 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
208 		/*
209 		 * Now initialize the final portion of that block of
210 		 * descriptors to map kptmpa and the "last PT page".
211 		 */
212 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2];
213 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
214 		protoste = kptmpa | SG_U | SG_RW | SG_V;
215 		while (pte < epte) {
216 			*pte++ = protoste;
217 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
218 		}
219 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
220 		protoste = lkptpa | SG_U | SG_RW | SG_V;
221 		while (pte < epte) {
222 			*pte++ = protoste;
223 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
224 		}
225 
226 		/*
227 		 * Initialize Sysptmap
228 		 */
229 		pte = (u_int *)kptmpa;
230 		epte = &pte[nptpages];
231 		protopte = kptpa | PG_RW | PG_CI | PG_V;
232 		while (pte < epte) {
233 			*pte++ = protopte;
234 			protopte += PAGE_SIZE;
235 		}
236 
237 		/*
238 		 * Invalidate all but the last remaining entry.
239 		 */
240 		epte = &((u_int *)kptmpa)[NPTEPG-2];
241 		while (pte < epte) {
242 			*pte++ = PG_NV;
243 		}
244 		/*
245 		 * Initialize the last to point to kptmpa and the page
246 		 * table page allocated earlier.
247 		 */
248 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
249 		pte++;
250 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
251 	} else {
252 		/*
253 		 * Map the page table pages in both the HW segment table
254 		 * and the software Sysptmap.
255 		 */
256 		ste = (u_int *)kstpa;
257 		pte = (u_int *)kptmpa;
258 		epte = &pte[nptpages];
259 		protoste = kptpa | SG_RW | SG_V;
260 		protopte = kptpa | PG_RW | PG_CI | PG_V;
261 		while (pte < epte) {
262 			*ste++ = protoste;
263 			*pte++ = protopte;
264 			protoste += PAGE_SIZE;
265 			protopte += PAGE_SIZE;
266 		}
267 		/*
268 		 * Invalidate all but the last remaining entries in both.
269 		 */
270 		epte = &((u_int *)kptmpa)[NPTEPG-2];
271 		while (pte < epte) {
272 			*ste++ = SG_NV;
273 			*pte++ = PG_NV;
274 		}
275 		/*
276 		 * Initialize the last to point to kptmpa and the page
277 		 * table page allocated earlier.
278 		 */
279 		*ste = kptmpa | SG_RW | SG_V;
280 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
281 		ste++;
282 		pte++;
283 		*ste = lkptpa | SG_RW | SG_V;
284 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
285 	}
286 	/*
287 	 * Invalidate all but the final entry in the last kernel PT page
288 	 * (u-area PTEs will be validated later).  The final entry maps
289 	 * the last page of physical memory.
290 	 */
291 	pte = (u_int *)lkptpa;
292 	epte = &pte[NPTEPG];
293 	while (pte < epte)
294 		*pte++ = PG_NV;
295 
296 	/*
297 	 * Initialize kernel page table.
298 	 * Start by invalidating the `nptpages' that we have allocated.
299 	 */
300 	pte = (u_int *)kptpa;
301 	epte = &pte[nptpages * NPTEPG];
302 	while (pte < epte)
303 		*pte++ = PG_NV;
304 
305 	/*
306 	 * Validate PTEs for kernel text (RO).
307 	 */
308 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
309 	epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
310 	protopte = firstpa | PG_RO | PG_V;
311 	while (pte < epte) {
312 		*pte++ = protopte;
313 		protopte += PAGE_SIZE;
314 	}
315 	/*
316 	 * Validate PTEs for kernel data/bss, dynamic data allocated
317 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
318 	 * u-area and page table allocated below (RW).
319 	 */
320 	epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
321 	protopte = (protopte & ~PG_PROT) | PG_RW;
322 	/*
323 	 * Enable copy-back caching of data pages
324 	 */
325 	if (RELOC(mmutype, int) == MMU_68040)
326 		protopte |= PG_CCB;
327 
328 	while (pte < epte) {
329 		*pte++ = protopte;
330 		protopte += PAGE_SIZE;
331 	}
332 
333 	/*
334 	 * Calculate important exported kernel virtual addresses
335 	 */
336 	/*
337 	 * Sysseg: base of kernel segment table
338 	 */
339 	RELOC(Sysseg, st_entry_t *) =
340 		(st_entry_t *)(kstpa - firstpa + KERNBASE);
341 	/*
342 	 * Sysptmap: base of kernel page table map
343 	 */
344 	RELOC(Sysptmap, pt_entry_t *) =
345 		(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
346 	/*
347 	 * Sysmap: kernel page table (as mapped through Sysptmap)
348 	 * Allocated at the end of KVA space.
349 	 */
350 	RELOC(Sysmap, pt_entry_t *) =
351 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
352 
353 	/*
354 	 * Setup u-area for process 0.
355 	 */
356 	/*
357 	 * Zero the u-area.
358 	 * NOTE: `pte' and `epte' aren't PTEs here.
359 	 */
360 	pte = (u_int *)p0upa;
361 	epte = (u_int *)(p0upa + USPACE);
362 	while (pte < epte)
363 		*pte++ = 0;
364 	/*
365 	 * Remember the u-area address so it can be loaded in the
366 	 * proc struct p_addr field later.
367 	 */
368 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
369 
370 	/*
371 	 * VM data structures are now initialized, set up data for
372 	 * the pmap module.
373 	 *
374 	 * Note about avail_end: msgbuf is initialized just after
375 	 * avail_end in machdep.c.  Since the last page is used
376 	 * for rebooting the system (code is copied there and
377 	 * excution continues from copied code before the MMU
378 	 * is disabled), the msgbuf will get trounced between
379 	 * reboots if it's placed in the last physical page.
380 	 * To work around this, we move avail_end back one more
381 	 * page so the msgbuf can be preserved.
382 	 */
383 	RELOC(avail_start, vm_offset_t) = nextpa;
384 	RELOC(avail_end, vm_offset_t) = firstpa
385 	  + m68k_ptob(RELOC(physmem, int))
386 	  - m68k_round_page(MSGBUFSIZE)
387 	  - PAGE_SIZE; /* if that start of last page??? */
388 	RELOC(virtual_avail, vm_offset_t) =
389 		KERNBASE + (nextpa - firstpa);
390 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
391 
392 	/*
393 	 * Initialize protection array.
394 	 * XXX don't use a switch statement, it might produce an
395 	 * absolute "jmp" table.
396 	 */
397 	{
398 		u_int *kp;
399 
400 		kp = &RELOC(protection_codes, u_int);
401 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
402 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
403 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
404 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
405 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
406 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
407 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
408 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
409 	}
410 
411 	/*
412 	 * Kernel page/segment table allocated above,
413 	 * just initialize pointers.
414 	 */
415 	{
416 		struct pmap *kpm;
417 
418 		kpm = RELOCPTR(kernel_pmap_ptr, struct pmap *);
419 
420 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
421 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
422 		simple_lock_init(&kpm->pm_lock);
423 		kpm->pm_count = 1;
424 		kpm->pm_stpa = (st_entry_t *)kstpa;
425 		/*
426 		 * For the 040 we also initialize the free level 2
427 		 * descriptor mask noting that we have used:
428 		 *	0:		level 1 table
429 		 *	1 to `num':	map page tables
430 		 *	MAXKL2SIZE-1:	maps kptmpa and last-page page table
431 		 */
432 		if (RELOC(mmutype, int) == MMU_68040) {
433 			int num;
434 
435 			kpm->pm_stfree = ~l2tobm(0);
436 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
437 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
438 			while (num)
439 				kpm->pm_stfree &= ~l2tobm(num--);
440 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
441 			for (num = MAXKL2SIZE;
442 			     num < sizeof(kpm->pm_stfree)*NBBY;
443 			     num++)
444 				kpm->pm_stfree &= ~l2tobm(num);
445 		}
446 	}
447 
448 	/*
449 	 * Allocate some fixed, special purpose kernel virtual addresses
450 	 */
451 	{
452 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
453 
454 		RELOC(CADDR1, void *) = (void *)va;
455 		va += PAGE_SIZE;
456 		RELOC(CADDR2, void *) = (void *)va;
457 		va += PAGE_SIZE;
458 		RELOC(vmmap, void *) = (void *)va;
459 		va += PAGE_SIZE;
460 		RELOC(msgbufaddr, void *) = (void *)va;
461 		va += m68k_round_page(MSGBUFSIZE);
462 		RELOC(virtual_avail, vm_offset_t) = va;
463 	}
464 }
465