xref: /netbsd-src/sys/arch/cesfic/cesfic/pmap_bootstrap.c (revision 6a1508dad3515842aa76bf5ec8fc2daab5f5af02)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.14 2009/01/17 07:17:35 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.14 2009/01/17 07:17:35 tsutsui Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/msgbuf.h>
43 #include <sys/proc.h>
44 
45 #include <machine/frame.h>
46 #include <machine/cpu.h>
47 #include <machine/vmparam.h>
48 #include <machine/pte.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #define RELOC(v, t)	*((t*)((uintptr_t)&(v) + firstpa - KERNBASE))
53 #define RELOCPTR(v, t)	((t)((uintptr_t)RELOC((v), t) + firstpa - KERNBASE))
54 
55 extern char *etext;
56 extern char *proc0paddr;
57 extern paddr_t avail_start, avail_end;
58 
59 extern int physmem;
60 
61 void	pmap_bootstrap __P((vm_offset_t, vm_offset_t));
62 
63 /*
64  * Special purpose kernel virtual addresses, used for mapping
65  * physical pages for a variety of temporary or permanent purposes:
66  *
67  *	CADDR1, CADDR2:	pmap zero/copy operations
68  *	vmmap:		/dev/mem, crash dumps, parity error checking
69  *	msgbufp:	kernel message buffer
70  */
71 void *CADDR1, *CADDR2;
72 char *vmmap;
73 void *msgbufaddr;
74 
75 /*
76  * Bootstrap the VM system.
77  *
78  * Called with MMU off so we must relocate all global references by `firstpa'
79  * (don't call any functions here!)  `nextpa' is the first available physical
80  * memory address.  Returns an updated first PA reflecting the memory we
81  * have allocated.  MMU is still off when we return.
82  *
83  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
84  * XXX a PIC compiler would make this much easier.
85  */
86 void
87 pmap_bootstrap(nextpa, firstpa)
88 	vm_offset_t nextpa;
89 	vm_offset_t firstpa;
90 {
91 	vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
92 	u_int nptpages, kstsize;
93 	st_entry_t protoste, *ste;
94 	pt_entry_t protopte, *pte, *epte;
95 
96 	/*
97 	 * Calculate important physical addresses:
98 	 *
99 	 *	kstpa		kernel segment table	1 page (!040)
100 	 *						N pages (040)
101 	 *
102 	 *	kptpa		statically allocated
103 	 *			kernel PT pages		Sysptsize+ pages
104 	 *
105 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
106 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
107 	 *   the total to a page boundary with IO maps at the end. ]
108 	 *
109 	 *	kptmpa		kernel PT map		1 page
110 	 *
111 	 *	lkptpa		last kernel PT page	1 page
112 	 *
113 	 *	p0upa		proc 0 u-area		UPAGES pages
114 	 *
115 	 * The KVA corresponding to any of these PAs is:
116 	 *	(PA - firstpa + KERNBASE).
117 	 */
118 	if (RELOC(mmutype, int) == MMU_68040)
119 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
120 	else
121 		kstsize = 1;
122 	kstpa = nextpa;
123 	nextpa += kstsize * PAGE_SIZE;
124 	kptmpa = nextpa;
125 	nextpa += PAGE_SIZE;
126 	lkptpa = nextpa;
127 	nextpa += PAGE_SIZE;
128 	p0upa = nextpa;
129 	nextpa += USPACE;
130 	kptpa = nextpa;
131 	nptpages = RELOC(Sysptsize, int);
132 	nextpa += nptpages * PAGE_SIZE;
133 
134 	/*
135 	 * Initialize segment table and kernel page table map.
136 	 *
137 	 * On 68030s and earlier MMUs the two are identical except for
138 	 * the valid bits so both are initialized with essentially the
139 	 * same values.  On the 68040, which has a mandatory 3-level
140 	 * structure, the segment table holds the level 1 table and part
141 	 * (or all) of the level 2 table and hence is considerably
142 	 * different.  Here the first level consists of 128 descriptors
143 	 * (512 bytes) each mapping 32mb of address space.  Each of these
144 	 * points to blocks of 128 second level descriptors (512 bytes)
145 	 * each mapping 256kb.  Note that there may be additional "segment
146 	 * table" pages depending on how large MAXKL2SIZE is.
147 	 *
148 	 * Portions of the last segment of KVA space (0xFFF00000 -
149 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
150 	 * for UPAGES is used for mapping the current process u-area
151 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
152 	 * to the last physical page of RAM to give us a region in which
153 	 * PA == VA.  We use the first part of this page for enabling
154 	 * and disabling mapping.  The last part of this page also contains
155 	 * info left by the boot ROM.
156 	 *
157 	 * XXX cramming two levels of mapping into the single "segment"
158 	 * table on the 68040 is intended as a temporary hack to get things
159 	 * working.  The 224mb of address space that this allows will most
160 	 * likely be insufficient in the future (at least for the kernel).
161 	 */
162 	if (RELOC(mmutype, int) == MMU_68040) {
163 		int num;
164 
165 		/*
166 		 * First invalidate the entire "segment table" pages
167 		 * (levels 1 and 2 have the same "invalid" value).
168 		 */
169 		pte = (u_int *)kstpa;
170 		epte = &pte[kstsize * NPTEPG];
171 		while (pte < epte)
172 			*pte++ = SG_NV;
173 
174 		/*
175 		 * Initialize level 2 descriptors (which immediately
176 		 * follow the level 1 table).  We need:
177 		 *	NPTEPG / SG4_LEV3SIZE
178 		 * level 2 descriptors to map each of the nptpages
179 		 * pages of PTEs.  Note that we set the "used" bit
180 		 * now to save the HW the expense of doing it.
181 		 */
182 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
183 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
184 		epte = &pte[num];
185 		protoste = kptpa | SG_U | SG_RW | SG_V;
186 		while (pte < epte) {
187 			*pte++ = protoste;
188 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
189 		}
190 
191 		/*
192 		 * Initialize level 1 descriptors.  We need:
193 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
194 		 * level 1 descriptors to map the `num' level 2's.
195 		 */
196 		pte = (u_int *)kstpa;
197 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
198 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
199 		while (pte < epte) {
200 			*pte++ = protoste;
201 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
202 		}
203 
204 		/*
205 		 * Initialize the final level 1 descriptor to map the last
206 		 * block of level 2 descriptors.
207 		 */
208 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
209 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
210 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
211 		/*
212 		 * Now initialize the final portion of that block of
213 		 * descriptors to map kptmpa and the "last PT page".
214 		 */
215 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE*2];
216 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
217 		protoste = kptmpa | SG_U | SG_RW | SG_V;
218 		while (pte < epte) {
219 			*pte++ = protoste;
220 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
221 		}
222 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
223 		protoste = lkptpa | SG_U | SG_RW | SG_V;
224 		while (pte < epte) {
225 			*pte++ = protoste;
226 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
227 		}
228 
229 		/*
230 		 * Initialize Sysptmap
231 		 */
232 		pte = (u_int *)kptmpa;
233 		epte = &pte[nptpages];
234 		protopte = kptpa | PG_RW | PG_CI | PG_V;
235 		while (pte < epte) {
236 			*pte++ = protopte;
237 			protopte += PAGE_SIZE;
238 		}
239 
240 		/*
241 		 * Invalidate all but the last remaining entry.
242 		 */
243 		epte = &((u_int *)kptmpa)[NPTEPG-2];
244 		while (pte < epte) {
245 			*pte++ = PG_NV;
246 		}
247 		/*
248 		 * Initialize the last to point to kptmpa and the page
249 		 * table page allocated earlier.
250 		 */
251 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
252 		pte++;
253 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
254 	} else {
255 		/*
256 		 * Map the page table pages in both the HW segment table
257 		 * and the software Sysptmap.
258 		 */
259 		ste = (u_int *)kstpa;
260 		pte = (u_int *)kptmpa;
261 		epte = &pte[nptpages];
262 		protoste = kptpa | SG_RW | SG_V;
263 		protopte = kptpa | PG_RW | PG_CI | PG_V;
264 		while (pte < epte) {
265 			*ste++ = protoste;
266 			*pte++ = protopte;
267 			protoste += PAGE_SIZE;
268 			protopte += PAGE_SIZE;
269 		}
270 		/*
271 		 * Invalidate all but the last remaining entries in both.
272 		 */
273 		epte = &((u_int *)kptmpa)[NPTEPG-2];
274 		while (pte < epte) {
275 			*ste++ = SG_NV;
276 			*pte++ = PG_NV;
277 		}
278 		/*
279 		 * Initialize the last to point to kptmpa and the page
280 		 * table page allocated earlier.
281 		 */
282 		*ste = kptmpa | SG_RW | SG_V;
283 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
284 		ste++;
285 		pte++;
286 		*ste = lkptpa | SG_RW | SG_V;
287 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
288 	}
289 	/*
290 	 * Invalidate all but the final entry in the last kernel PT page
291 	 * (u-area PTEs will be validated later).  The final entry maps
292 	 * the last page of physical memory.
293 	 */
294 	pte = (u_int *)lkptpa;
295 	epte = &pte[NPTEPG];
296 	while (pte < epte)
297 		*pte++ = PG_NV;
298 
299 	/*
300 	 * Initialize kernel page table.
301 	 * Start by invalidating the `nptpages' that we have allocated.
302 	 */
303 	pte = (u_int *)kptpa;
304 	epte = &pte[nptpages * NPTEPG];
305 	while (pte < epte)
306 		*pte++ = PG_NV;
307 
308 	/*
309 	 * Validate PTEs for kernel text (RO).
310 	 */
311 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
312 	epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
313 	protopte = firstpa | PG_RO | PG_V;
314 	while (pte < epte) {
315 		*pte++ = protopte;
316 		protopte += PAGE_SIZE;
317 	}
318 	/*
319 	 * Validate PTEs for kernel data/bss, dynamic data allocated
320 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
321 	 * u-area and page table allocated below (RW).
322 	 */
323 	epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
324 	protopte = (protopte & ~PG_PROT) | PG_RW;
325 	/*
326 	 * Enable copy-back caching of data pages
327 	 */
328 	if (RELOC(mmutype, int) == MMU_68040)
329 		protopte |= PG_CCB;
330 
331 	while (pte < epte) {
332 		*pte++ = protopte;
333 		protopte += PAGE_SIZE;
334 	}
335 
336 	/*
337 	 * Calculate important exported kernel virtual addresses
338 	 */
339 	/*
340 	 * Sysseg: base of kernel segment table
341 	 */
342 	RELOC(Sysseg, st_entry_t *) =
343 		(st_entry_t *)(kstpa - firstpa + KERNBASE);
344 	/*
345 	 * Sysptmap: base of kernel page table map
346 	 */
347 	RELOC(Sysptmap, pt_entry_t *) =
348 		(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
349 	/*
350 	 * Sysmap: kernel page table (as mapped through Sysptmap)
351 	 * Allocated at the end of KVA space.
352 	 */
353 	RELOC(Sysmap, pt_entry_t *) =
354 	    (pt_entry_t *)m68k_ptob((NPTEPG - 2) * NPTEPG);
355 
356 	/*
357 	 * Setup u-area for process 0.
358 	 */
359 	/*
360 	 * Zero the u-area.
361 	 * NOTE: `pte' and `epte' aren't PTEs here.
362 	 */
363 	pte = (u_int *)p0upa;
364 	epte = (u_int *)(p0upa + USPACE);
365 	while (pte < epte)
366 		*pte++ = 0;
367 	/*
368 	 * Remember the u-area address so it can be loaded in the
369 	 * proc struct p_addr field later.
370 	 */
371 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
372 
373 	/*
374 	 * VM data structures are now initialized, set up data for
375 	 * the pmap module.
376 	 *
377 	 * Note about avail_end: msgbuf is initialized just after
378 	 * avail_end in machdep.c.  Since the last page is used
379 	 * for rebooting the system (code is copied there and
380 	 * excution continues from copied code before the MMU
381 	 * is disabled), the msgbuf will get trounced between
382 	 * reboots if it's placed in the last physical page.
383 	 * To work around this, we move avail_end back one more
384 	 * page so the msgbuf can be preserved.
385 	 */
386 	RELOC(avail_start, vm_offset_t) = nextpa;
387 	RELOC(avail_end, vm_offset_t) = firstpa
388 	  + m68k_ptob(RELOC(physmem, int))
389 	  - m68k_round_page(MSGBUFSIZE)
390 	  - PAGE_SIZE; /* if that start of last page??? */
391 	RELOC(virtual_avail, vm_offset_t) =
392 		KERNBASE + (nextpa - firstpa);
393 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
394 
395 	/*
396 	 * Initialize protection array.
397 	 * XXX don't use a switch statement, it might produce an
398 	 * absolute "jmp" table.
399 	 */
400 	{
401 		u_int *kp;
402 
403 		kp = &RELOC(protection_codes, u_int);
404 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
405 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
406 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
407 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
408 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
409 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
410 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
411 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
412 	}
413 
414 	/*
415 	 * Kernel page/segment table allocated above,
416 	 * just initialize pointers.
417 	 */
418 	{
419 		struct pmap *kpm;
420 
421 		kpm = RELOCPTR(kernel_pmap_ptr, struct pmap *);
422 
423 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
424 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
425 		simple_lock_init(&kpm->pm_lock);
426 		kpm->pm_count = 1;
427 		kpm->pm_stpa = (st_entry_t *)kstpa;
428 		/*
429 		 * For the 040 we also initialize the free level 2
430 		 * descriptor mask noting that we have used:
431 		 *	0:		level 1 table
432 		 *	1 to `num':	map page tables
433 		 *	MAXKL2SIZE-1:	maps kptmpa and last-page page table
434 		 */
435 		if (RELOC(mmutype, int) == MMU_68040) {
436 			int num;
437 
438 			kpm->pm_stfree = ~l2tobm(0);
439 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
440 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
441 			while (num)
442 				kpm->pm_stfree &= ~l2tobm(num--);
443 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
444 			for (num = MAXKL2SIZE;
445 			     num < sizeof(kpm->pm_stfree)*NBBY;
446 			     num++)
447 				kpm->pm_stfree &= ~l2tobm(num);
448 		}
449 	}
450 
451 	/*
452 	 * Allocate some fixed, special purpose kernel virtual addresses
453 	 */
454 	{
455 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
456 
457 		RELOC(CADDR1, void *) = (void *)va;
458 		va += PAGE_SIZE;
459 		RELOC(CADDR2, void *) = (void *)va;
460 		va += PAGE_SIZE;
461 		RELOC(vmmap, void *) = (void *)va;
462 		va += PAGE_SIZE;
463 		RELOC(msgbufaddr, void *) = (void *)va;
464 		va += m68k_round_page(MSGBUFSIZE);
465 		RELOC(virtual_avail, vm_offset_t) = va;
466 	}
467 }
468