xref: /netbsd-src/sys/arch/cesfic/cesfic/pmap_bootstrap.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.5 2003/08/07 16:27:15 agc Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/msgbuf.h>
43 #include <sys/proc.h>
44 
45 #include <machine/frame.h>
46 #include <machine/cpu.h>
47 #include <machine/vmparam.h>
48 #include <machine/pte.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #define RELOC(v, t)	*((t*)((u_int)&(v) + firstpa - KERNBASE))
53 
54 extern char *etext;
55 extern int Sysptsize;
56 extern char *proc0paddr;
57 extern st_entry_t *Sysseg;
58 extern pt_entry_t *Sysptmap, *Sysmap;
59 
60 extern int physmem;
61 extern vm_offset_t avail_start, avail_end, virtual_avail, virtual_end;
62 extern int protection_codes[];
63 
64 void	pmap_bootstrap __P((vm_offset_t, vm_offset_t));
65 
66 /*
67  * Special purpose kernel virtual addresses, used for mapping
68  * physical pages for a variety of temporary or permanent purposes:
69  *
70  *	CADDR1, CADDR2:	pmap zero/copy operations
71  *	vmmap:		/dev/mem, crash dumps, parity error checking
72  *	msgbufp:	kernel message buffer
73  */
74 caddr_t		CADDR1, CADDR2, vmmap;
75 extern caddr_t	msgbufaddr;
76 
77 /*
78  * Bootstrap the VM system.
79  *
80  * Called with MMU off so we must relocate all global references by `firstpa'
81  * (don't call any functions here!)  `nextpa' is the first available physical
82  * memory address.  Returns an updated first PA reflecting the memory we
83  * have allocated.  MMU is still off when we return.
84  *
85  * XXX assumes sizeof(u_int) == sizeof(pt_entry_t)
86  * XXX a PIC compiler would make this much easier.
87  */
88 void
89 pmap_bootstrap(nextpa, firstpa)
90 	vm_offset_t nextpa;
91 	vm_offset_t firstpa;
92 {
93 	vm_offset_t kstpa, kptpa, kptmpa, lkptpa, p0upa;
94 	u_int nptpages, kstsize;
95 	st_entry_t protoste, *ste;
96 	pt_entry_t protopte, *pte, *epte;
97 
98 	/*
99 	 * Calculate important physical addresses:
100 	 *
101 	 *	kstpa		kernel segment table	1 page (!040)
102 	 *						N pages (040)
103 	 *
104 	 *	kptpa		statically allocated
105 	 *			kernel PT pages		Sysptsize+ pages
106 	 *
107 	 *	iiopa		internal IO space
108 	 *			PT pages		IIOMAPSIZE pages
109 	 *
110 	 *	eiopa		external IO space
111 	 *			PT pages		EIOMAPSIZE pages
112 	 *
113 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
114 	 *   EIOMAPSIZE are the number of PTEs, hence we need to round
115 	 *   the total to a page boundary with IO maps at the end. ]
116 	 *
117 	 *	kptmpa		kernel PT map		1 page
118 	 *
119 	 *	lkptpa		last kernel PT page	1 page
120 	 *
121 	 *	p0upa		proc 0 u-area		UPAGES pages
122 	 *
123 	 * The KVA corresponding to any of these PAs is:
124 	 *	(PA - firstpa + KERNBASE).
125 	 */
126 	if (RELOC(mmutype, int) == MMU_68040)
127 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
128 	else
129 		kstsize = 1;
130 	kstpa = nextpa;
131 	nextpa += kstsize * PAGE_SIZE;
132 	kptpa = nextpa;
133 	nptpages = RELOC(Sysptsize, int);
134 	nextpa += nptpages * PAGE_SIZE;
135 	kptmpa = nextpa;
136 	nextpa += PAGE_SIZE;
137 	lkptpa = nextpa;
138 	nextpa += PAGE_SIZE;
139 	p0upa = nextpa;
140 	nextpa += USPACE;
141 
142 	/*
143 	 * Initialize segment table and kernel page table map.
144 	 *
145 	 * On 68030s and earlier MMUs the two are identical except for
146 	 * the valid bits so both are initialized with essentially the
147 	 * same values.  On the 68040, which has a mandatory 3-level
148 	 * structure, the segment table holds the level 1 table and part
149 	 * (or all) of the level 2 table and hence is considerably
150 	 * different.  Here the first level consists of 128 descriptors
151 	 * (512 bytes) each mapping 32mb of address space.  Each of these
152 	 * points to blocks of 128 second level descriptors (512 bytes)
153 	 * each mapping 256kb.  Note that there may be additional "segment
154 	 * table" pages depending on how large MAXKL2SIZE is.
155 	 *
156 	 * Portions of the last segment of KVA space (0xFFF00000 -
157 	 * 0xFFFFFFFF) are mapped for a couple of purposes.  0xFFF00000
158 	 * for UPAGES is used for mapping the current process u-area
159 	 * (u + kernel stack).  The very last page (0xFFFFF000) is mapped
160 	 * to the last physical page of RAM to give us a region in which
161 	 * PA == VA.  We use the first part of this page for enabling
162 	 * and disabling mapping.  The last part of this page also contains
163 	 * info left by the boot ROM.
164 	 *
165 	 * XXX cramming two levels of mapping into the single "segment"
166 	 * table on the 68040 is intended as a temporary hack to get things
167 	 * working.  The 224mb of address space that this allows will most
168 	 * likely be insufficient in the future (at least for the kernel).
169 	 */
170 	if (RELOC(mmutype, int) == MMU_68040) {
171 		int num;
172 
173 		/*
174 		 * First invalidate the entire "segment table" pages
175 		 * (levels 1 and 2 have the same "invalid" value).
176 		 */
177 		pte = (u_int *)kstpa;
178 		epte = &pte[kstsize * NPTEPG];
179 		while (pte < epte)
180 			*pte++ = SG_NV;
181 
182 		/*
183 		 * Initialize level 2 descriptors (which immediately
184 		 * follow the level 1 table).  We need:
185 		 *	NPTEPG / SG4_LEV3SIZE
186 		 * level 2 descriptors to map each of the nptpages+1
187 		 * pages of PTEs.  Note that we set the "used" bit
188 		 * now to save the HW the expense of doing it.
189 		 */
190 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
191 		pte = &((u_int *)kstpa)[SG4_LEV1SIZE];
192 		epte = &pte[num];
193 		protoste = kptpa | SG_U | SG_RW | SG_V;
194 		while (pte < epte) {
195 			*pte++ = protoste;
196 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
197 		}
198 
199 		/*
200 		 * Initialize level 1 descriptors.  We need:
201 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
202 		 * level 1 descriptors to map the `num' level 2's.
203 		 */
204 		pte = (u_int *)kstpa;
205 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
206 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
207 		while (pte < epte) {
208 			*pte++ = protoste;
209 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
210 		}
211 
212 		/*
213 		 * Initialize the final level 1 descriptor to map the last
214 		 * block of level 2 descriptors.
215 		 */
216 		ste = &((u_int *)kstpa)[SG4_LEV1SIZE-1];
217 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - SG4_LEV2SIZE];
218 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
219 		/*
220 		 * Now initialize the final portion of that block of
221 		 * descriptors to map the "last PT page".
222 		 */
223 		pte = &((u_int *)kstpa)[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
224 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
225 		protoste = lkptpa | SG_U | SG_RW | SG_V;
226 		while (pte < epte) {
227 			*pte++ = protoste;
228 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
229 		}
230 
231 		/*
232 		 * Initialize Sysptmap
233 		 */
234 		pte = (u_int *)kptmpa;
235 		epte = &pte[nptpages+1];
236 		protopte = kptpa | PG_RW | PG_CI | PG_V;
237 		while (pte < epte) {
238 			*pte++ = protopte;
239 			protopte += PAGE_SIZE;
240 		}
241 
242 		/*
243 		 * Invalidate all but the last remaining entry.
244 		 */
245 		epte = &((u_int *)kptmpa)[NPTEPG-1];
246 		while (pte < epte) {
247 			*pte++ = PG_NV;
248 		}
249 		/*
250 		 * Initialize the last to point to the page
251 		 * table page allocated earlier.
252 		 */
253 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
254 	} else {
255 		/*
256 		 * Map the page table pages in both the HW segment table
257 		 * and the software Sysptmap.  Note that Sysptmap is also
258 		 * considered a PT page hence the +1.
259 		 */
260 		ste = (u_int *)kstpa;
261 		pte = (u_int *)kptmpa;
262 		epte = &pte[nptpages+1];
263 		protoste = kptpa | SG_RW | SG_V;
264 		protopte = kptpa | PG_RW | PG_CI | PG_V;
265 		while (pte < epte) {
266 			*ste++ = protoste;
267 			*pte++ = protopte;
268 			protoste += PAGE_SIZE;
269 			protopte += PAGE_SIZE;
270 		}
271 		/*
272 		 * Invalidate all but the last remaining entries in both.
273 		 */
274 		epte = &((u_int *)kptmpa)[NPTEPG-1];
275 		while (pte < epte) {
276 			*ste++ = SG_NV;
277 			*pte++ = PG_NV;
278 		}
279 		/*
280 		 * Initialize the last to point to point to the page
281 		 * table page allocated earlier.
282 		 */
283 		*ste = lkptpa | SG_RW | SG_V;
284 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
285 	}
286 	/*
287 	 * Invalidate all but the final entry in the last kernel PT page
288 	 * (u-area PTEs will be validated later).  The final entry maps
289 	 * the last page of physical memory.
290 	 */
291 	pte = (u_int *)lkptpa;
292 	epte = &pte[NPTEPG];
293 	while (pte < epte)
294 		*pte++ = PG_NV;
295 
296 	/*
297 	 * Initialize kernel page table.
298 	 * Start by invalidating the `nptpages' that we have allocated.
299 	 */
300 	pte = (u_int *)kptpa;
301 	epte = &pte[nptpages * NPTEPG];
302 	while (pte < epte)
303 		*pte++ = PG_NV;
304 
305 	/*
306 	 * Validate PTEs for kernel text (RO).
307 	 */
308 	pte = &((u_int *)kptpa)[m68k_btop(KERNBASE)];
309 	epte = &((u_int *)kptpa)[m68k_btop(m68k_trunc_page(&etext))];
310 	protopte = firstpa | PG_RO | PG_V;
311 	while (pte < epte) {
312 		*pte++ = protopte;
313 		protopte += PAGE_SIZE;
314 	}
315 	/*
316 	 * Validate PTEs for kernel data/bss, dynamic data allocated
317 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
318 	 * u-area and page table allocated below (RW).
319 	 */
320 	epte = &((u_int *)kptpa)[m68k_btop(KERNBASE + nextpa - firstpa)];
321 	protopte = (protopte & ~PG_PROT) | PG_RW;
322 	/*
323 	 * Enable copy-back caching of data pages
324 	 */
325 	if (RELOC(mmutype, int) == MMU_68040)
326 		protopte |= PG_CCB;
327 
328 	while (pte < epte) {
329 		*pte++ = protopte;
330 		protopte += PAGE_SIZE;
331 	}
332 
333 	/*
334 	 * Calculate important exported kernel virtual addresses
335 	 */
336 	/*
337 	 * Sysseg: base of kernel segment table
338 	 */
339 	RELOC(Sysseg, st_entry_t *) =
340 		(st_entry_t *)(kstpa - firstpa + KERNBASE);
341 	/*
342 	 * Sysptmap: base of kernel page table map
343 	 */
344 	RELOC(Sysptmap, pt_entry_t *) =
345 		(pt_entry_t *)(kptmpa - firstpa + KERNBASE);
346 	/*
347 	 * Sysmap: kernel page table (as mapped through Sysptmap)
348 	 * Immediately follows `nptpages' of static kernel page table.
349 	 */
350 	RELOC(Sysmap, pt_entry_t *) =
351 		(pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
352 
353 	/*
354 	 * Setup u-area for process 0.
355 	 */
356 	/*
357 	 * Zero the u-area.
358 	 * NOTE: `pte' and `epte' aren't PTEs here.
359 	 */
360 	pte = (u_int *)p0upa;
361 	epte = (u_int *)(p0upa + USPACE);
362 	while (pte < epte)
363 		*pte++ = 0;
364 	/*
365 	 * Remember the u-area address so it can be loaded in the
366 	 * proc struct p_addr field later.
367 	 */
368 	RELOC(proc0paddr, char *) = (char *)(p0upa - firstpa + KERNBASE);
369 
370 	/*
371 	 * VM data structures are now initialized, set up data for
372 	 * the pmap module.
373 	 *
374 	 * Note about avail_end: msgbuf is initialized just after
375 	 * avail_end in machdep.c.  Since the last page is used
376 	 * for rebooting the system (code is copied there and
377 	 * excution continues from copied code before the MMU
378 	 * is disabled), the msgbuf will get trounced between
379 	 * reboots if it's placed in the last physical page.
380 	 * To work around this, we move avail_end back one more
381 	 * page so the msgbuf can be preserved.
382 	 */
383 	RELOC(avail_start, vm_offset_t) = nextpa;
384 	RELOC(avail_end, vm_offset_t) = firstpa
385 	  + m68k_ptob(RELOC(physmem, int))
386 	  - m68k_round_page(MSGBUFSIZE)
387 	  - PAGE_SIZE; /* if that start of last page??? */
388 	RELOC(virtual_avail, vm_offset_t) =
389 		KERNBASE + (nextpa - firstpa);
390 	RELOC(virtual_end, vm_offset_t) = VM_MAX_KERNEL_ADDRESS;
391 
392 	/*
393 	 * Initialize protection array.
394 	 * XXX don't use a switch statement, it might produce an
395 	 * absolute "jmp" table.
396 	 */
397 	{
398 		int *kp;
399 
400 		kp = &RELOC(protection_codes, int);
401 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
402 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
403 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
404 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
405 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
406 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
407 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
408 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
409 	}
410 
411 	/*
412 	 * Kernel page/segment table allocated in locore,
413 	 * just initialize pointers.
414 	 */
415 	{
416 		struct pmap *kpm = &RELOC(kernel_pmap_store, struct pmap);
417 
418 		kpm->pm_stab = RELOC(Sysseg, st_entry_t *);
419 		kpm->pm_ptab = RELOC(Sysmap, pt_entry_t *);
420 		simple_lock_init(&kpm->pm_lock);
421 		kpm->pm_count = 1;
422 		kpm->pm_stpa = (st_entry_t *)kstpa;
423 		/*
424 		 * For the 040 we also initialize the free level 2
425 		 * descriptor mask noting that we have used:
426 		 *	0:		level 1 table
427 		 *	1 to `num':	map page tables
428 		 *	MAXKL2SIZE-1:	maps last-page page table
429 		 */
430 		if (RELOC(mmutype, int) == MMU_68040) {
431 			int num;
432 
433 			kpm->pm_stfree = ~l2tobm(0);
434 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
435 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
436 			while (num)
437 				kpm->pm_stfree &= ~l2tobm(num--);
438 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
439 			for (num = MAXKL2SIZE;
440 			     num < sizeof(kpm->pm_stfree)*NBBY;
441 			     num++)
442 				kpm->pm_stfree &= ~l2tobm(num);
443 		}
444 	}
445 
446 	/*
447 	 * Allocate some fixed, special purpose kernel virtual addresses
448 	 */
449 	{
450 		vm_offset_t va = RELOC(virtual_avail, vm_offset_t);
451 
452 		RELOC(CADDR1, caddr_t) = (caddr_t)va;
453 		va += PAGE_SIZE;
454 		RELOC(CADDR2, caddr_t) = (caddr_t)va;
455 		va += PAGE_SIZE;
456 		RELOC(vmmap, caddr_t) = (caddr_t)va;
457 		va += PAGE_SIZE;
458 		RELOC(msgbufaddr, caddr_t) = (caddr_t)va;
459 		va += m68k_round_page(MSGBUFSIZE);
460 		RELOC(virtual_avail, vm_offset_t) = va;
461 	}
462 }
463 
464 void
465 pmap_init_md(void)
466 {
467 	/* Nothing here. */
468 }
469