xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision ce0bb6e8d2e560ecacbe865a848624f94498063b)
1 /*	$NetBSD: zs.c,v 1.3 1995/04/11 02:42:23 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/proc.h>
58 #include <sys/device.h>
59 #include <sys/conf.h>
60 #include <sys/file.h>
61 #include <sys/ioctl.h>
62 #include <sys/tty.h>
63 #include <sys/time.h>
64 #include <sys/kernel.h>
65 #include <sys/syslog.h>
66 
67 #include <machine/cpu.h>
68 #include <machine/iomap.h>
69 #include <machine/scu.h>
70 #include <machine/mfp.h>
71 
72 #include <dev/ic/z8530.h>
73 #include <atari/dev/zsvar.h>
74 #include "zs.h"
75 #if NZS > 1
76 #error "This driver supports only 1 85C30!"
77 #endif
78 
79 #if NZS > 0
80 
81 #define PCLK	(8000000)	/* PCLK pin input clock rate */
82 
83 #define splzs	spl5
84 
85 /*
86  * Software state per found chip.
87  */
88 struct zs_softc {
89     struct	device		zi_dev;    /* base device		  */
90     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
91     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
92 };
93 
94 /*
95  * Define the registers for a closed port
96  */
97 u_char zs_init_regs[16] = {
98 /*  0 */	0,
99 /*  1 */	0,
100 /*  2 */	0x60,
101 /*  3 */	0,
102 /*  4 */	0,
103 /*  5 */	0,
104 /*  6 */	0,
105 /*  7 */	0,
106 /*  8 */	0,
107 /*  9 */	ZSWR9_VECTOR_INCL_STAT,
108 /* 10 */	ZSWR10_NRZ,
109 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
110 /* 12 */	0,
111 /* 13 */	0,
112 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
113 /* 15 */	0
114 };
115 
116 struct tty *zs_tty[NZS * 2];		/* XXX should be dynamic */
117 
118 /* Definition of the driver for autoconfig. */
119 static int	zsmatch __P((struct device *, struct cfdata *, void *));
120 static void	zsattach __P((struct device *, struct device *, void *));
121 struct cfdriver zscd = {
122 	NULL, "zs", (cfmatch_t)zsmatch, zsattach, DV_TTY,
123 	sizeof(struct zs_softc), NULL, 0 };
124 
125 /* Interrupt handlers. */
126 int		zshard __P((long));
127 static int	zssoft __P((long));
128 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
129 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
130 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
131 
132 struct zs_chanstate *zslist;
133 
134 /* Routines called from other code. */
135 static void	zsstart __P((struct tty *));
136 void		zsstop __P((struct tty *, int));
137 static int	zsparam __P((struct tty *, struct termios *));
138 
139 /* Routines purely local to this driver. */
140 static void	zs_reset __P((volatile struct zschan *, int, int));
141 static int	zs_modem __P((struct zs_chanstate *, int, int));
142 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
143 
144 int zsshortcuts;	/* number of "shortcut" software interrupts */
145 
146 static int zsmatch(pdp, cfp, auxp)
147 struct device	*pdp;
148 struct cfdata	*cfp;
149 void		*auxp;
150 {
151 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
152 		return(0);
153 	return(1);
154 }
155 
156 /*
157  * Attach a found zs.
158  */
159 static void
160 zsattach(parent, dev, aux)
161 struct device	*parent;
162 struct device	*dev;
163 void		*aux;
164 {
165 	register struct zs_softc		*zi;
166 	register struct zs_chanstate		*cs;
167 	register volatile struct zsdevice	*addr;
168 	register struct tty			*tp;
169 		 char				tmp;
170 
171 	addr      = (struct zsdevice *)AD_SCC;
172 	zi        = (struct zs_softc *)dev;
173 	zi->zi_zs = addr;
174 	cs        = zi->zi_cs;
175 
176 	/*
177 	 * Get the command register into a known state.
178 	 */
179 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
180 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
181 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
182 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
183 
184 	/*
185 	 * Do a hardware reset.
186 	 */
187 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
188 	delay(50000);	/*enough ? */
189 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
190 
191 	/*
192 	 * Initialize both channels
193 	 */
194 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
195 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
196 
197 	/*
198 	 * enable scc related interrupts
199 	 */
200 	SCU->sys_mask |= SCU_SCC;
201 
202 	/* link into interrupt list with order (A,B) (B=A+1) */
203 	cs[0].cs_next = &cs[1];
204 	cs[1].cs_next = zslist;
205 	zslist        = cs;
206 
207 	cs->cs_unit  = 0;
208 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
209 	cs++;
210 	cs->cs_unit  = 1;
211 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
212 
213 	printf(": serial2 on channel a and modem2 on channel b\n");
214 }
215 
216 /*
217  * Open a zs serial port.
218  */
219 int
220 zsopen(dev, flags, mode, p)
221 dev_t		dev;
222 int		flags;
223 int		mode;
224 struct proc	*p;
225 {
226 	register struct tty		*tp;
227 	register struct zs_chanstate	*cs;
228 		 struct zs_softc	*zi;
229 		 int			unit = ZS_UNIT(dev);
230 		 int			zs = unit >> 1;
231 		 int			error, s;
232 
233 	if(zs >= zscd.cd_ndevs || (zi = zscd.cd_devs[zs]) == NULL)
234 		return (ENXIO);
235 	cs = &zi->zi_cs[unit & 1];
236 	tp = cs->cs_ttyp;
237 	if(tp == NULL) {
238 		cs->cs_ttyp  = tp = zs_tty[unit] = ttymalloc();
239 		tp->t_dev    = dev;
240 		tp->t_oproc  = zsstart;
241 		tp->t_param  = zsparam;
242 	}
243 
244 	s  = spltty();
245 	if((tp->t_state & TS_ISOPEN) == 0) {
246 		ttychars(tp);
247 		if(tp->t_ispeed == 0) {
248 			tp->t_iflag = TTYDEF_IFLAG;
249 			tp->t_oflag = TTYDEF_OFLAG;
250 			tp->t_cflag = TTYDEF_CFLAG;
251 			tp->t_lflag = TTYDEF_LFLAG;
252 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
253 		}
254 		(void)zsparam(tp, &tp->t_termios);
255 		ttsetwater(tp);
256 	}
257 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
258 			splx(s);
259 			return (EBUSY);
260 	}
261 	error = 0;
262 	for(;;) {
263 		/* loop, turning on the device, until carrier present */
264 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
265 		if(cs->cs_softcar)
266 			tp->t_state |= TS_CARR_ON;
267 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
268 		    tp->t_state & TS_CARR_ON)
269 			break;
270 		tp->t_state |= TS_WOPEN;
271 		if(error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
272 		    ttopen, 0)) {
273 			if(!(tp->t_state & TS_ISOPEN)) {
274 				zs_modem(cs, 0, DMSET);
275 				tp->t_state &= ~TS_WOPEN;
276 				ttwakeup(tp);
277 			}
278 			splx(s);
279 			return error;
280 		}
281 	}
282 	splx(s);
283 	if(error == 0)
284 		error = linesw[tp->t_line].l_open(dev, tp);
285 	if(error)
286 		zs_modem(cs, 0, DMSET);
287 	return(error);
288 }
289 
290 /*
291  * Close a zs serial port.
292  */
293 int
294 zsclose(dev, flags, mode, p)
295 dev_t		dev;
296 int		flags;
297 int		mode;
298 struct proc	*p;
299 {
300 	register struct zs_chanstate	*cs;
301 	register struct tty		*tp;
302 		 struct zs_softc	*zi;
303 		 int			unit = ZS_UNIT(dev);
304 		 int			s;
305 
306 	zi = zscd.cd_devs[unit >> 1];
307 	cs = &zi->zi_cs[unit & 1];
308 	tp = cs->cs_ttyp;
309 	linesw[tp->t_line].l_close(tp, flags);
310 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
311 	    (tp->t_state & TS_ISOPEN) == 0) {
312 		zs_modem(cs, 0, DMSET);
313 		/* hold low for 1 second */
314 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
315 	}
316 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
317 		s = splzs();
318 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
319 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
320 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
321 		splx(s);
322 	}
323 	ttyclose(tp);
324 
325 	/*
326 	 * Drop all lines and cancel interrupts
327 	 */
328 	zs_loadchannelregs(&zi->zi_zs->zs_chan[unit & 1], zs_init_regs);
329 	return (0);
330 }
331 
332 /*
333  * Read/write zs serial port.
334  */
335 int
336 zsread(dev, uio, flags)
337 dev_t		dev;
338 struct uio	*uio;
339 int		flags;
340 {
341 	register struct tty *tp = zs_tty[ZS_UNIT(dev)];
342 
343 	return(linesw[tp->t_line].l_read(tp, uio, flags));
344 }
345 
346 int zswrite(dev, uio, flags)
347 dev_t		dev;
348 struct uio	*uio;
349 int		flags;
350 {
351 	register struct tty *tp = zs_tty[ZS_UNIT(dev)];
352 
353 	return(linesw[tp->t_line].l_write(tp, uio, flags));
354 }
355 
356 /*
357  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
358  * channels are kept in (A,B) pairs.
359  *
360  * Do just a little, then get out; set a software interrupt if more
361  * work is needed.
362  *
363  * We deliberately ignore the vectoring Zilog gives us, and match up
364  * only the number of `reset interrupt under service' operations, not
365  * the order.
366  */
367 int
368 zshard(sr)
369 long sr;
370 {
371 	register struct zs_chanstate	*a;
372 #define	b (a + 1)
373 	register volatile struct zschan *zc;
374 	register int			rr3, intflags = 0, v, i;
375 
376 	for(a = zslist; a != NULL; a = b->cs_next) {
377 		rr3 = ZS_READ(a->cs_zc, 3);
378 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
379 			intflags |= 2;
380 			zc = a->cs_zc;
381 			i  = a->cs_rbput;
382 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
383 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
384 				intflags |= 1;
385 			}
386 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
387 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
388 				intflags |= 1;
389 			}
390 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
391 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
392 				intflags |= 1;
393 			}
394 			a->cs_rbput = i;
395 		}
396 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
397 			intflags |= 2;
398 			zc = b->cs_zc;
399 			i  = b->cs_rbput;
400 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
401 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
402 				intflags |= 1;
403 			}
404 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
405 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
406 				intflags |= 1;
407 			}
408 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
409 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
410 				intflags |= 1;
411 			}
412 			b->cs_rbput = i;
413 		}
414 	}
415 #undef b
416 
417 	if(intflags & 1) {
418 		if(BASEPRI(sr)) {
419 			spl1();
420 			zsshortcuts++;
421 			return(zssoft(sr));
422 		}
423 		else add_sicallback(zssoft, 0, 0);
424 	}
425 	return(intflags & 2);
426 }
427 
428 static int
429 zsrint(cs, zc)
430 register struct zs_chanstate	*cs;
431 register volatile struct zschan	*zc;
432 {
433 	register int c = zc->zc_data;
434 
435 	/* compose receive character and status */
436 	c <<= 8;
437 	c |= ZS_READ(zc, 1);
438 
439 	/* clear receive error & interrupt condition */
440 	zc->zc_csr = ZSWR0_RESET_ERRORS;
441 	zc->zc_csr = ZSWR0_CLR_INTR;
442 
443 	return(ZRING_MAKE(ZRING_RINT, c));
444 }
445 
446 static int
447 zsxint(cs, zc)
448 register struct zs_chanstate	*cs;
449 register volatile struct zschan	*zc;
450 {
451 	register int i = cs->cs_tbc;
452 
453 	if(i == 0) {
454 		zc->zc_csr = ZSWR0_RESET_TXINT;
455 		zc->zc_csr = ZSWR0_CLR_INTR;
456 		return(ZRING_MAKE(ZRING_XINT, 0));
457 	}
458 	cs->cs_tbc = i - 1;
459 	zc->zc_data = *cs->cs_tba++;
460 	zc->zc_csr = ZSWR0_CLR_INTR;
461 	return (0);
462 }
463 
464 static int
465 zssint(cs, zc)
466 register struct zs_chanstate	*cs;
467 register volatile struct zschan	*zc;
468 {
469 	register int rr0;
470 
471 	rr0 = zc->zc_csr;
472 	zc->zc_csr = ZSWR0_RESET_STATUS;
473 	zc->zc_csr = ZSWR0_CLR_INTR;
474 	/*
475 	 * The chip's hardware flow control is, as noted in zsreg.h,
476 	 * busted---if the DCD line goes low the chip shuts off the
477 	 * receiver (!).  If we want hardware CTS flow control but do
478 	 * not have it, and carrier is now on, turn HFC on; if we have
479 	 * HFC now but carrier has gone low, turn it off.
480 	 */
481 	if(rr0 & ZSRR0_DCD) {
482 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
483 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
484 			cs->cs_creg[3] |= ZSWR3_HFC;
485 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
486 		}
487 	}
488 	else {
489 		if (cs->cs_creg[3] & ZSWR3_HFC) {
490 			cs->cs_creg[3] &= ~ZSWR3_HFC;
491 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
492 		}
493 	}
494 	return(ZRING_MAKE(ZRING_SINT, rr0));
495 }
496 
497 /*
498  * Print out a ring or fifo overrun error message.
499  */
500 static void
501 zsoverrun(unit, ptime, what)
502 int	unit;
503 long	*ptime;
504 char	*what;
505 {
506 
507 	if(*ptime != time.tv_sec) {
508 		*ptime = time.tv_sec;
509 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
510 		    (unit & 1) + 'a', what);
511 	}
512 }
513 
514 /*
515  * ZS software interrupt.  Scan all channels for deferred interrupts.
516  */
517 int
518 zssoft(sr)
519 long sr;
520 {
521     register struct zs_chanstate	*cs;
522     register volatile struct zschan	*zc;
523     register struct linesw		*line;
524     register struct tty			*tp;
525     register int			get, n, c, cc, unit, s;
526  	     int			retval = 0;
527 
528     s = spltty();
529     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
530 	get = cs->cs_rbget;
531 again:
532 	n = cs->cs_rbput;	/* atomic			*/
533 	if(get == n)		/* nothing more on this line	*/
534 		continue;
535 	retval = 1;
536 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
537 	zc     = cs->cs_zc;
538 	tp     = cs->cs_ttyp;
539 	line   = &linesw[tp->t_line];
540 	/*
541 	 * Compute the number of interrupts in the receive ring.
542 	 * If the count is overlarge, we lost some events, and
543 	 * must advance to the first valid one.  It may get
544 	 * overwritten if more data are arriving, but this is
545 	 * too expensive to check and gains nothing (we already
546 	 * lost out; all we can do at this point is trade one
547 	 * kind of loss for another).
548 	 */
549 	n -= get;
550 	if(n > ZLRB_RING_SIZE) {
551 		zsoverrun(unit, &cs->cs_rotime, "ring");
552 		get += n - ZLRB_RING_SIZE;
553 		n    = ZLRB_RING_SIZE;
554 	}
555 	while(--n >= 0) {
556 		/* race to keep ahead of incoming interrupts */
557 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
558 		switch (ZRING_TYPE(c)) {
559 
560 		case ZRING_RINT:
561 			c = ZRING_VALUE(c);
562 			if(c & ZSRR1_DO)
563 				zsoverrun(unit, &cs->cs_fotime, "fifo");
564 			cc = c >> 8;
565 			if(c & ZSRR1_FE)
566 				cc |= TTY_FE;
567 			if(c & ZSRR1_PE)
568 				cc |= TTY_PE;
569 			line->l_rint(cc, tp);
570 			break;
571 
572 		case ZRING_XINT:
573 			/*
574 			 * Transmit done: change registers and resume,
575 			 * or clear BUSY.
576 			 */
577 			if(cs->cs_heldchange) {
578 				int sps;
579 
580 				sps = splzs();
581 				c = zc->zc_csr;
582 				if((c & ZSRR0_DCD) == 0)
583 					cs->cs_preg[3] &= ~ZSWR3_HFC;
584 				bcopy((caddr_t)cs->cs_preg,
585 				    (caddr_t)cs->cs_creg, 16);
586 				zs_loadchannelregs(zc, cs->cs_creg);
587 				splx(sps);
588 				cs->cs_heldchange = 0;
589 				if(cs->cs_heldtbc
590 					&& (tp->t_state & TS_TTSTOP) == 0) {
591 					cs->cs_tbc = cs->cs_heldtbc - 1;
592 					zc->zc_data = *cs->cs_tba++;
593 					goto again;
594 				}
595 			}
596 			tp->t_state &= ~TS_BUSY;
597 			if(tp->t_state & TS_FLUSH)
598 				tp->t_state &= ~TS_FLUSH;
599 			else ndflush(&tp->t_outq,cs->cs_tba
600 						- (caddr_t)tp->t_outq.c_cf);
601 			line->l_start(tp);
602 			break;
603 
604 		case ZRING_SINT:
605 			/*
606 			 * Status line change.  HFC bit is run in
607 			 * hardware interrupt, to avoid locking
608 			 * at splzs here.
609 			 */
610 			c = ZRING_VALUE(c);
611 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
612 				cc = (c & ZSRR0_DCD) != 0;
613 				if(line->l_modem(tp, cc) == 0)
614 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
615 							cc ? DMBIS : DMBIC);
616 			}
617 			cs->cs_rr0 = c;
618 			break;
619 
620 		default:
621 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
622 			    unit >> 1, (unit & 1) + 'a', c);
623 			break;
624 		}
625 	}
626 	cs->cs_rbget = get;
627 	goto again;
628     }
629     splx(s);
630     return (retval);
631 }
632 
633 int
634 zsioctl(dev, cmd, data, flag, p)
635 dev_t		dev;
636 u_long		cmd;
637 caddr_t		data;
638 int		flag;
639 struct proc	*p;
640 {
641 		 int			unit = ZS_UNIT(dev);
642 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
643 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
644 	register int			error, s;
645 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
646 
647 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
648 	if(error >= 0)
649 		return(error);
650 	error = ttioctl(tp, cmd, data, flag, p);
651 	if(error >= 0)
652 		return (error);
653 
654 	switch (cmd) {
655 	case TIOCSBRK:
656 		s = splzs();
657 		cs->cs_preg[5] |= ZSWR5_BREAK;
658 		cs->cs_creg[5] |= ZSWR5_BREAK;
659 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
660 		splx(s);
661 		break;
662 	case TIOCCBRK:
663 		s = splzs();
664 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
665 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
666 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
667 		splx(s);
668 		break;
669 	case TIOCGFLAGS: {
670 		int bits = 0;
671 
672 		if(cs->cs_softcar)
673 			bits |= TIOCFLAG_SOFTCAR;
674 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
675 			bits |= TIOCFLAG_CLOCAL;
676 		if(cs->cs_creg[3] & ZSWR3_HFC)
677 			bits |= TIOCFLAG_CRTSCTS;
678 		*(int *)data = bits;
679 		break;
680 	}
681 	case TIOCSFLAGS: {
682 		int userbits, driverbits = 0;
683 
684 		error = suser(p->p_ucred, &p->p_acflag);
685 		if(error != 0)
686 			return (EPERM);
687 
688 		userbits = *(int *)data;
689 
690 		/*
691 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
692 		 # defaulting to software flow control.
693 		 */
694 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
695 			return(EINVAL);
696 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
697 			return(ENXIO);
698 
699 		s = splzs();
700 		if((userbits & TIOCFLAG_SOFTCAR)) {
701 			cs->cs_softcar = 1;	/* turn on softcar */
702 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
703 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
704 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
705 		}
706 		else if(userbits & TIOCFLAG_CLOCAL) {
707 			cs->cs_softcar = 0; 	/* turn off softcar */
708 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
709 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
710 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
711 			tp->t_termios.c_cflag |= CLOCAL;
712 		}
713 		if(userbits & TIOCFLAG_CRTSCTS) {
714 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
715 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
716 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
717 			cs->cs_preg[3] |= ZSWR3_HFC;
718 			cs->cs_creg[3] |= ZSWR3_HFC;
719 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
720 			tp->t_termios.c_cflag |= CRTSCTS;
721 		}
722 		else {
723 			/* no mdmbuf, so we must want software flow control */
724 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
725 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
726 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
727 			cs->cs_preg[3] &= ~ZSWR3_HFC;
728 			cs->cs_creg[3] &= ~ZSWR3_HFC;
729 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
730 			tp->t_termios.c_cflag &= ~CRTSCTS;
731 		}
732 		splx(s);
733 		break;
734 	}
735 	case TIOCSDTR:
736 		zs_modem(cs, ZSWR5_DTR, DMBIS);
737 		break;
738 	case TIOCCDTR:
739 		zs_modem(cs, ZSWR5_DTR, DMBIC);
740 		break;
741 	case TIOCMGET:
742 		zs_modem(cs, 0, DMGET);
743 		break;
744 	case TIOCMSET:
745 	case TIOCMBIS:
746 	case TIOCMBIC:
747 	default:
748 		return (ENOTTY);
749 	}
750 	return (0);
751 }
752 
753 /*
754  * Start or restart transmission.
755  */
756 static void
757 zsstart(tp)
758 register struct tty *tp;
759 {
760 	register struct zs_chanstate	*cs;
761 	register int			s, nch;
762 		 int			unit = ZS_UNIT(tp->t_dev);
763 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
764 
765 	cs = &zi->zi_cs[unit & 1];
766 	s  = spltty();
767 
768 	/*
769 	 * If currently active or delaying, no need to do anything.
770 	 */
771 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
772 		goto out;
773 
774 	/*
775 	 * If there are sleepers, and output has drained below low
776 	 * water mark, awaken.
777 	 */
778 	if(tp->t_outq.c_cc <= tp->t_lowat) {
779 		if(tp->t_state & TS_ASLEEP) {
780 			tp->t_state &= ~TS_ASLEEP;
781 			wakeup((caddr_t)&tp->t_outq);
782 		}
783 		selwakeup(&tp->t_wsel);
784 	}
785 
786 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
787 	if(nch) {
788 		register char *p = tp->t_outq.c_cf;
789 
790 		/* mark busy, enable tx done interrupts, & send first byte */
791 		tp->t_state |= TS_BUSY;
792 		(void) splzs();
793 		cs->cs_preg[1] |= ZSWR1_TIE;
794 		cs->cs_creg[1] |= ZSWR1_TIE;
795 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
796 		cs->cs_zc->zc_data = *p;
797 		cs->cs_tba = p + 1;
798 		cs->cs_tbc = nch - 1;
799 	} else {
800 		/*
801 		 * Nothing to send, turn off transmit done interrupts.
802 		 * This is useful if something is doing polled output.
803 		 */
804 		(void) splzs();
805 		cs->cs_preg[1] &= ~ZSWR1_TIE;
806 		cs->cs_creg[1] &= ~ZSWR1_TIE;
807 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
808 	}
809 out:
810 	splx(s);
811 }
812 
813 /*
814  * Stop output, e.g., for ^S or output flush.
815  */
816 void
817 zsstop(tp, flag)
818 register struct tty	*tp;
819 	 int		flag;
820 {
821 	register struct zs_chanstate	*cs;
822 	register int			s, unit = ZS_UNIT(tp->t_dev);
823 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
824 
825 	cs = &zi->zi_cs[unit & 1];
826 	s  = splzs();
827 	if(tp->t_state & TS_BUSY) {
828 		/*
829 		 * Device is transmitting; must stop it.
830 		 */
831 		cs->cs_tbc = 0;
832 		if ((tp->t_state & TS_TTSTOP) == 0)
833 			tp->t_state |= TS_FLUSH;
834 	}
835 	splx(s);
836 }
837 
838 /*
839  * Set ZS tty parameters from termios.
840  *
841  * This routine makes use of the fact that only registers
842  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
843  */
844 static int
845 zsparam(tp, t)
846 register struct tty	*tp;
847 register struct termios	*t;
848 {
849 		 int			unit = ZS_UNIT(tp->t_dev);
850 		 struct zs_softc	*zi = zscd.cd_devs[unit >> 1];
851 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
852 	register int			tmp, tmp5, cflag, s;
853 
854 	tmp = t->c_ospeed;
855 	if(tmp < 0 || (t->c_ispeed && t->c_ispeed != tmp))
856 		return(EINVAL);
857 	if(tmp == 0) {
858 		/* stty 0 => drop DTR and RTS */
859 		zs_modem(cs, 0, DMSET);
860 		return(0);
861 	}
862 	tmp = BPS_TO_TCONST(PCLK / 16, tmp);
863 	if(tmp < 2)
864 		return(EINVAL);
865 
866 	cflag = t->c_cflag;
867 	tp->t_ispeed = tp->t_ospeed = TCONST_TO_BPS(PCLK / 16, tmp);
868 	tp->t_cflag = cflag;
869 
870 	/*
871 	 * Block interrupts so that state will not
872 	 * be altered until we are done setting it up.
873 	 */
874 	s = splzs();
875 	cs->cs_preg[12] = tmp;
876 	cs->cs_preg[13] = tmp >> 8;
877 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
878 	switch(cflag & CSIZE) {
879 	case CS5:
880 		tmp  = ZSWR3_RX_5;
881 		tmp5 = ZSWR5_TX_5;
882 		break;
883 	case CS6:
884 		tmp  = ZSWR3_RX_6;
885 		tmp5 = ZSWR5_TX_6;
886 		break;
887 	case CS7:
888 		tmp  = ZSWR3_RX_7;
889 		tmp5 = ZSWR5_TX_7;
890 		break;
891 	case CS8:
892 	default:
893 		tmp  = ZSWR3_RX_8;
894 		tmp5 = ZSWR5_TX_8;
895 		break;
896 	}
897 
898 	/*
899 	 * Output hardware flow control on the chip is horrendous: if
900 	 * carrier detect drops, the receiver is disabled.  Hence we
901 	 * can only do this when the carrier is on.
902 	 */
903 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
904 		tmp |= ZSWR3_HFC | ZSWR3_RX_ENABLE;
905 	else tmp |= ZSWR3_RX_ENABLE;
906 	cs->cs_preg[3] = tmp;
907 	cs->cs_preg[5] = tmp5 | ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
908 
909 	tmp = ZSWR4_CLK_X16 | (cflag & CSTOPB ? ZSWR4_TWOSB : ZSWR4_ONESB);
910 	if((cflag & PARODD) == 0)
911 		tmp |= ZSWR4_EVENP;
912 	if (cflag & PARENB)
913 		tmp |= ZSWR4_PARENB;
914 	cs->cs_preg[4]  = tmp;
915 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
916 	cs->cs_preg[10] = ZSWR10_NRZ;
917 	cs->cs_preg[11] = ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD;
918 	cs->cs_preg[14] = ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA;
919 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
920 
921 	/*
922 	 * If nothing is being transmitted, set up new current values,
923 	 * else mark them as pending.
924 	 */
925 	if(cs->cs_heldchange == 0) {
926 		if (cs->cs_ttyp->t_state & TS_BUSY) {
927 			cs->cs_heldtbc = cs->cs_tbc;
928 			cs->cs_tbc = 0;
929 			cs->cs_heldchange = 1;
930 		}
931 		else {
932 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
933 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
934 		}
935 	}
936 	splx(s);
937 	return (0);
938 }
939 
940 /*
941  * Raise or lower modem control (DTR/RTS) signals.  If a character is
942  * in transmission, the change is deferred.
943  */
944 static int
945 zs_modem(cs, bits, how)
946 struct zs_chanstate	*cs;
947 int			bits, how;
948 {
949 	int s, mbits;
950 
951 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
952 
953 	s = splzs();
954 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
955 
956 	switch(how) {
957 		case DMSET:
958 				mbits  = bits;
959 				break;
960 		case DMBIS:
961 				mbits |= bits;
962 				break;
963 		case DMBIC:
964 				mbits &= ~bits;
965 				break;
966 		case DMGET:
967 				splx(s);
968 				return(mbits);
969 	}
970 
971 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
972 	if(cs->cs_heldchange == 0) {
973 		if(cs->cs_ttyp->t_state & TS_BUSY) {
974 			cs->cs_heldtbc = cs->cs_tbc;
975 			cs->cs_tbc = 0;
976 			cs->cs_heldchange = 1;
977 		}
978 		else {
979 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
980 		}
981 	}
982 	splx(s);
983 	return(0);
984 }
985 
986 /*
987  * Write the given register set to the given zs channel in the proper order.
988  * The channel must not be transmitting at the time.  The receiver will
989  * be disabled for the time it takes to write all the registers.
990  */
991 static void
992 zs_loadchannelregs(zc, reg)
993 volatile struct zschan	*zc;
994 u_char			*reg;
995 {
996 	int i;
997 
998 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
999 	i = zc->zc_data;		/* drain fifo */
1000 	i = zc->zc_data;
1001 	i = zc->zc_data;
1002 	ZS_WRITE(zc,  4, reg[4]);
1003 	ZS_WRITE(zc, 10, reg[10]);
1004 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1005 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1006 	ZS_WRITE(zc,  1, reg[1]);
1007 	ZS_WRITE(zc,  9, reg[9]);
1008 	ZS_WRITE(zc, 11, reg[11]);
1009 	ZS_WRITE(zc, 12, reg[12]);
1010 	ZS_WRITE(zc, 13, reg[13]);
1011 	ZS_WRITE(zc, 14, reg[14]);
1012 	ZS_WRITE(zc, 15, reg[15]);
1013 	ZS_WRITE(zc,  3, reg[3]);
1014 	ZS_WRITE(zc,  5, reg[5]);
1015 }
1016 #endif /* NZS > 1 */
1017