xref: /netbsd-src/sys/arch/atari/dev/zsvar.h (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /*	$NetBSD: zsvar.h,v 1.6 1998/03/25 09:46:10 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Leo Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. All advertising materials mentioning features or use of this software
26  *    must display the following acknowledgement:
27  *	This product includes software developed by the University of
28  *	California, Berkeley and its contributors.
29  * 4. Neither the name of the University nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43  * SUCH DAMAGE.
44  *
45  *	@(#)zsvar.h	8.1 (Berkeley) 6/11/93
46  */
47 
48 /*
49  * Register layout is machine-dependent...
50  */
51 
52 struct zschan {
53 	u_char		zc_xxx0;
54 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
55 	u_char		zc_xxx1;
56 	volatile u_char	zc_data;	/* data */
57 };
58 
59 struct zsdevice {
60 	struct	zschan zs_chan[2];
61 };
62 
63 /*
64  * Software state, per zs channel.
65  *
66  * The zs chip has insufficient buffering, so we provide a software
67  * buffer using a two-level interrupt scheme.  The hardware (high priority)
68  * interrupt simply grabs the `cause' of the interrupt and stuffs it into
69  * a ring buffer.  It then schedules a software interrupt; the latter
70  * empties the ring as fast as it can, hoping to avoid overflow.
71  *
72  * Interrupts can happen because of:
73  *	- received data;
74  *	- transmit pseudo-DMA done; and
75  *	- status change.
76  * These are all stored together in the (single) ring.  The size of the
77  * ring is a power of two, to make % operations fast.  Since we need two
78  * bits to distinguish the interrupt type, and up to 16 for the received
79  * data plus RR1 status, we use 32 bits per ring entry.
80  *
81  * When the value is a character + RR1 status, the character is in the
82  * upper 8 bits of the RR1 status.
83  */
84 #define ZLRB_RING_SIZE		4096		/* ZS line ring buffer size */
85 #define	ZLRB_RING_MASK		4095		/* mask for same */
86 
87 /* 0 is reserved (means "no interrupt") */
88 #define	ZRING_RINT		1		/* receive data interrupt */
89 #define	ZRING_XINT		2		/* transmit done interrupt */
90 #define	ZRING_SINT		3		/* status change interrupt */
91 
92 #define	ZRING_TYPE(x)		((x) & 3)
93 #define	ZRING_VALUE(x)		((x) >> 8)
94 #define	ZRING_MAKE(t, v)	((t) | (v) << 8)
95 
96 struct zs_chanstate {
97 	struct	zs_chanstate	*cs_next;	/* linked list for zshard() */
98 	volatile struct zschan	*cs_zc;		/* points to hardware regs */
99 	int			cs_unit;	/* unit number */
100 	struct	tty		*cs_ttyp;	/* ### */
101 
102 	/*
103 	 * We must keep a copy of the write registers as they are
104 	 * mostly write-only and we sometimes need to set and clear
105 	 * individual bits (e.g., in WR3).  Not all of these are
106 	 * needed but 16 bytes is cheap and this makes the addressing
107 	 * simpler.  Unfortunately, we can only write to some registers
108 	 * when the chip is not actually transmitting, so whenever
109 	 * we are expecting a `transmit done' interrupt the preg array
110 	 * is allowed to `get ahead' of the current values.  In a
111 	 * few places we must change the current value of a register,
112 	 * rather than (or in addition to) the pending value; for these
113 	 * cs_creg[] contains the current value.
114 	 */
115 	u_char	cs_creg[16];		/* current values */
116 	u_char	cs_preg[16];		/* pending values */
117 	u_char	cs_heldchange;		/* change pending (creg != preg) */
118 	u_char	cs_rr0;			/* last rr0 processed */
119 
120 	/* pure software data, per channel */
121 	char	cs_softcar;		/* software carrier */
122 	char	cs_xxx;			/* (spare) */
123 
124 	/*
125 	 * The transmit byte count and address are used for pseudo-DMA
126 	 * output in the hardware interrupt code.  PDMA can be suspended
127 	 * to get pending changes done; heldtbc is used for this.  It can
128 	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
129 	 */
130 	int	cs_tbc;			/* transmit byte count */
131 	caddr_t	cs_tba;			/* transmit buffer address */
132 	int	cs_heldtbc;		/* held tbc while xmission stopped */
133 
134 	/*
135 	 * Printing an overrun error message often takes long enough to
136 	 * cause another overrun, so we only print one per second.
137 	 */
138 	long	cs_rotime;		/* time of last ring overrun */
139 	long	cs_fotime;		/* time of last fifo overrun */
140 
141 	/*
142 	 * The ring buffer.
143 	 */
144 	u_int		cs_rbget;	/* ring buffer `get' index	*/
145 	volatile u_int	cs_rbput;	/* ring buffer `put' index	*/
146 	int		*cs_rbuf;	/* type, value pairs	*/
147 };
148 
149 #define	ZS_CHAN_A	0
150 #define	ZS_CHAN_B	1
151 
152 /*
153  * Macros to read and write individual registers (except 0) in a channel.
154  */
155 #define	ZS_READ(c, r)		((c)->zc_csr = (r), (c)->zc_csr)
156 #define	ZS_WRITE(c, r, v)	((c)->zc_csr = (r), (c)->zc_csr = (v))
157 
158 /*
159  * Split minor into unit, dialin/dialout & flag nibble.
160  */
161 #define	ZS_UNIT(dev)		((minor(dev) >> 4) & 0xf)
162 #define	ZS_FLAGS(dev)		(minor(dev) & 0xf)
163 #define	ZS_DIALOUT(dev)		(minor(dev) & 0x80000)
164