xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision cd22f25e6f6d1cc1f197fe8c5468a80f51d1c4e1)
1 /*	$NetBSD: zs.c,v 1.56 2008/04/29 06:53:01 martin Exp $	*/
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
42  */
43 
44 /*-
45  * Copyright (c) 1995 The NetBSD Foundation, Inc. (Atari modifications)
46  * All rights reserved.
47  *
48  * This code is derived from software contributed to The NetBSD Foundation
49  * by Leo Weppelman.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions
53  * are met:
54  * 1. Redistributions of source code must retain the above copyright
55  *    notice, this list of conditions and the following disclaimer.
56  * 2. Redistributions in binary form must reproduce the above copyright
57  *    notice, this list of conditions and the following disclaimer in the
58  *    documentation and/or other materials provided with the distribution.
59  *
60  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
61  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70  * POSSIBILITY OF SUCH DAMAGE.
71  */
72 
73 /*
74  * Zilog Z8530 (ZSCC) driver.
75  *
76  * Runs two tty ports (modem2 and serial2) on zs0.
77  *
78  * This driver knows far too much about chip to usage mappings.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.56 2008/04/29 06:53:01 martin Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/device.h>
88 #include <sys/conf.h>
89 #include <sys/file.h>
90 #include <sys/ioctl.h>
91 #include <sys/malloc.h>
92 #include <sys/tty.h>
93 #include <sys/time.h>
94 #include <sys/kernel.h>
95 #include <sys/syslog.h>
96 #include <sys/kauth.h>
97 
98 #include <machine/cpu.h>
99 #include <machine/iomap.h>
100 #include <machine/scu.h>
101 #include <machine/mfp.h>
102 #include <atari/dev/ym2149reg.h>
103 
104 #include <dev/ic/z8530reg.h>
105 #include <atari/dev/zsvar.h>
106 #include "zs.h"
107 #if NZS > 1
108 #error "This driver supports only 1 85C30!"
109 #endif
110 
111 #if NZS > 0
112 
113 #define PCLK	(8053976)	/* PCLK pin input clock rate */
114 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
115 
116 #define splzs	spl5
117 
118 /*
119  * Software state per found chip.
120  */
121 struct zs_softc {
122     struct	device		zi_dev;    /* base device		  */
123     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
124     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
125 };
126 
127 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
128 /*
129  * Define the registers for a closed port
130  */
131 static u_char zs_init_regs[16] = {
132 /*  0 */	0,
133 /*  1 */	0,
134 /*  2 */	0x60,
135 /*  3 */	0,
136 /*  4 */	0,
137 /*  5 */	0,
138 /*  6 */	0,
139 /*  7 */	0,
140 /*  8 */	0,
141 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
142 /* 10 */	ZSWR10_NRZ,
143 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
144 /* 12 */	0,
145 /* 13 */	0,
146 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
147 /* 15 */	0
148 };
149 
150 /*
151  * Define the machine dependant clock frequencies
152  * If BRgen feeds sender/receiver we always use a
153  * divisor 16, therefor the division by 16 can as
154  * well be done here.
155  */
156 static u_long zs_freqs_tt[] = {
157 	/*
158 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
159 	 * which is set to 307.2 kHz during initialisation
160 	 * and never changed afterwards.
161 	 */
162 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
163 	 229500,	/* BRgen, RTxCA, divisor 16	*/
164 	3672000,	/* RTxCA, from PCLK4		*/
165 	      0,	/* TRxCA, external		*/
166 
167 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
168 	  19200,	/* BRgen, RTxCB, divisor 16	*/
169 	 307200,	/* RTxCB, from TT-MFP TCO	*/
170 	2457600		/* TRxCB, from BCLK		*/
171 };
172 
173 static u_long zs_freqs_falcon[] = {
174 	/*
175 	 * Atari Falcon, XXX no specs available, this might be wrong
176 	 */
177 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
178 	 229500,	/* BRgen, RTxCA, divisor 16	*/
179 	3672000,	/* RTxCA, ???			*/
180 	      0,	/* TRxCA, external		*/
181 
182 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
183 	 229500,	/* BRgen, RTxCB, divisor 16	*/
184 	3672000,	/* RTxCB, ???			*/
185 	2457600		/* TRxCB, ???			*/
186 };
187 
188 static u_long zs_freqs_hades[] = {
189 	/*
190 	 * XXX: Channel-A unchecked!!!!!
191 	 */
192      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
193 	 229500,	/* BRgen, RTxCA, divisor 16	*/
194 	3672000,	/* RTxCA, from PCLK4		*/
195 	      0,	/* TRxCA, external		*/
196 
197      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
198 	 235550,	/* BRgen, RTxCB, divisor 16	*/
199 	3768800,	/* RTxCB, 3.7688MHz		*/
200 	3768800		/* TRxCB, 3.7688MHz		*/
201 };
202 
203 static u_long zs_freqs_generic[] = {
204 	/*
205 	 * other machines, assume only PCLK is available
206 	 */
207 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
208 	      0,	/* BRgen, RTxCA, divisor 16	*/
209 	      0,	/* RTxCA, unknown		*/
210 	      0,	/* TRxCA, unknown		*/
211 
212 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
213 	      0,	/* BRgen, RTxCB, divisor 16	*/
214 	      0,	/* RTxCB, unknown		*/
215 	      0		/* TRxCB, unknown		*/
216 };
217 static u_long *zs_frequencies;
218 
219 /* Definition of the driver for autoconfig. */
220 static int	zsmatch __P((struct device *, struct cfdata *, void *));
221 static void	zsattach __P((struct device *, struct device *, void *));
222 
223 CFATTACH_DECL(zs, sizeof(struct zs_softc),
224     zsmatch, zsattach, NULL, NULL);
225 
226 extern struct cfdriver zs_cd;
227 
228 /* {b,c}devsw[] function prototypes */
229 dev_type_open(zsopen);
230 dev_type_close(zsclose);
231 dev_type_read(zsread);
232 dev_type_write(zswrite);
233 dev_type_ioctl(zsioctl);
234 dev_type_stop(zsstop);
235 dev_type_tty(zstty);
236 dev_type_poll(zspoll);
237 
238 const struct cdevsw zs_cdevsw = {
239 	zsopen, zsclose, zsread, zswrite, zsioctl,
240 	zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY
241 };
242 
243 /* Interrupt handlers. */
244 int		zshard __P((long));
245 static int	zssoft __P((long));
246 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
247 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
248 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
249 
250 static struct zs_chanstate *zslist;
251 
252 /* Routines called from other code. */
253 static void	zsstart __P((struct tty *));
254 
255 /* Routines purely local to this driver. */
256 static void	zsoverrun __P((int, long *, const char *));
257 static int	zsparam __P((struct tty *, struct termios *));
258 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
259 static int	zs_modem __P((struct zs_chanstate *, int, int));
260 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
261 static void	zs_shutdown __P((struct zs_chanstate *));
262 
263 static int zsshortcuts;	/* number of "shortcut" software interrupts */
264 
265 static int
266 zsmatch(pdp, cfp, auxp)
267 struct device	*pdp;
268 struct cfdata	*cfp;
269 void		*auxp;
270 {
271 	static int	zs_matched = 0;
272 
273 	if(strcmp("zs", auxp) || zs_matched)
274 		return(0);
275 	zs_matched = 1;
276 	return(1);
277 }
278 
279 /*
280  * Attach a found zs.
281  */
282 static void
283 zsattach(parent, dev, aux)
284 struct device	*parent;
285 struct device	*dev;
286 void		*aux;
287 {
288 	register struct zs_softc		*zi;
289 	register struct zs_chanstate		*cs;
290 	register volatile struct zsdevice	*addr;
291 		 char				tmp;
292 
293 	addr      = (struct zsdevice *)AD_SCC;
294 	zi        = (struct zs_softc *)dev;
295 	zi->zi_zs = addr;
296 	cs        = zi->zi_cs;
297 
298 	/*
299 	 * Get the command register into a known state.
300 	 */
301 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
302 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
303 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
304 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
305 
306 	/*
307 	 * Do a hardware reset.
308 	 */
309 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
310 	delay(50000);	/*enough ? */
311 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
312 
313 	/*
314 	 * Initialize both channels
315 	 */
316 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
317 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
318 
319 	if(machineid & ATARI_TT) {
320 		/*
321 		 * ininitialise TT-MFP timer C: 307200Hz
322 		 * timer C and D share one control register:
323 		 *	bits 0-2 control timer D
324 		 *	bits 4-6 control timer C
325 		 */
326 		int cr = MFP2->mf_tcdcr & 7;
327 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
328 		MFP2->mf_tcdr  = 1;		/* counter 1     */
329 		cr |= T_Q004 << 4;		/* divisor 4     */
330 		MFP2->mf_tcdcr = cr;		/* start timer C */
331 		/*
332 		 * enable scc related interrupts
333 		 */
334 		SCU->vme_mask |= SCU_SCC;
335 
336 		zs_frequencies = zs_freqs_tt;
337 	} else if (machineid & ATARI_FALCON) {
338 		zs_frequencies = zs_freqs_falcon;
339 	} else if (machineid & ATARI_HADES) {
340 		zs_frequencies = zs_freqs_hades;
341 	} else {
342 		zs_frequencies = zs_freqs_generic;
343 	}
344 
345 	/* link into interrupt list with order (A,B) (B=A+1) */
346 	cs[0].cs_next = &cs[1];
347 	cs[1].cs_next = zslist;
348 	zslist        = cs;
349 
350 	cs->cs_unit  = 0;
351 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
352 	cs++;
353 	cs->cs_unit  = 1;
354 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
355 
356 	printf(": serial2 on channel a and modem2 on channel b\n");
357 }
358 
359 /*
360  * Open a zs serial port.
361  */
362 int
363 zsopen(dev, flags, mode, l)
364 dev_t		dev;
365 int		flags;
366 int		mode;
367 struct lwp	*l;
368 {
369 	register struct tty		*tp;
370 	register struct zs_chanstate	*cs;
371 		 struct zs_softc	*zi;
372 		 int			unit = ZS_UNIT(dev);
373 		 int			zs = unit >> 1;
374 		 int			error, s;
375 
376 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
377 		return (ENXIO);
378 	cs = &zi->zi_cs[unit & 1];
379 
380 	/*
381 	 * When port A (ser02) is selected on the TT, make sure
382 	 * the port is enabled.
383 	 */
384 	if((machineid & ATARI_TT) && !(unit & 1))
385 		ym2149_ser2(1);
386 
387 	if (cs->cs_rbuf == NULL) {
388 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
389 								   M_WAITOK);
390 	}
391 
392 	tp = cs->cs_ttyp;
393 	if(tp == NULL) {
394 		cs->cs_ttyp = tp = ttymalloc();
395 		tty_attach(tp);
396 		tp->t_dev   = dev;
397 		tp->t_oproc = zsstart;
398 		tp->t_param = zsparam;
399 	}
400 
401 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
402 		return (EBUSY);
403 
404 	s  = spltty();
405 
406 	/*
407 	 * Do the following iff this is a first open.
408 	 */
409 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
410 		if(tp->t_ispeed == 0) {
411 			tp->t_iflag = TTYDEF_IFLAG;
412 			tp->t_oflag = TTYDEF_OFLAG;
413 			tp->t_cflag = TTYDEF_CFLAG;
414 			tp->t_lflag = TTYDEF_LFLAG;
415 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
416 		}
417 		ttychars(tp);
418 		ttsetwater(tp);
419 
420 		(void)zsparam(tp, &tp->t_termios);
421 
422 		/*
423 		 * Turn on DTR.  We must always do this, even if carrier is not
424 		 * present, because otherwise we'd have to use TIOCSDTR
425 		 * immediately after setting CLOCAL, which applications do not
426 		 * expect.  We always assert DTR while the device is open
427 		 * unless explicitly requested to deassert it.
428 		 */
429 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
430 		/* May never get a status intr. if DCD already on. -gwr */
431 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
432 			tp->t_state |= TS_CARR_ON;
433 		if(cs->cs_softcar)
434 			tp->t_state |= TS_CARR_ON;
435 	}
436 
437 	splx(s);
438 
439 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
440 	if (error)
441 		goto bad;
442 
443 	error = tp->t_linesw->l_open(dev, tp);
444 	if(error)
445 		goto bad;
446 	return (0);
447 
448 bad:
449 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
450 		/*
451 		 * We failed to open the device, and nobody else had it opened.
452 		 * Clean up the state as appropriate.
453 		 */
454 		zs_shutdown(cs);
455 	}
456 	return(error);
457 }
458 
459 /*
460  * Close a zs serial port.
461  */
462 int
463 zsclose(dev, flags, mode, l)
464 dev_t		dev;
465 int		flags;
466 int		mode;
467 struct lwp	*l;
468 {
469 	register struct zs_chanstate	*cs;
470 	register struct tty		*tp;
471 		 struct zs_softc	*zi;
472 		 int			unit = ZS_UNIT(dev);
473 
474 	zi = zs_cd.cd_devs[unit >> 1];
475 	cs = &zi->zi_cs[unit & 1];
476 	tp = cs->cs_ttyp;
477 
478 	tp->t_linesw->l_close(tp, flags);
479 	ttyclose(tp);
480 
481 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
482 		/*
483 		 * Although we got a last close, the device may still be in
484 		 * use; e.g. if this was the dialout node, and there are still
485 		 * processes waiting for carrier on the non-dialout node.
486 		 */
487 		zs_shutdown(cs);
488 	}
489 	return (0);
490 }
491 
492 /*
493  * Read/write zs serial port.
494  */
495 int
496 zsread(dev, uio, flags)
497 dev_t		dev;
498 struct uio	*uio;
499 int		flags;
500 {
501 	register struct zs_chanstate	*cs;
502 	register struct zs_softc	*zi;
503 	register struct tty		*tp;
504 		 int			unit;
505 
506 	unit = ZS_UNIT(dev);
507 	zi   = zs_cd.cd_devs[unit >> 1];
508 	cs   = &zi->zi_cs[unit & 1];
509 	tp   = cs->cs_ttyp;
510 
511 	return(tp->t_linesw->l_read(tp, uio, flags));
512 }
513 
514 int
515 zswrite(dev, uio, flags)
516 dev_t		dev;
517 struct uio	*uio;
518 int		flags;
519 {
520 	register struct zs_chanstate	*cs;
521 	register struct zs_softc	*zi;
522 	register struct tty		*tp;
523 		 int			unit;
524 
525 	unit = ZS_UNIT(dev);
526 	zi   = zs_cd.cd_devs[unit >> 1];
527 	cs   = &zi->zi_cs[unit & 1];
528 	tp   = cs->cs_ttyp;
529 
530 	return(tp->t_linesw->l_write(tp, uio, flags));
531 }
532 
533 int
534 zspoll(dev, events, l)
535 dev_t		dev;
536 int		events;
537 struct lwp	*l;
538 {
539 	register struct zs_chanstate	*cs;
540 	register struct zs_softc	*zi;
541 	register struct tty		*tp;
542 		 int			unit;
543 
544 	unit = ZS_UNIT(dev);
545 	zi   = zs_cd.cd_devs[unit >> 1];
546 	cs   = &zi->zi_cs[unit & 1];
547 	tp   = cs->cs_ttyp;
548 
549 	return ((*tp->t_linesw->l_poll)(tp, events, l));
550 }
551 
552 struct tty *
553 zstty(dev)
554 dev_t	dev;
555 {
556 	register struct zs_chanstate	*cs;
557 	register struct zs_softc	*zi;
558 		 int			unit;
559 
560 	unit = ZS_UNIT(dev);
561 	zi   = zs_cd.cd_devs[unit >> 1];
562 	cs   = &zi->zi_cs[unit & 1];
563 	return(cs->cs_ttyp);
564 }
565 
566 /*
567  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
568  * channels are kept in (A,B) pairs.
569  *
570  * Do just a little, then get out; set a software interrupt if more
571  * work is needed.
572  *
573  * We deliberately ignore the vectoring Zilog gives us, and match up
574  * only the number of `reset interrupt under service' operations, not
575  * the order.
576  */
577 
578 int
579 zshard(sr)
580 long sr;
581 {
582 	register struct zs_chanstate	*a;
583 #define	b (a + 1)
584 	register volatile struct zschan *zc;
585 	register int			rr3, intflags = 0, v, i;
586 
587 	do {
588 	    intflags &= ~4;
589 	    for(a = zslist; a != NULL; a = b->cs_next) {
590 		rr3 = ZS_READ(a->cs_zc, 3);
591 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
592 			intflags |= 4|2;
593 			zc = a->cs_zc;
594 			i  = a->cs_rbput;
595 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
596 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
597 				intflags |= 1;
598 			}
599 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
600 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
601 				intflags |= 1;
602 			}
603 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
604 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
605 				intflags |= 1;
606 			}
607 			a->cs_rbput = i;
608 		}
609 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
610 			intflags |= 4|2;
611 			zc = b->cs_zc;
612 			i  = b->cs_rbput;
613 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
614 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
615 				intflags |= 1;
616 			}
617 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
618 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
619 				intflags |= 1;
620 			}
621 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
622 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
623 				intflags |= 1;
624 			}
625 			b->cs_rbput = i;
626 		}
627 	    }
628 	} while(intflags & 4);
629 #undef b
630 
631 	if(intflags & 1) {
632 		if(BASEPRI(sr)) {
633 			spl1();
634 			zsshortcuts++;
635 			return(zssoft(sr));
636 		}
637 		else if(!cb_scheduled) {
638 			cb_scheduled++;
639 			add_sicallback((si_farg)zssoft, 0, 0);
640 		}
641 	}
642 	return(intflags & 2);
643 }
644 
645 static int
646 zsrint(cs, zc)
647 register struct zs_chanstate	*cs;
648 register volatile struct zschan	*zc;
649 {
650 	register int c;
651 
652 	/*
653 	 * First read the status, because read of the received char
654 	 * destroy the status of this char.
655 	 */
656 	c = ZS_READ(zc, 1);
657 	c |= (zc->zc_data << 8);
658 
659 	/* clear receive error & interrupt condition */
660 	zc->zc_csr = ZSWR0_RESET_ERRORS;
661 	zc->zc_csr = ZSWR0_CLR_INTR;
662 
663 	return(ZRING_MAKE(ZRING_RINT, c));
664 }
665 
666 static int
667 zsxint(cs, zc)
668 register struct zs_chanstate	*cs;
669 register volatile struct zschan	*zc;
670 {
671 	register int i = cs->cs_tbc;
672 
673 	if(i == 0) {
674 		zc->zc_csr = ZSWR0_RESET_TXINT;
675 		zc->zc_csr = ZSWR0_CLR_INTR;
676 		return(ZRING_MAKE(ZRING_XINT, 0));
677 	}
678 	cs->cs_tbc = i - 1;
679 	zc->zc_data = *cs->cs_tba++;
680 	zc->zc_csr = ZSWR0_CLR_INTR;
681 	return (0);
682 }
683 
684 static int
685 zssint(cs, zc)
686 register struct zs_chanstate	*cs;
687 register volatile struct zschan	*zc;
688 {
689 	register int rr0;
690 
691 	rr0 = zc->zc_csr;
692 	zc->zc_csr = ZSWR0_RESET_STATUS;
693 	zc->zc_csr = ZSWR0_CLR_INTR;
694 	/*
695 	 * The chip's hardware flow control is, as noted in zsreg.h,
696 	 * busted---if the DCD line goes low the chip shuts off the
697 	 * receiver (!).  If we want hardware CTS flow control but do
698 	 * not have it, and carrier is now on, turn HFC on; if we have
699 	 * HFC now but carrier has gone low, turn it off.
700 	 */
701 	if(rr0 & ZSRR0_DCD) {
702 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
703 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
704 			cs->cs_creg[3] |= ZSWR3_HFC;
705 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
706 		}
707 	}
708 	else {
709 		if (cs->cs_creg[3] & ZSWR3_HFC) {
710 			cs->cs_creg[3] &= ~ZSWR3_HFC;
711 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
712 		}
713 	}
714 	return(ZRING_MAKE(ZRING_SINT, rr0));
715 }
716 
717 /*
718  * Print out a ring or fifo overrun error message.
719  */
720 static void
721 zsoverrun(unit, ptime, what)
722 int	unit;
723 long	*ptime;
724 const char *what;
725 {
726 	time_t cur_sec = time_second;
727 
728 	if(*ptime != cur_sec) {
729 		*ptime = cur_sec;
730 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
731 		    (unit & 1) + 'a', what);
732 	}
733 }
734 
735 /*
736  * ZS software interrupt.  Scan all channels for deferred interrupts.
737  */
738 int
739 zssoft(sr)
740 long sr;
741 {
742     register struct zs_chanstate	*cs;
743     register volatile struct zschan	*zc;
744     register struct linesw		*line;
745     register struct tty			*tp;
746     register int			get, n, c, cc, unit, s;
747  	     int			retval = 0;
748 
749     cb_scheduled = 0;
750     s = spltty();
751     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
752 	get = cs->cs_rbget;
753 again:
754 	n = cs->cs_rbput;	/* atomic			*/
755 	if(get == n)		/* nothing more on this line	*/
756 		continue;
757 	retval = 1;
758 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
759 	zc     = cs->cs_zc;
760 	tp     = cs->cs_ttyp;
761 	line   = tp->t_linesw;
762 	/*
763 	 * Compute the number of interrupts in the receive ring.
764 	 * If the count is overlarge, we lost some events, and
765 	 * must advance to the first valid one.  It may get
766 	 * overwritten if more data are arriving, but this is
767 	 * too expensive to check and gains nothing (we already
768 	 * lost out; all we can do at this point is trade one
769 	 * kind of loss for another).
770 	 */
771 	n -= get;
772 	if(n > ZLRB_RING_SIZE) {
773 		zsoverrun(unit, &cs->cs_rotime, "ring");
774 		get += n - ZLRB_RING_SIZE;
775 		n    = ZLRB_RING_SIZE;
776 	}
777 	while(--n >= 0) {
778 		/* race to keep ahead of incoming interrupts */
779 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
780 		switch (ZRING_TYPE(c)) {
781 
782 		case ZRING_RINT:
783 			c = ZRING_VALUE(c);
784 			if(c & ZSRR1_DO)
785 				zsoverrun(unit, &cs->cs_fotime, "fifo");
786 			cc = c >> 8;
787 			if(c & ZSRR1_FE)
788 				cc |= TTY_FE;
789 			if(c & ZSRR1_PE)
790 				cc |= TTY_PE;
791 			line->l_rint(cc, tp);
792 			break;
793 
794 		case ZRING_XINT:
795 			/*
796 			 * Transmit done: change registers and resume,
797 			 * or clear BUSY.
798 			 */
799 			if(cs->cs_heldchange) {
800 				int sps;
801 
802 				sps = splzs();
803 				c = zc->zc_csr;
804 				if((c & ZSRR0_DCD) == 0)
805 					cs->cs_preg[3] &= ~ZSWR3_HFC;
806 				bcopy((void *)cs->cs_preg,
807 				    (void *)cs->cs_creg, 16);
808 				zs_loadchannelregs(zc, cs->cs_creg);
809 				splx(sps);
810 				cs->cs_heldchange = 0;
811 				if(cs->cs_heldtbc
812 					&& (tp->t_state & TS_TTSTOP) == 0) {
813 					cs->cs_tbc = cs->cs_heldtbc - 1;
814 					zc->zc_data = *cs->cs_tba++;
815 					goto again;
816 				}
817 			}
818 			tp->t_state &= ~TS_BUSY;
819 			if(tp->t_state & TS_FLUSH)
820 				tp->t_state &= ~TS_FLUSH;
821 			else ndflush(&tp->t_outq,cs->cs_tba
822 						- tp->t_outq.c_cf);
823 			line->l_start(tp);
824 			break;
825 
826 		case ZRING_SINT:
827 			/*
828 			 * Status line change.  HFC bit is run in
829 			 * hardware interrupt, to avoid locking
830 			 * at splzs here.
831 			 */
832 			c = ZRING_VALUE(c);
833 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
834 				cc = (c & ZSRR0_DCD) != 0;
835 				if(line->l_modem(tp, cc) == 0)
836 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
837 							cc ? DMBIS : DMBIC);
838 			}
839 			cs->cs_rr0 = c;
840 			break;
841 
842 		default:
843 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
844 			    unit >> 1, (unit & 1) + 'a', c);
845 			break;
846 		}
847 	}
848 	cs->cs_rbget = get;
849 	goto again;
850     }
851     splx(s);
852     return (retval);
853 }
854 
855 int
856 zsioctl(dev, cmd, data, flag, l)
857 dev_t		dev;
858 u_long		cmd;
859 void *		data;
860 int		flag;
861 struct lwp	*l;
862 {
863 		 int			unit = ZS_UNIT(dev);
864 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
865 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
866 	register int			error, s;
867 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
868 
869 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, l);
870 	if(error != EPASSTHROUGH)
871 		return(error);
872 
873 	error = ttioctl(tp, cmd, data, flag, l);
874 	if(error !=EPASSTHROUGH)
875 		return (error);
876 
877 	switch (cmd) {
878 	case TIOCSBRK:
879 		s = splzs();
880 		cs->cs_preg[5] |= ZSWR5_BREAK;
881 		cs->cs_creg[5] |= ZSWR5_BREAK;
882 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
883 		splx(s);
884 		break;
885 	case TIOCCBRK:
886 		s = splzs();
887 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
888 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
889 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
890 		splx(s);
891 		break;
892 	case TIOCGFLAGS: {
893 		int bits = 0;
894 
895 		if(cs->cs_softcar)
896 			bits |= TIOCFLAG_SOFTCAR;
897 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
898 			bits |= TIOCFLAG_CLOCAL;
899 		if(cs->cs_creg[3] & ZSWR3_HFC)
900 			bits |= TIOCFLAG_CRTSCTS;
901 		*(int *)data = bits;
902 		break;
903 	}
904 	case TIOCSFLAGS: {
905 		int userbits = 0;
906 
907 		error = kauth_authorize_device_tty(l->l_cred,
908 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
909 		if(error != 0)
910 			return (EPERM);
911 
912 		userbits = *(int *)data;
913 
914 		/*
915 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
916 		 # defaulting to software flow control.
917 		 */
918 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
919 			return(EINVAL);
920 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
921 			return(ENODEV);
922 
923 		s = splzs();
924 		if((userbits & TIOCFLAG_SOFTCAR)) {
925 			cs->cs_softcar = 1;	/* turn on softcar */
926 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
927 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
928 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
929 		}
930 		else if(userbits & TIOCFLAG_CLOCAL) {
931 			cs->cs_softcar = 0; 	/* turn off softcar */
932 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
933 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
934 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
935 			tp->t_termios.c_cflag |= CLOCAL;
936 		}
937 		if(userbits & TIOCFLAG_CRTSCTS) {
938 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
939 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
940 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
941 			cs->cs_preg[3] |= ZSWR3_HFC;
942 			cs->cs_creg[3] |= ZSWR3_HFC;
943 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
944 			tp->t_termios.c_cflag |= CRTSCTS;
945 		}
946 		else {
947 			/* no mdmbuf, so we must want software flow control */
948 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
949 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
950 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
951 			cs->cs_preg[3] &= ~ZSWR3_HFC;
952 			cs->cs_creg[3] &= ~ZSWR3_HFC;
953 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
954 			tp->t_termios.c_cflag &= ~CRTSCTS;
955 		}
956 		splx(s);
957 		break;
958 	}
959 	case TIOCSDTR:
960 		zs_modem(cs, ZSWR5_DTR, DMBIS);
961 		break;
962 	case TIOCCDTR:
963 		zs_modem(cs, ZSWR5_DTR, DMBIC);
964 		break;
965 	case TIOCMGET:
966 		zs_modem(cs, 0, DMGET);
967 		break;
968 	case TIOCMSET:
969 	case TIOCMBIS:
970 	case TIOCMBIC:
971 	default:
972 		return (EPASSTHROUGH);
973 	}
974 	return (0);
975 }
976 
977 /*
978  * Start or restart transmission.
979  */
980 static void
981 zsstart(tp)
982 register struct tty *tp;
983 {
984 	register struct zs_chanstate	*cs;
985 	register int			s, nch;
986 		 int			unit = ZS_UNIT(tp->t_dev);
987 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
988 
989 	cs = &zi->zi_cs[unit & 1];
990 	s  = spltty();
991 
992 	/*
993 	 * If currently active or delaying, no need to do anything.
994 	 */
995 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
996 		goto out;
997 
998 	/*
999 	 * If there are sleepers, and output has drained below low
1000 	 * water mark, awaken.
1001 	 */
1002 	ttypull(tp);
1003 
1004 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
1005 	if(nch) {
1006 		register char *p = tp->t_outq.c_cf;
1007 
1008 		/* mark busy, enable tx done interrupts, & send first byte */
1009 		tp->t_state |= TS_BUSY;
1010 		(void) splzs();
1011 		cs->cs_preg[1] |= ZSWR1_TIE;
1012 		cs->cs_creg[1] |= ZSWR1_TIE;
1013 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1014 		cs->cs_zc->zc_data = *p;
1015 		cs->cs_tba = p + 1;
1016 		cs->cs_tbc = nch - 1;
1017 	} else {
1018 		/*
1019 		 * Nothing to send, turn off transmit done interrupts.
1020 		 * This is useful if something is doing polled output.
1021 		 */
1022 		(void) splzs();
1023 		cs->cs_preg[1] &= ~ZSWR1_TIE;
1024 		cs->cs_creg[1] &= ~ZSWR1_TIE;
1025 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
1026 	}
1027 out:
1028 	splx(s);
1029 }
1030 
1031 /*
1032  * Stop output, e.g., for ^S or output flush.
1033  */
1034 void
1035 zsstop(tp, flag)
1036 register struct tty	*tp;
1037 	 int		flag;
1038 {
1039 	register struct zs_chanstate	*cs;
1040 	register int			s, unit = ZS_UNIT(tp->t_dev);
1041 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1042 
1043 	cs = &zi->zi_cs[unit & 1];
1044 	s  = splzs();
1045 	if(tp->t_state & TS_BUSY) {
1046 		/*
1047 		 * Device is transmitting; must stop it.
1048 		 */
1049 		cs->cs_tbc = 0;
1050 		if ((tp->t_state & TS_TTSTOP) == 0)
1051 			tp->t_state |= TS_FLUSH;
1052 	}
1053 	splx(s);
1054 }
1055 
1056 static void
1057 zs_shutdown(cs)
1058 	struct zs_chanstate	*cs;
1059 {
1060 	struct tty	*tp = cs->cs_ttyp;
1061 	int		s;
1062 
1063 	s = splzs();
1064 
1065 	/*
1066 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1067 	 * notice even if we immediately open the port again.
1068 	 */
1069 	if(tp->t_cflag & HUPCL) {
1070 		zs_modem(cs, 0, DMSET);
1071 		(void)tsleep((void *)cs, TTIPRI, ttclos, hz);
1072 	}
1073 
1074 	/* Clear any break condition set with TIOCSBRK. */
1075 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1076 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1077 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1078 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1079 	}
1080 
1081 	/*
1082 	 * Drop all lines and cancel interrupts
1083 	 */
1084 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1085 	splx(s);
1086 }
1087 
1088 /*
1089  * Set ZS tty parameters from termios.
1090  *
1091  * This routine makes use of the fact that only registers
1092  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1093  */
1094 static int
1095 zsparam(tp, t)
1096 register struct tty	*tp;
1097 register struct termios	*t;
1098 {
1099 		 int			unit = ZS_UNIT(tp->t_dev);
1100 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1101 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1102 		 int			cdiv = 0,	/* XXX gcc4 -Wuninitialized */
1103 					clkm = 0,	/* XXX gcc4 -Wuninitialized */
1104 					brgm = 0,	/* XXX gcc4 -Wuninitialized */
1105 					tcon = 0;	/* XXX gcc4 -Wuninitialized */
1106 	register int			tmp, tmp5, cflag, s;
1107 
1108 	tmp  = t->c_ospeed;
1109 	tmp5 = t->c_ispeed;
1110 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1111 		return(EINVAL);
1112 	if(tmp == 0) {
1113 		/* stty 0 => drop DTR and RTS */
1114 		zs_modem(cs, 0, DMSET);
1115 		return(0);
1116 	}
1117 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1118 	if (tmp < 0)
1119 		return(EINVAL);
1120 	tp->t_ispeed = tp->t_ospeed = tmp;
1121 
1122 	cflag = tp->t_cflag = t->c_cflag;
1123 	if (cflag & CSTOPB)
1124 		cdiv |= ZSWR4_TWOSB;
1125 	else
1126 		cdiv |= ZSWR4_ONESB;
1127 	if (!(cflag & PARODD))
1128 		cdiv |= ZSWR4_EVENP;
1129 	if (cflag & PARENB)
1130 		cdiv |= ZSWR4_PARENB;
1131 
1132 	switch(cflag & CSIZE) {
1133 	case CS5:
1134 		tmp  = ZSWR3_RX_5;
1135 		tmp5 = ZSWR5_TX_5;
1136 		break;
1137 	case CS6:
1138 		tmp  = ZSWR3_RX_6;
1139 		tmp5 = ZSWR5_TX_6;
1140 		break;
1141 	case CS7:
1142 		tmp  = ZSWR3_RX_7;
1143 		tmp5 = ZSWR5_TX_7;
1144 		break;
1145 	case CS8:
1146 	default:
1147 		tmp  = ZSWR3_RX_8;
1148 		tmp5 = ZSWR5_TX_8;
1149 		break;
1150 	}
1151 	tmp  |= ZSWR3_RX_ENABLE;
1152 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1153 
1154 	/*
1155 	 * Block interrupts so that state will not
1156 	 * be altered until we are done setting it up.
1157 	 */
1158 	s = splzs();
1159 	cs->cs_preg[4]  = cdiv;
1160 	cs->cs_preg[11] = clkm;
1161 	cs->cs_preg[12] = tcon;
1162 	cs->cs_preg[13] = tcon >> 8;
1163 	cs->cs_preg[14] = brgm;
1164 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1165 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1166 	cs->cs_preg[10] = ZSWR10_NRZ;
1167 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1168 
1169 	/*
1170 	 * Output hardware flow control on the chip is horrendous: if
1171 	 * carrier detect drops, the receiver is disabled.  Hence we
1172 	 * can only do this when the carrier is on.
1173 	 */
1174 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1175 		tmp |= ZSWR3_HFC;
1176 	cs->cs_preg[3] = tmp;
1177 	cs->cs_preg[5] = tmp5;
1178 
1179 	/*
1180 	 * If nothing is being transmitted, set up new current values,
1181 	 * else mark them as pending.
1182 	 */
1183 	if(cs->cs_heldchange == 0) {
1184 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1185 			cs->cs_heldtbc = cs->cs_tbc;
1186 			cs->cs_tbc = 0;
1187 			cs->cs_heldchange = 1;
1188 		} else {
1189 			bcopy((void *)cs->cs_preg, (void *)cs->cs_creg, 16);
1190 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1191 		}
1192 	}
1193 	splx(s);
1194 	return (0);
1195 }
1196 
1197 /*
1198  * search for the best matching baudrate
1199  */
1200 static int
1201 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1202 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1203 {
1204 	int	bestdiff, bestbps, source;
1205 
1206 	bestdiff = bestbps = 0;
1207 	unit = (unit & 1) << 2;
1208 	for (source = 0; source < 4; ++source) {
1209 		long	freq = zs_frequencies[unit + source];
1210 		int	diff, bps, div, clkm, brgm, tcon;
1211 
1212 		bps = div = clkm = brgm = tcon = 0;
1213 		switch (source) {
1214 			case 0:	/* BRgen, PCLK */
1215 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1216 				break;
1217 			case 1:	/* BRgen, RTxC */
1218 				brgm = ZSWR14_BAUD_ENA;
1219 				break;
1220 			case 2: /* RTxC */
1221 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1222 				break;
1223 			case 3: /* TRxC */
1224 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1225 				break;
1226 		}
1227 		switch (source) {
1228 			case 0:
1229 			case 1:
1230 				div  = ZSWR4_CLK_X16;
1231 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1232 				tcon = BPS_TO_TCONST(freq, wanted);
1233 				if (tcon < 0)
1234 					tcon = 0;
1235 				bps  = TCONST_TO_BPS(freq, tcon);
1236 				break;
1237 			case 2:
1238 			case 3:
1239 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1240 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1241 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1242 
1243 				if (d1 < d2 && d1 < d3) {
1244 					div = ZSWR4_CLK_X16;
1245 					bps = b1;
1246 				} else if (d2 < d3 && d2 < d1) {
1247 					div = ZSWR4_CLK_X32;
1248 					bps = b2;
1249 				} else {
1250 					div = ZSWR4_CLK_X64;
1251 					bps = b3;
1252 				}
1253 				brgm = tcon = 0;
1254 				break;
1255 			}
1256 		}
1257 		diff = abs(bps - wanted);
1258 		if (!source || diff < bestdiff) {
1259 			*divisor   = div;
1260 			*clockmode = clkm;
1261 			*brgenmode = brgm;
1262 			*timeconst = tcon;
1263 			bestbps    = bps;
1264 			bestdiff   = diff;
1265 			if (diff == 0)
1266 				break;
1267 		}
1268 	}
1269 	/* Allow deviations upto 5% */
1270 	if (20 * bestdiff > wanted)
1271 		return -1;
1272 	return bestbps;
1273 }
1274 
1275 /*
1276  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1277  * in transmission, the change is deferred.
1278  */
1279 static int
1280 zs_modem(cs, bits, how)
1281 struct zs_chanstate	*cs;
1282 int			bits, how;
1283 {
1284 	int s, mbits;
1285 
1286 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1287 
1288 	s = splzs();
1289 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1290 
1291 	switch(how) {
1292 		case DMSET:
1293 				mbits  = bits;
1294 				break;
1295 		case DMBIS:
1296 				mbits |= bits;
1297 				break;
1298 		case DMBIC:
1299 				mbits &= ~bits;
1300 				break;
1301 		case DMGET:
1302 				splx(s);
1303 				return(mbits);
1304 	}
1305 
1306 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1307 	if(cs->cs_heldchange == 0) {
1308 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1309 			cs->cs_heldtbc = cs->cs_tbc;
1310 			cs->cs_tbc = 0;
1311 			cs->cs_heldchange = 1;
1312 		}
1313 		else {
1314 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1315 		}
1316 	}
1317 	splx(s);
1318 	return(0);
1319 }
1320 
1321 /*
1322  * Write the given register set to the given zs channel in the proper order.
1323  * The channel must not be transmitting at the time.  The receiver will
1324  * be disabled for the time it takes to write all the registers.
1325  */
1326 static void
1327 zs_loadchannelregs(zc, reg)
1328 volatile struct zschan	*zc;
1329 u_char			*reg;
1330 {
1331 	int i;
1332 
1333 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1334 	i = zc->zc_data;		/* drain fifo */
1335 	i = zc->zc_data;
1336 	i = zc->zc_data;
1337 	ZS_WRITE(zc,  4, reg[4]);
1338 	ZS_WRITE(zc, 10, reg[10]);
1339 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1340 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1341 	ZS_WRITE(zc,  1, reg[1]);
1342 	ZS_WRITE(zc,  9, reg[9]);
1343 	ZS_WRITE(zc, 11, reg[11]);
1344 	ZS_WRITE(zc, 12, reg[12]);
1345 	ZS_WRITE(zc, 13, reg[13]);
1346 	ZS_WRITE(zc, 14, reg[14]);
1347 	ZS_WRITE(zc, 15, reg[15]);
1348 	ZS_WRITE(zc,  3, reg[3]);
1349 	ZS_WRITE(zc,  5, reg[5]);
1350 }
1351 #endif /* NZS > 1 */
1352