xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
42  */
43 
44 /*
45  * Copyright (c) 1995 L. Weppelman (Atari modifications)
46  *
47  * This software was developed by the Computer Systems Engineering group
48  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
49  * contributed to Berkeley.
50  *
51  *
52  * All advertising materials mentioning features or use of this software
53  * must display the following acknowledgement:
54  *	This product includes software developed by the University of
55  *	California, Lawrence Berkeley Laboratory.
56  *
57  * Redistribution and use in source and binary forms, with or without
58  * modification, are permitted provided that the following conditions
59  * are met:
60  * 1. Redistributions of source code must retain the above copyright
61  *    notice, this list of conditions and the following disclaimer.
62  * 2. Redistributions in binary form must reproduce the above copyright
63  *    notice, this list of conditions and the following disclaimer in the
64  *    documentation and/or other materials provided with the distribution.
65  * 3. All advertising materials mentioning features or use of this software
66  *    must display the following acknowledgement:
67  *	This product includes software developed by the University of
68  *	California, Berkeley and its contributors.
69  * 4. Neither the name of the University nor the names of its contributors
70  *    may be used to endorse or promote products derived from this software
71  *    without specific prior written permission.
72  *
73  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
74  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
75  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
76  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
77  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
78  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
79  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
80  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
81  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
82  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83  * SUCH DAMAGE.
84  *
85  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
86  */
87 
88 /*
89  * Zilog Z8530 (ZSCC) driver.
90  *
91  * Runs two tty ports (modem2 and serial2) on zs0.
92  *
93  * This driver knows far too much about chip to usage mappings.
94  */
95 
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.41 2003/08/07 16:27:02 agc Exp $");
98 
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/proc.h>
102 #include <sys/device.h>
103 #include <sys/conf.h>
104 #include <sys/file.h>
105 #include <sys/ioctl.h>
106 #include <sys/malloc.h>
107 #include <sys/tty.h>
108 #include <sys/time.h>
109 #include <sys/kernel.h>
110 #include <sys/syslog.h>
111 
112 #include <machine/cpu.h>
113 #include <machine/iomap.h>
114 #include <machine/scu.h>
115 #include <machine/mfp.h>
116 #include <atari/dev/ym2149reg.h>
117 
118 #include <dev/ic/z8530reg.h>
119 #include <atari/dev/zsvar.h>
120 #include "zs.h"
121 #if NZS > 1
122 #error "This driver supports only 1 85C30!"
123 #endif
124 
125 #if NZS > 0
126 
127 #define PCLK	(8053976)	/* PCLK pin input clock rate */
128 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
129 
130 #define splzs	spl5
131 
132 /*
133  * Software state per found chip.
134  */
135 struct zs_softc {
136     struct	device		zi_dev;    /* base device		  */
137     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
138     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
139 };
140 
141 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
142 /*
143  * Define the registers for a closed port
144  */
145 static u_char zs_init_regs[16] = {
146 /*  0 */	0,
147 /*  1 */	0,
148 /*  2 */	0x60,
149 /*  3 */	0,
150 /*  4 */	0,
151 /*  5 */	0,
152 /*  6 */	0,
153 /*  7 */	0,
154 /*  8 */	0,
155 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
156 /* 10 */	ZSWR10_NRZ,
157 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
158 /* 12 */	0,
159 /* 13 */	0,
160 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
161 /* 15 */	0
162 };
163 
164 /*
165  * Define the machine dependant clock frequencies
166  * If BRgen feeds sender/receiver we always use a
167  * divisor 16, therefor the division by 16 can as
168  * well be done here.
169  */
170 static u_long zs_freqs_tt[] = {
171 	/*
172 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
173 	 * which is set to 307.2KHz during initialisation
174 	 * and never changed afterwards.
175 	 */
176 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
177 	 229500,	/* BRgen, RTxCA, divisor 16	*/
178 	3672000,	/* RTxCA, from PCLK4		*/
179 	      0,	/* TRxCA, external		*/
180 
181 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
182 	  19200,	/* BRgen, RTxCB, divisor 16	*/
183 	 307200,	/* RTxCB, from TT-MFP TCO	*/
184 	2457600		/* TRxCB, from BCLK		*/
185 };
186 
187 static u_long zs_freqs_falcon[] = {
188 	/*
189 	 * Atari Falcon, XXX no specs available, this might be wrong
190 	 */
191 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
192 	 229500,	/* BRgen, RTxCA, divisor 16	*/
193 	3672000,	/* RTxCA, ???			*/
194 	      0,	/* TRxCA, external		*/
195 
196 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
197 	 229500,	/* BRgen, RTxCB, divisor 16	*/
198 	3672000,	/* RTxCB, ???			*/
199 	2457600		/* TRxCB, ???			*/
200 };
201 
202 static u_long zs_freqs_hades[] = {
203 	/*
204 	 * XXX: Channel-A unchecked!!!!!
205 	 */
206      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
207 	 229500,	/* BRgen, RTxCA, divisor 16	*/
208 	3672000,	/* RTxCA, from PCLK4		*/
209 	      0,	/* TRxCA, external		*/
210 
211      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
212 	 235550,	/* BRgen, RTxCB, divisor 16	*/
213 	3768800,	/* RTxCB, 3.7688MHz		*/
214 	3768800		/* TRxCB, 3.7688MHz		*/
215 };
216 
217 static u_long zs_freqs_generic[] = {
218 	/*
219 	 * other machines, assume only PCLK is available
220 	 */
221 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
222 	      0,	/* BRgen, RTxCA, divisor 16	*/
223 	      0,	/* RTxCA, unknown		*/
224 	      0,	/* TRxCA, unknown		*/
225 
226 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
227 	      0,	/* BRgen, RTxCB, divisor 16	*/
228 	      0,	/* RTxCB, unknown		*/
229 	      0		/* TRxCB, unknown		*/
230 };
231 static u_long *zs_frequencies;
232 
233 /* Definition of the driver for autoconfig. */
234 static int	zsmatch __P((struct device *, struct cfdata *, void *));
235 static void	zsattach __P((struct device *, struct device *, void *));
236 
237 CFATTACH_DECL(zs, sizeof(struct zs_softc),
238     zsmatch, zsattach, NULL, NULL);
239 
240 extern struct cfdriver zs_cd;
241 
242 /* {b,c}devsw[] function prototypes */
243 dev_type_open(zsopen);
244 dev_type_close(zsclose);
245 dev_type_read(zsread);
246 dev_type_write(zswrite);
247 dev_type_ioctl(zsioctl);
248 dev_type_stop(zsstop);
249 dev_type_tty(zstty);
250 dev_type_poll(zspoll);
251 
252 const struct cdevsw zs_cdevsw = {
253 	zsopen, zsclose, zsread, zswrite, zsioctl,
254 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
255 };
256 
257 /* Interrupt handlers. */
258 int		zshard __P((long));
259 static int	zssoft __P((long));
260 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
261 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
262 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
263 
264 static struct zs_chanstate *zslist;
265 
266 /* Routines called from other code. */
267 static void	zsstart __P((struct tty *));
268 
269 /* Routines purely local to this driver. */
270 static void	zsoverrun __P((int, long *, char *));
271 static int	zsparam __P((struct tty *, struct termios *));
272 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
273 static int	zs_modem __P((struct zs_chanstate *, int, int));
274 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
275 static void	zs_shutdown __P((struct zs_chanstate *));
276 
277 static int zsshortcuts;	/* number of "shortcut" software interrupts */
278 
279 static int
280 zsmatch(pdp, cfp, auxp)
281 struct device	*pdp;
282 struct cfdata	*cfp;
283 void		*auxp;
284 {
285 	static int	zs_matched = 0;
286 
287 	if(strcmp("zs", auxp) || zs_matched)
288 		return(0);
289 	zs_matched = 1;
290 	return(1);
291 }
292 
293 /*
294  * Attach a found zs.
295  */
296 static void
297 zsattach(parent, dev, aux)
298 struct device	*parent;
299 struct device	*dev;
300 void		*aux;
301 {
302 	register struct zs_softc		*zi;
303 	register struct zs_chanstate		*cs;
304 	register volatile struct zsdevice	*addr;
305 		 char				tmp;
306 
307 	addr      = (struct zsdevice *)AD_SCC;
308 	zi        = (struct zs_softc *)dev;
309 	zi->zi_zs = addr;
310 	cs        = zi->zi_cs;
311 
312 	/*
313 	 * Get the command register into a known state.
314 	 */
315 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
316 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
317 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
318 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
319 
320 	/*
321 	 * Do a hardware reset.
322 	 */
323 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
324 	delay(50000);	/*enough ? */
325 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
326 
327 	/*
328 	 * Initialize both channels
329 	 */
330 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
331 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
332 
333 	if(machineid & ATARI_TT) {
334 		/*
335 		 * ininitialise TT-MFP timer C: 307200Hz
336 		 * timer C and D share one control register:
337 		 *	bits 0-2 control timer D
338 		 *	bits 4-6 control timer C
339 		 */
340 		int cr = MFP2->mf_tcdcr & 7;
341 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
342 		MFP2->mf_tcdr  = 1;		/* counter 1     */
343 		cr |= T_Q004 << 4;		/* divisor 4     */
344 		MFP2->mf_tcdcr = cr;		/* start timer C */
345 		/*
346 		 * enable scc related interrupts
347 		 */
348 		SCU->vme_mask |= SCU_SCC;
349 
350 		zs_frequencies = zs_freqs_tt;
351 	} else if (machineid & ATARI_FALCON) {
352 		zs_frequencies = zs_freqs_falcon;
353 	} else if (machineid & ATARI_HADES) {
354 		zs_frequencies = zs_freqs_hades;
355 	} else {
356 		zs_frequencies = zs_freqs_generic;
357 	}
358 
359 	/* link into interrupt list with order (A,B) (B=A+1) */
360 	cs[0].cs_next = &cs[1];
361 	cs[1].cs_next = zslist;
362 	zslist        = cs;
363 
364 	cs->cs_unit  = 0;
365 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
366 	cs++;
367 	cs->cs_unit  = 1;
368 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
369 
370 	printf(": serial2 on channel a and modem2 on channel b\n");
371 }
372 
373 /*
374  * Open a zs serial port.
375  */
376 int
377 zsopen(dev, flags, mode, p)
378 dev_t		dev;
379 int		flags;
380 int		mode;
381 struct proc	*p;
382 {
383 	register struct tty		*tp;
384 	register struct zs_chanstate	*cs;
385 		 struct zs_softc	*zi;
386 		 int			unit = ZS_UNIT(dev);
387 		 int			zs = unit >> 1;
388 		 int			error, s;
389 
390 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
391 		return (ENXIO);
392 	cs = &zi->zi_cs[unit & 1];
393 
394 	/*
395 	 * When port A (ser02) is selected on the TT, make sure
396 	 * the port is enabled.
397 	 */
398 	if((machineid & ATARI_TT) && !(unit & 1))
399 		ym2149_ser2(1);
400 
401 	if (cs->cs_rbuf == NULL) {
402 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
403 								   M_WAITOK);
404 	}
405 
406 	tp = cs->cs_ttyp;
407 	if(tp == NULL) {
408 		cs->cs_ttyp = tp = ttymalloc();
409 		tty_attach(tp);
410 		tp->t_dev   = dev;
411 		tp->t_oproc = zsstart;
412 		tp->t_param = zsparam;
413 	}
414 
415 	if ((tp->t_state & TS_ISOPEN) &&
416 	    (tp->t_state & TS_XCLUDE) &&
417 	    p->p_ucred->cr_uid != 0)
418 		return (EBUSY);
419 
420 	s  = spltty();
421 
422 	/*
423 	 * Do the following iff this is a first open.
424 	 */
425 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
426 		if(tp->t_ispeed == 0) {
427 			tp->t_iflag = TTYDEF_IFLAG;
428 			tp->t_oflag = TTYDEF_OFLAG;
429 			tp->t_cflag = TTYDEF_CFLAG;
430 			tp->t_lflag = TTYDEF_LFLAG;
431 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
432 		}
433 		ttychars(tp);
434 		ttsetwater(tp);
435 
436 		(void)zsparam(tp, &tp->t_termios);
437 
438 		/*
439 		 * Turn on DTR.  We must always do this, even if carrier is not
440 		 * present, because otherwise we'd have to use TIOCSDTR
441 		 * immediately after setting CLOCAL, which applications do not
442 		 * expect.  We always assert DTR while the device is open
443 		 * unless explicitly requested to deassert it.
444 		 */
445 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
446 		/* May never get a status intr. if DCD already on. -gwr */
447 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
448 			tp->t_state |= TS_CARR_ON;
449 		if(cs->cs_softcar)
450 			tp->t_state |= TS_CARR_ON;
451 	}
452 
453 	splx(s);
454 
455 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
456 	if (error)
457 		goto bad;
458 
459 	error = tp->t_linesw->l_open(dev, tp);
460 	if(error)
461 		goto bad;
462 	return (0);
463 
464 bad:
465 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
466 		/*
467 		 * We failed to open the device, and nobody else had it opened.
468 		 * Clean up the state as appropriate.
469 		 */
470 		zs_shutdown(cs);
471 	}
472 	return(error);
473 }
474 
475 /*
476  * Close a zs serial port.
477  */
478 int
479 zsclose(dev, flags, mode, p)
480 dev_t		dev;
481 int		flags;
482 int		mode;
483 struct proc	*p;
484 {
485 	register struct zs_chanstate	*cs;
486 	register struct tty		*tp;
487 		 struct zs_softc	*zi;
488 		 int			unit = ZS_UNIT(dev);
489 
490 	zi = zs_cd.cd_devs[unit >> 1];
491 	cs = &zi->zi_cs[unit & 1];
492 	tp = cs->cs_ttyp;
493 
494 	tp->t_linesw->l_close(tp, flags);
495 	ttyclose(tp);
496 
497 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
498 		/*
499 		 * Although we got a last close, the device may still be in
500 		 * use; e.g. if this was the dialout node, and there are still
501 		 * processes waiting for carrier on the non-dialout node.
502 		 */
503 		zs_shutdown(cs);
504 	}
505 	return (0);
506 }
507 
508 /*
509  * Read/write zs serial port.
510  */
511 int
512 zsread(dev, uio, flags)
513 dev_t		dev;
514 struct uio	*uio;
515 int		flags;
516 {
517 	register struct zs_chanstate	*cs;
518 	register struct zs_softc	*zi;
519 	register struct tty		*tp;
520 		 int			unit;
521 
522 	unit = ZS_UNIT(dev);
523 	zi   = zs_cd.cd_devs[unit >> 1];
524 	cs   = &zi->zi_cs[unit & 1];
525 	tp   = cs->cs_ttyp;
526 
527 	return(tp->t_linesw->l_read(tp, uio, flags));
528 }
529 
530 int
531 zswrite(dev, uio, flags)
532 dev_t		dev;
533 struct uio	*uio;
534 int		flags;
535 {
536 	register struct zs_chanstate	*cs;
537 	register struct zs_softc	*zi;
538 	register struct tty		*tp;
539 		 int			unit;
540 
541 	unit = ZS_UNIT(dev);
542 	zi   = zs_cd.cd_devs[unit >> 1];
543 	cs   = &zi->zi_cs[unit & 1];
544 	tp   = cs->cs_ttyp;
545 
546 	return(tp->t_linesw->l_write(tp, uio, flags));
547 }
548 
549 int
550 zspoll(dev, events, p)
551 dev_t		dev;
552 int		events;
553 struct proc	*p;
554 {
555 	register struct zs_chanstate	*cs;
556 	register struct zs_softc	*zi;
557 	register struct tty		*tp;
558 		 int			unit;
559 
560 	unit = ZS_UNIT(dev);
561 	zi   = zs_cd.cd_devs[unit >> 1];
562 	cs   = &zi->zi_cs[unit & 1];
563 	tp   = cs->cs_ttyp;
564 
565 	return ((*tp->t_linesw->l_poll)(tp, events, p));
566 }
567 
568 struct tty *
569 zstty(dev)
570 dev_t	dev;
571 {
572 	register struct zs_chanstate	*cs;
573 	register struct zs_softc	*zi;
574 		 int			unit;
575 
576 	unit = ZS_UNIT(dev);
577 	zi   = zs_cd.cd_devs[unit >> 1];
578 	cs   = &zi->zi_cs[unit & 1];
579 	return(cs->cs_ttyp);
580 }
581 
582 /*
583  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
584  * channels are kept in (A,B) pairs.
585  *
586  * Do just a little, then get out; set a software interrupt if more
587  * work is needed.
588  *
589  * We deliberately ignore the vectoring Zilog gives us, and match up
590  * only the number of `reset interrupt under service' operations, not
591  * the order.
592  */
593 
594 int
595 zshard(sr)
596 long sr;
597 {
598 	register struct zs_chanstate	*a;
599 #define	b (a + 1)
600 	register volatile struct zschan *zc;
601 	register int			rr3, intflags = 0, v, i;
602 
603 	do {
604 	    intflags &= ~4;
605 	    for(a = zslist; a != NULL; a = b->cs_next) {
606 		rr3 = ZS_READ(a->cs_zc, 3);
607 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
608 			intflags |= 4|2;
609 			zc = a->cs_zc;
610 			i  = a->cs_rbput;
611 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
612 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
613 				intflags |= 1;
614 			}
615 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
616 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
617 				intflags |= 1;
618 			}
619 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
620 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
621 				intflags |= 1;
622 			}
623 			a->cs_rbput = i;
624 		}
625 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
626 			intflags |= 4|2;
627 			zc = b->cs_zc;
628 			i  = b->cs_rbput;
629 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
630 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
631 				intflags |= 1;
632 			}
633 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
634 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
635 				intflags |= 1;
636 			}
637 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
638 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
639 				intflags |= 1;
640 			}
641 			b->cs_rbput = i;
642 		}
643 	    }
644 	} while(intflags & 4);
645 #undef b
646 
647 	if(intflags & 1) {
648 		if(BASEPRI(sr)) {
649 			spl1();
650 			zsshortcuts++;
651 			return(zssoft(sr));
652 		}
653 		else if(!cb_scheduled) {
654 			cb_scheduled++;
655 			add_sicallback((si_farg)zssoft, 0, 0);
656 		}
657 	}
658 	return(intflags & 2);
659 }
660 
661 static int
662 zsrint(cs, zc)
663 register struct zs_chanstate	*cs;
664 register volatile struct zschan	*zc;
665 {
666 	register int c;
667 
668 	/*
669 	 * First read the status, because read of the received char
670 	 * destroy the status of this char.
671 	 */
672 	c = ZS_READ(zc, 1);
673 	c |= (zc->zc_data << 8);
674 
675 	/* clear receive error & interrupt condition */
676 	zc->zc_csr = ZSWR0_RESET_ERRORS;
677 	zc->zc_csr = ZSWR0_CLR_INTR;
678 
679 	return(ZRING_MAKE(ZRING_RINT, c));
680 }
681 
682 static int
683 zsxint(cs, zc)
684 register struct zs_chanstate	*cs;
685 register volatile struct zschan	*zc;
686 {
687 	register int i = cs->cs_tbc;
688 
689 	if(i == 0) {
690 		zc->zc_csr = ZSWR0_RESET_TXINT;
691 		zc->zc_csr = ZSWR0_CLR_INTR;
692 		return(ZRING_MAKE(ZRING_XINT, 0));
693 	}
694 	cs->cs_tbc = i - 1;
695 	zc->zc_data = *cs->cs_tba++;
696 	zc->zc_csr = ZSWR0_CLR_INTR;
697 	return (0);
698 }
699 
700 static int
701 zssint(cs, zc)
702 register struct zs_chanstate	*cs;
703 register volatile struct zschan	*zc;
704 {
705 	register int rr0;
706 
707 	rr0 = zc->zc_csr;
708 	zc->zc_csr = ZSWR0_RESET_STATUS;
709 	zc->zc_csr = ZSWR0_CLR_INTR;
710 	/*
711 	 * The chip's hardware flow control is, as noted in zsreg.h,
712 	 * busted---if the DCD line goes low the chip shuts off the
713 	 * receiver (!).  If we want hardware CTS flow control but do
714 	 * not have it, and carrier is now on, turn HFC on; if we have
715 	 * HFC now but carrier has gone low, turn it off.
716 	 */
717 	if(rr0 & ZSRR0_DCD) {
718 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
719 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
720 			cs->cs_creg[3] |= ZSWR3_HFC;
721 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
722 		}
723 	}
724 	else {
725 		if (cs->cs_creg[3] & ZSWR3_HFC) {
726 			cs->cs_creg[3] &= ~ZSWR3_HFC;
727 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
728 		}
729 	}
730 	return(ZRING_MAKE(ZRING_SINT, rr0));
731 }
732 
733 /*
734  * Print out a ring or fifo overrun error message.
735  */
736 static void
737 zsoverrun(unit, ptime, what)
738 int	unit;
739 long	*ptime;
740 char	*what;
741 {
742 
743 	if(*ptime != time.tv_sec) {
744 		*ptime = time.tv_sec;
745 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
746 		    (unit & 1) + 'a', what);
747 	}
748 }
749 
750 /*
751  * ZS software interrupt.  Scan all channels for deferred interrupts.
752  */
753 int
754 zssoft(sr)
755 long sr;
756 {
757     register struct zs_chanstate	*cs;
758     register volatile struct zschan	*zc;
759     register struct linesw		*line;
760     register struct tty			*tp;
761     register int			get, n, c, cc, unit, s;
762  	     int			retval = 0;
763 
764     cb_scheduled = 0;
765     s = spltty();
766     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
767 	get = cs->cs_rbget;
768 again:
769 	n = cs->cs_rbput;	/* atomic			*/
770 	if(get == n)		/* nothing more on this line	*/
771 		continue;
772 	retval = 1;
773 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
774 	zc     = cs->cs_zc;
775 	tp     = cs->cs_ttyp;
776 	line   = tp->t_linesw;
777 	/*
778 	 * Compute the number of interrupts in the receive ring.
779 	 * If the count is overlarge, we lost some events, and
780 	 * must advance to the first valid one.  It may get
781 	 * overwritten if more data are arriving, but this is
782 	 * too expensive to check and gains nothing (we already
783 	 * lost out; all we can do at this point is trade one
784 	 * kind of loss for another).
785 	 */
786 	n -= get;
787 	if(n > ZLRB_RING_SIZE) {
788 		zsoverrun(unit, &cs->cs_rotime, "ring");
789 		get += n - ZLRB_RING_SIZE;
790 		n    = ZLRB_RING_SIZE;
791 	}
792 	while(--n >= 0) {
793 		/* race to keep ahead of incoming interrupts */
794 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
795 		switch (ZRING_TYPE(c)) {
796 
797 		case ZRING_RINT:
798 			c = ZRING_VALUE(c);
799 			if(c & ZSRR1_DO)
800 				zsoverrun(unit, &cs->cs_fotime, "fifo");
801 			cc = c >> 8;
802 			if(c & ZSRR1_FE)
803 				cc |= TTY_FE;
804 			if(c & ZSRR1_PE)
805 				cc |= TTY_PE;
806 			line->l_rint(cc, tp);
807 			break;
808 
809 		case ZRING_XINT:
810 			/*
811 			 * Transmit done: change registers and resume,
812 			 * or clear BUSY.
813 			 */
814 			if(cs->cs_heldchange) {
815 				int sps;
816 
817 				sps = splzs();
818 				c = zc->zc_csr;
819 				if((c & ZSRR0_DCD) == 0)
820 					cs->cs_preg[3] &= ~ZSWR3_HFC;
821 				bcopy((caddr_t)cs->cs_preg,
822 				    (caddr_t)cs->cs_creg, 16);
823 				zs_loadchannelregs(zc, cs->cs_creg);
824 				splx(sps);
825 				cs->cs_heldchange = 0;
826 				if(cs->cs_heldtbc
827 					&& (tp->t_state & TS_TTSTOP) == 0) {
828 					cs->cs_tbc = cs->cs_heldtbc - 1;
829 					zc->zc_data = *cs->cs_tba++;
830 					goto again;
831 				}
832 			}
833 			tp->t_state &= ~TS_BUSY;
834 			if(tp->t_state & TS_FLUSH)
835 				tp->t_state &= ~TS_FLUSH;
836 			else ndflush(&tp->t_outq,cs->cs_tba
837 						- (caddr_t)tp->t_outq.c_cf);
838 			line->l_start(tp);
839 			break;
840 
841 		case ZRING_SINT:
842 			/*
843 			 * Status line change.  HFC bit is run in
844 			 * hardware interrupt, to avoid locking
845 			 * at splzs here.
846 			 */
847 			c = ZRING_VALUE(c);
848 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
849 				cc = (c & ZSRR0_DCD) != 0;
850 				if(line->l_modem(tp, cc) == 0)
851 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
852 							cc ? DMBIS : DMBIC);
853 			}
854 			cs->cs_rr0 = c;
855 			break;
856 
857 		default:
858 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
859 			    unit >> 1, (unit & 1) + 'a', c);
860 			break;
861 		}
862 	}
863 	cs->cs_rbget = get;
864 	goto again;
865     }
866     splx(s);
867     return (retval);
868 }
869 
870 int
871 zsioctl(dev, cmd, data, flag, p)
872 dev_t		dev;
873 u_long		cmd;
874 caddr_t		data;
875 int		flag;
876 struct proc	*p;
877 {
878 		 int			unit = ZS_UNIT(dev);
879 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
880 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
881 	register int			error, s;
882 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
883 
884 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
885 	if(error != EPASSTHROUGH)
886 		return(error);
887 
888 	error = ttioctl(tp, cmd, data, flag, p);
889 	if(error !=EPASSTHROUGH)
890 		return (error);
891 
892 	switch (cmd) {
893 	case TIOCSBRK:
894 		s = splzs();
895 		cs->cs_preg[5] |= ZSWR5_BREAK;
896 		cs->cs_creg[5] |= ZSWR5_BREAK;
897 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
898 		splx(s);
899 		break;
900 	case TIOCCBRK:
901 		s = splzs();
902 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
903 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
904 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
905 		splx(s);
906 		break;
907 	case TIOCGFLAGS: {
908 		int bits = 0;
909 
910 		if(cs->cs_softcar)
911 			bits |= TIOCFLAG_SOFTCAR;
912 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
913 			bits |= TIOCFLAG_CLOCAL;
914 		if(cs->cs_creg[3] & ZSWR3_HFC)
915 			bits |= TIOCFLAG_CRTSCTS;
916 		*(int *)data = bits;
917 		break;
918 	}
919 	case TIOCSFLAGS: {
920 		int userbits = 0;
921 
922 		error = suser(p->p_ucred, &p->p_acflag);
923 		if(error != 0)
924 			return (EPERM);
925 
926 		userbits = *(int *)data;
927 
928 		/*
929 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
930 		 # defaulting to software flow control.
931 		 */
932 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
933 			return(EINVAL);
934 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
935 			return(ENODEV);
936 
937 		s = splzs();
938 		if((userbits & TIOCFLAG_SOFTCAR)) {
939 			cs->cs_softcar = 1;	/* turn on softcar */
940 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
941 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
942 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
943 		}
944 		else if(userbits & TIOCFLAG_CLOCAL) {
945 			cs->cs_softcar = 0; 	/* turn off softcar */
946 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
947 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
948 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
949 			tp->t_termios.c_cflag |= CLOCAL;
950 		}
951 		if(userbits & TIOCFLAG_CRTSCTS) {
952 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
953 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
954 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
955 			cs->cs_preg[3] |= ZSWR3_HFC;
956 			cs->cs_creg[3] |= ZSWR3_HFC;
957 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
958 			tp->t_termios.c_cflag |= CRTSCTS;
959 		}
960 		else {
961 			/* no mdmbuf, so we must want software flow control */
962 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
963 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
964 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
965 			cs->cs_preg[3] &= ~ZSWR3_HFC;
966 			cs->cs_creg[3] &= ~ZSWR3_HFC;
967 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
968 			tp->t_termios.c_cflag &= ~CRTSCTS;
969 		}
970 		splx(s);
971 		break;
972 	}
973 	case TIOCSDTR:
974 		zs_modem(cs, ZSWR5_DTR, DMBIS);
975 		break;
976 	case TIOCCDTR:
977 		zs_modem(cs, ZSWR5_DTR, DMBIC);
978 		break;
979 	case TIOCMGET:
980 		zs_modem(cs, 0, DMGET);
981 		break;
982 	case TIOCMSET:
983 	case TIOCMBIS:
984 	case TIOCMBIC:
985 	default:
986 		return (EPASSTHROUGH);
987 	}
988 	return (0);
989 }
990 
991 /*
992  * Start or restart transmission.
993  */
994 static void
995 zsstart(tp)
996 register struct tty *tp;
997 {
998 	register struct zs_chanstate	*cs;
999 	register int			s, nch;
1000 		 int			unit = ZS_UNIT(tp->t_dev);
1001 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1002 
1003 	cs = &zi->zi_cs[unit & 1];
1004 	s  = spltty();
1005 
1006 	/*
1007 	 * If currently active or delaying, no need to do anything.
1008 	 */
1009 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
1010 		goto out;
1011 
1012 	/*
1013 	 * If there are sleepers, and output has drained below low
1014 	 * water mark, awaken.
1015 	 */
1016 	if(tp->t_outq.c_cc <= tp->t_lowat) {
1017 		if(tp->t_state & TS_ASLEEP) {
1018 			tp->t_state &= ~TS_ASLEEP;
1019 			wakeup((caddr_t)&tp->t_outq);
1020 		}
1021 		selwakeup(&tp->t_wsel);
1022 	}
1023 
1024 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
1025 	if(nch) {
1026 		register char *p = tp->t_outq.c_cf;
1027 
1028 		/* mark busy, enable tx done interrupts, & send first byte */
1029 		tp->t_state |= TS_BUSY;
1030 		(void) splzs();
1031 		cs->cs_preg[1] |= ZSWR1_TIE;
1032 		cs->cs_creg[1] |= ZSWR1_TIE;
1033 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1034 		cs->cs_zc->zc_data = *p;
1035 		cs->cs_tba = p + 1;
1036 		cs->cs_tbc = nch - 1;
1037 	} else {
1038 		/*
1039 		 * Nothing to send, turn off transmit done interrupts.
1040 		 * This is useful if something is doing polled output.
1041 		 */
1042 		(void) splzs();
1043 		cs->cs_preg[1] &= ~ZSWR1_TIE;
1044 		cs->cs_creg[1] &= ~ZSWR1_TIE;
1045 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1046 	}
1047 out:
1048 	splx(s);
1049 }
1050 
1051 /*
1052  * Stop output, e.g., for ^S or output flush.
1053  */
1054 void
1055 zsstop(tp, flag)
1056 register struct tty	*tp;
1057 	 int		flag;
1058 {
1059 	register struct zs_chanstate	*cs;
1060 	register int			s, unit = ZS_UNIT(tp->t_dev);
1061 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1062 
1063 	cs = &zi->zi_cs[unit & 1];
1064 	s  = splzs();
1065 	if(tp->t_state & TS_BUSY) {
1066 		/*
1067 		 * Device is transmitting; must stop it.
1068 		 */
1069 		cs->cs_tbc = 0;
1070 		if ((tp->t_state & TS_TTSTOP) == 0)
1071 			tp->t_state |= TS_FLUSH;
1072 	}
1073 	splx(s);
1074 }
1075 
1076 static void
1077 zs_shutdown(cs)
1078 	struct zs_chanstate	*cs;
1079 {
1080 	struct tty	*tp = cs->cs_ttyp;
1081 	int		s;
1082 
1083 	s = splzs();
1084 
1085 	/*
1086 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1087 	 * notice even if we immediately open the port again.
1088 	 */
1089 	if(tp->t_cflag & HUPCL) {
1090 		zs_modem(cs, 0, DMSET);
1091 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1092 	}
1093 
1094 	/* Clear any break condition set with TIOCSBRK. */
1095 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1096 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1097 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1098 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1099 	}
1100 
1101 	/*
1102 	 * Drop all lines and cancel interrupts
1103 	 */
1104 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1105 	splx(s);
1106 }
1107 
1108 /*
1109  * Set ZS tty parameters from termios.
1110  *
1111  * This routine makes use of the fact that only registers
1112  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1113  */
1114 static int
1115 zsparam(tp, t)
1116 register struct tty	*tp;
1117 register struct termios	*t;
1118 {
1119 		 int			unit = ZS_UNIT(tp->t_dev);
1120 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1121 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1122 		 int			cdiv, clkm, brgm, tcon;
1123 	register int			tmp, tmp5, cflag, s;
1124 
1125 	tmp  = t->c_ospeed;
1126 	tmp5 = t->c_ispeed;
1127 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1128 		return(EINVAL);
1129 	if(tmp == 0) {
1130 		/* stty 0 => drop DTR and RTS */
1131 		zs_modem(cs, 0, DMSET);
1132 		return(0);
1133 	}
1134 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1135 	if (tmp < 0)
1136 		return(EINVAL);
1137 	tp->t_ispeed = tp->t_ospeed = tmp;
1138 
1139 	cflag = tp->t_cflag = t->c_cflag;
1140 	if (cflag & CSTOPB)
1141 		cdiv |= ZSWR4_TWOSB;
1142 	else
1143 		cdiv |= ZSWR4_ONESB;
1144 	if (!(cflag & PARODD))
1145 		cdiv |= ZSWR4_EVENP;
1146 	if (cflag & PARENB)
1147 		cdiv |= ZSWR4_PARENB;
1148 
1149 	switch(cflag & CSIZE) {
1150 	case CS5:
1151 		tmp  = ZSWR3_RX_5;
1152 		tmp5 = ZSWR5_TX_5;
1153 		break;
1154 	case CS6:
1155 		tmp  = ZSWR3_RX_6;
1156 		tmp5 = ZSWR5_TX_6;
1157 		break;
1158 	case CS7:
1159 		tmp  = ZSWR3_RX_7;
1160 		tmp5 = ZSWR5_TX_7;
1161 		break;
1162 	case CS8:
1163 	default:
1164 		tmp  = ZSWR3_RX_8;
1165 		tmp5 = ZSWR5_TX_8;
1166 		break;
1167 	}
1168 	tmp  |= ZSWR3_RX_ENABLE;
1169 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1170 
1171 	/*
1172 	 * Block interrupts so that state will not
1173 	 * be altered until we are done setting it up.
1174 	 */
1175 	s = splzs();
1176 	cs->cs_preg[4]  = cdiv;
1177 	cs->cs_preg[11] = clkm;
1178 	cs->cs_preg[12] = tcon;
1179 	cs->cs_preg[13] = tcon >> 8;
1180 	cs->cs_preg[14] = brgm;
1181 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1182 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1183 	cs->cs_preg[10] = ZSWR10_NRZ;
1184 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1185 
1186 	/*
1187 	 * Output hardware flow control on the chip is horrendous: if
1188 	 * carrier detect drops, the receiver is disabled.  Hence we
1189 	 * can only do this when the carrier is on.
1190 	 */
1191 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1192 		tmp |= ZSWR3_HFC;
1193 	cs->cs_preg[3] = tmp;
1194 	cs->cs_preg[5] = tmp5;
1195 
1196 	/*
1197 	 * If nothing is being transmitted, set up new current values,
1198 	 * else mark them as pending.
1199 	 */
1200 	if(cs->cs_heldchange == 0) {
1201 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1202 			cs->cs_heldtbc = cs->cs_tbc;
1203 			cs->cs_tbc = 0;
1204 			cs->cs_heldchange = 1;
1205 		} else {
1206 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1207 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1208 		}
1209 	}
1210 	splx(s);
1211 	return (0);
1212 }
1213 
1214 /*
1215  * search for the best matching baudrate
1216  */
1217 static int
1218 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1219 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1220 {
1221 	int	bestdiff, bestbps, source;
1222 
1223 	bestdiff = bestbps = 0;
1224 	unit = (unit & 1) << 2;
1225 	for (source = 0; source < 4; ++source) {
1226 		long	freq = zs_frequencies[unit + source];
1227 		int	diff, bps, div, clkm, brgm, tcon;
1228 
1229 		bps = div = clkm = brgm = tcon = 0;
1230 		switch (source) {
1231 			case 0:	/* BRgen, PCLK */
1232 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1233 				break;
1234 			case 1:	/* BRgen, RTxC */
1235 				brgm = ZSWR14_BAUD_ENA;
1236 				break;
1237 			case 2: /* RTxC */
1238 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1239 				break;
1240 			case 3: /* TRxC */
1241 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1242 				break;
1243 		}
1244 		switch (source) {
1245 			case 0:
1246 			case 1:
1247 				div  = ZSWR4_CLK_X16;
1248 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1249 				tcon = BPS_TO_TCONST(freq, wanted);
1250 				if (tcon < 0)
1251 					tcon = 0;
1252 				bps  = TCONST_TO_BPS(freq, tcon);
1253 				break;
1254 			case 2:
1255 			case 3:
1256 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1257 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1258 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1259 
1260 				if (d1 < d2 && d1 < d3) {
1261 					div = ZSWR4_CLK_X16;
1262 					bps = b1;
1263 				} else if (d2 < d3 && d2 < d1) {
1264 					div = ZSWR4_CLK_X32;
1265 					bps = b2;
1266 				} else {
1267 					div = ZSWR4_CLK_X64;
1268 					bps = b3;
1269 				}
1270 				brgm = tcon = 0;
1271 				break;
1272 			}
1273 		}
1274 		diff = abs(bps - wanted);
1275 		if (!source || diff < bestdiff) {
1276 			*divisor   = div;
1277 			*clockmode = clkm;
1278 			*brgenmode = brgm;
1279 			*timeconst = tcon;
1280 			bestbps    = bps;
1281 			bestdiff   = diff;
1282 			if (diff == 0)
1283 				break;
1284 		}
1285 	}
1286 	/* Allow deviations upto 5% */
1287 	if (20 * bestdiff > wanted)
1288 		return -1;
1289 	return bestbps;
1290 }
1291 
1292 /*
1293  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1294  * in transmission, the change is deferred.
1295  */
1296 static int
1297 zs_modem(cs, bits, how)
1298 struct zs_chanstate	*cs;
1299 int			bits, how;
1300 {
1301 	int s, mbits;
1302 
1303 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1304 
1305 	s = splzs();
1306 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1307 
1308 	switch(how) {
1309 		case DMSET:
1310 				mbits  = bits;
1311 				break;
1312 		case DMBIS:
1313 				mbits |= bits;
1314 				break;
1315 		case DMBIC:
1316 				mbits &= ~bits;
1317 				break;
1318 		case DMGET:
1319 				splx(s);
1320 				return(mbits);
1321 	}
1322 
1323 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1324 	if(cs->cs_heldchange == 0) {
1325 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1326 			cs->cs_heldtbc = cs->cs_tbc;
1327 			cs->cs_tbc = 0;
1328 			cs->cs_heldchange = 1;
1329 		}
1330 		else {
1331 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1332 		}
1333 	}
1334 	splx(s);
1335 	return(0);
1336 }
1337 
1338 /*
1339  * Write the given register set to the given zs channel in the proper order.
1340  * The channel must not be transmitting at the time.  The receiver will
1341  * be disabled for the time it takes to write all the registers.
1342  */
1343 static void
1344 zs_loadchannelregs(zc, reg)
1345 volatile struct zschan	*zc;
1346 u_char			*reg;
1347 {
1348 	int i;
1349 
1350 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1351 	i = zc->zc_data;		/* drain fifo */
1352 	i = zc->zc_data;
1353 	i = zc->zc_data;
1354 	ZS_WRITE(zc,  4, reg[4]);
1355 	ZS_WRITE(zc, 10, reg[10]);
1356 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1357 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1358 	ZS_WRITE(zc,  1, reg[1]);
1359 	ZS_WRITE(zc,  9, reg[9]);
1360 	ZS_WRITE(zc, 11, reg[11]);
1361 	ZS_WRITE(zc, 12, reg[12]);
1362 	ZS_WRITE(zc, 13, reg[13]);
1363 	ZS_WRITE(zc, 14, reg[14]);
1364 	ZS_WRITE(zc, 15, reg[15]);
1365 	ZS_WRITE(zc,  3, reg[3]);
1366 	ZS_WRITE(zc,  5, reg[5]);
1367 }
1368 #endif /* NZS > 1 */
1369