xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /*	$NetBSD: zs.c,v 1.30 1999/02/11 15:28:03 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 struct cfattach zs_ca = {
195 	sizeof(struct zs_softc), zsmatch, zsattach
196 };
197 
198 extern struct cfdriver zs_cd;
199 
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_ioctl(zsioctl);
206 dev_type_tty(zstty);
207 
208 /* Interrupt handlers. */
209 int		zshard __P((long));
210 static int	zssoft __P((long));
211 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
212 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
214 
215 static struct zs_chanstate *zslist;
216 
217 /* Routines called from other code. */
218 static void	zsstart __P((struct tty *));
219 void		zsstop __P((struct tty *, int));
220 
221 /* Routines purely local to this driver. */
222 static void	zsoverrun __P((int, long *, char *));
223 static int	zsparam __P((struct tty *, struct termios *));
224 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
225 static int	zs_modem __P((struct zs_chanstate *, int, int));
226 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
227 static void	zs_shutdown __P((struct zs_chanstate *));
228 
229 static int zsshortcuts;	/* number of "shortcut" software interrupts */
230 
231 static int
232 zsmatch(pdp, cfp, auxp)
233 struct device	*pdp;
234 struct cfdata	*cfp;
235 void		*auxp;
236 {
237 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
238 		return(0);
239 	return(1);
240 }
241 
242 /*
243  * Attach a found zs.
244  */
245 static void
246 zsattach(parent, dev, aux)
247 struct device	*parent;
248 struct device	*dev;
249 void		*aux;
250 {
251 	register struct zs_softc		*zi;
252 	register struct zs_chanstate		*cs;
253 	register volatile struct zsdevice	*addr;
254 		 char				tmp;
255 
256 	addr      = (struct zsdevice *)AD_SCC;
257 	zi        = (struct zs_softc *)dev;
258 	zi->zi_zs = addr;
259 	cs        = zi->zi_cs;
260 
261 	/*
262 	 * Get the command register into a known state.
263 	 */
264 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
265 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
266 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
267 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
268 
269 	/*
270 	 * Do a hardware reset.
271 	 */
272 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
273 	delay(50000);	/*enough ? */
274 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
275 
276 	/*
277 	 * Initialize both channels
278 	 */
279 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
280 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
281 
282 	if(machineid & ATARI_TT) {
283 		/*
284 		 * ininitialise TT-MFP timer C: 307200Hz
285 		 * timer C and D share one control register:
286 		 *	bits 0-2 control timer D
287 		 *	bits 4-6 control timer C
288 		 */
289 		int cr = MFP2->mf_tcdcr & 7;
290 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
291 		MFP2->mf_tcdr  = 1;		/* counter 1     */
292 		cr |= T_Q004 << 4;		/* divisor 4     */
293 		MFP2->mf_tcdcr = cr;		/* start timer C */
294 		/*
295 		 * enable scc related interrupts
296 		 */
297 		SCU->vme_mask |= SCU_SCC;
298 
299 		zs_frequencies = zs_freqs_tt;
300 	} else if (machineid & ATARI_FALCON) {
301 		zs_frequencies = zs_freqs_falcon;
302 	} else if (machineid & ATARI_HADES) {
303 		zs_frequencies = zs_freqs_hades;
304 	} else {
305 		zs_frequencies = zs_freqs_generic;
306 	}
307 
308 	/* link into interrupt list with order (A,B) (B=A+1) */
309 	cs[0].cs_next = &cs[1];
310 	cs[1].cs_next = zslist;
311 	zslist        = cs;
312 
313 	cs->cs_unit  = 0;
314 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
315 	cs++;
316 	cs->cs_unit  = 1;
317 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
318 
319 	printf(": serial2 on channel a and modem2 on channel b\n");
320 }
321 
322 /*
323  * Open a zs serial port.
324  */
325 int
326 zsopen(dev, flags, mode, p)
327 dev_t		dev;
328 int		flags;
329 int		mode;
330 struct proc	*p;
331 {
332 	register struct tty		*tp;
333 	register struct zs_chanstate	*cs;
334 		 struct zs_softc	*zi;
335 		 int			unit = ZS_UNIT(dev);
336 		 int			zs = unit >> 1;
337 		 int			error, s;
338 
339 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
340 		return (ENXIO);
341 	cs = &zi->zi_cs[unit & 1];
342 
343 	/*
344 	 * When port A (ser02) is selected on the TT, make sure
345 	 * the port is enabled.
346 	 */
347 	if((machineid & ATARI_TT) && !(unit & 1))
348 		ym2149_ser2(1);
349 
350 	if (cs->cs_rbuf == NULL) {
351 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
352 								   M_WAITOK);
353 	}
354 
355 	tp = cs->cs_ttyp;
356 	if(tp == NULL) {
357 		cs->cs_ttyp = tp = ttymalloc();
358 		tty_attach(tp);
359 		tp->t_dev   = dev;
360 		tp->t_oproc = zsstart;
361 		tp->t_param = zsparam;
362 	}
363 
364 	if ((tp->t_state & TS_ISOPEN) &&
365 	    (tp->t_state & TS_XCLUDE) &&
366 	    p->p_ucred->cr_uid != 0)
367 		return (EBUSY);
368 
369 	s  = spltty();
370 
371 	/*
372 	 * Do the following iff this is a first open.
373 	 */
374 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
375 		if(tp->t_ispeed == 0) {
376 			tp->t_iflag = TTYDEF_IFLAG;
377 			tp->t_oflag = TTYDEF_OFLAG;
378 			tp->t_cflag = TTYDEF_CFLAG;
379 			tp->t_lflag = TTYDEF_LFLAG;
380 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
381 		}
382 		ttychars(tp);
383 		ttsetwater(tp);
384 
385 		(void)zsparam(tp, &tp->t_termios);
386 
387 		/*
388 		 * Turn on DTR.  We must always do this, even if carrier is not
389 		 * present, because otherwise we'd have to use TIOCSDTR
390 		 * immediately after setting CLOCAL, which applications do not
391 		 * expect.  We always assert DTR while the device is open
392 		 * unless explicitly requested to deassert it.
393 		 */
394 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
395 		/* May never get a status intr. if DCD already on. -gwr */
396 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
397 			tp->t_state |= TS_CARR_ON;
398 		if(cs->cs_softcar)
399 			tp->t_state |= TS_CARR_ON;
400 	}
401 
402 	splx(s);
403 
404 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
405 	if (error)
406 		goto bad;
407 
408 	error = linesw[tp->t_line].l_open(dev, tp);
409 	if(error)
410 		goto bad;
411 	return (0);
412 
413 bad:
414 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
415 		/*
416 		 * We failed to open the device, and nobody else had it opened.
417 		 * Clean up the state as appropriate.
418 		 */
419 		zs_shutdown(cs);
420 	}
421 	return(error);
422 }
423 
424 /*
425  * Close a zs serial port.
426  */
427 int
428 zsclose(dev, flags, mode, p)
429 dev_t		dev;
430 int		flags;
431 int		mode;
432 struct proc	*p;
433 {
434 	register struct zs_chanstate	*cs;
435 	register struct tty		*tp;
436 		 struct zs_softc	*zi;
437 		 int			unit = ZS_UNIT(dev);
438 
439 	zi = zs_cd.cd_devs[unit >> 1];
440 	cs = &zi->zi_cs[unit & 1];
441 	tp = cs->cs_ttyp;
442 
443 	linesw[tp->t_line].l_close(tp, flags);
444 	ttyclose(tp);
445 
446 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
447 		/*
448 		 * Although we got a last close, the device may still be in
449 		 * use; e.g. if this was the dialout node, and there are still
450 		 * processes waiting for carrier on the non-dialout node.
451 		 */
452 		zs_shutdown(cs);
453 	}
454 	return (0);
455 }
456 
457 /*
458  * Read/write zs serial port.
459  */
460 int
461 zsread(dev, uio, flags)
462 dev_t		dev;
463 struct uio	*uio;
464 int		flags;
465 {
466 	register struct zs_chanstate	*cs;
467 	register struct zs_softc	*zi;
468 	register struct tty		*tp;
469 		 int			unit;
470 
471 	unit = ZS_UNIT(dev);
472 	zi   = zs_cd.cd_devs[unit >> 1];
473 	cs   = &zi->zi_cs[unit & 1];
474 	tp   = cs->cs_ttyp;
475 
476 	return(linesw[tp->t_line].l_read(tp, uio, flags));
477 }
478 
479 int
480 zswrite(dev, uio, flags)
481 dev_t		dev;
482 struct uio	*uio;
483 int		flags;
484 {
485 	register struct zs_chanstate	*cs;
486 	register struct zs_softc	*zi;
487 	register struct tty		*tp;
488 		 int			unit;
489 
490 	unit = ZS_UNIT(dev);
491 	zi   = zs_cd.cd_devs[unit >> 1];
492 	cs   = &zi->zi_cs[unit & 1];
493 	tp   = cs->cs_ttyp;
494 
495 	return(linesw[tp->t_line].l_write(tp, uio, flags));
496 }
497 
498 struct tty *
499 zstty(dev)
500 dev_t	dev;
501 {
502 	register struct zs_chanstate	*cs;
503 	register struct zs_softc	*zi;
504 		 int			unit;
505 
506 	unit = ZS_UNIT(dev);
507 	zi   = zs_cd.cd_devs[unit >> 1];
508 	cs   = &zi->zi_cs[unit & 1];
509 	return(cs->cs_ttyp);
510 }
511 
512 /*
513  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
514  * channels are kept in (A,B) pairs.
515  *
516  * Do just a little, then get out; set a software interrupt if more
517  * work is needed.
518  *
519  * We deliberately ignore the vectoring Zilog gives us, and match up
520  * only the number of `reset interrupt under service' operations, not
521  * the order.
522  */
523 
524 int
525 zshard(sr)
526 long sr;
527 {
528 	register struct zs_chanstate	*a;
529 #define	b (a + 1)
530 	register volatile struct zschan *zc;
531 	register int			rr3, intflags = 0, v, i;
532 
533 	do {
534 	    intflags &= ~4;
535 	    for(a = zslist; a != NULL; a = b->cs_next) {
536 		rr3 = ZS_READ(a->cs_zc, 3);
537 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
538 			intflags |= 4|2;
539 			zc = a->cs_zc;
540 			i  = a->cs_rbput;
541 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
542 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
543 				intflags |= 1;
544 			}
545 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
546 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
547 				intflags |= 1;
548 			}
549 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
550 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
551 				intflags |= 1;
552 			}
553 			a->cs_rbput = i;
554 		}
555 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
556 			intflags |= 4|2;
557 			zc = b->cs_zc;
558 			i  = b->cs_rbput;
559 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
560 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
561 				intflags |= 1;
562 			}
563 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
564 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
565 				intflags |= 1;
566 			}
567 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
568 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
569 				intflags |= 1;
570 			}
571 			b->cs_rbput = i;
572 		}
573 	    }
574 	} while(intflags & 4);
575 #undef b
576 
577 	if(intflags & 1) {
578 		if(BASEPRI(sr)) {
579 			spl1();
580 			zsshortcuts++;
581 			return(zssoft(sr));
582 		}
583 		else if(!cb_scheduled) {
584 			cb_scheduled++;
585 			add_sicallback((si_farg)zssoft, 0, 0);
586 		}
587 	}
588 	return(intflags & 2);
589 }
590 
591 static int
592 zsrint(cs, zc)
593 register struct zs_chanstate	*cs;
594 register volatile struct zschan	*zc;
595 {
596 	register int c;
597 
598 	/*
599 	 * First read the status, because read of the received char
600 	 * destroy the status of this char.
601 	 */
602 	c = ZS_READ(zc, 1);
603 	c |= (zc->zc_data << 8);
604 
605 	/* clear receive error & interrupt condition */
606 	zc->zc_csr = ZSWR0_RESET_ERRORS;
607 	zc->zc_csr = ZSWR0_CLR_INTR;
608 
609 	return(ZRING_MAKE(ZRING_RINT, c));
610 }
611 
612 static int
613 zsxint(cs, zc)
614 register struct zs_chanstate	*cs;
615 register volatile struct zschan	*zc;
616 {
617 	register int i = cs->cs_tbc;
618 
619 	if(i == 0) {
620 		zc->zc_csr = ZSWR0_RESET_TXINT;
621 		zc->zc_csr = ZSWR0_CLR_INTR;
622 		return(ZRING_MAKE(ZRING_XINT, 0));
623 	}
624 	cs->cs_tbc = i - 1;
625 	zc->zc_data = *cs->cs_tba++;
626 	zc->zc_csr = ZSWR0_CLR_INTR;
627 	return (0);
628 }
629 
630 static int
631 zssint(cs, zc)
632 register struct zs_chanstate	*cs;
633 register volatile struct zschan	*zc;
634 {
635 	register int rr0;
636 
637 	rr0 = zc->zc_csr;
638 	zc->zc_csr = ZSWR0_RESET_STATUS;
639 	zc->zc_csr = ZSWR0_CLR_INTR;
640 	/*
641 	 * The chip's hardware flow control is, as noted in zsreg.h,
642 	 * busted---if the DCD line goes low the chip shuts off the
643 	 * receiver (!).  If we want hardware CTS flow control but do
644 	 * not have it, and carrier is now on, turn HFC on; if we have
645 	 * HFC now but carrier has gone low, turn it off.
646 	 */
647 	if(rr0 & ZSRR0_DCD) {
648 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
649 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
650 			cs->cs_creg[3] |= ZSWR3_HFC;
651 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
652 		}
653 	}
654 	else {
655 		if (cs->cs_creg[3] & ZSWR3_HFC) {
656 			cs->cs_creg[3] &= ~ZSWR3_HFC;
657 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
658 		}
659 	}
660 	return(ZRING_MAKE(ZRING_SINT, rr0));
661 }
662 
663 /*
664  * Print out a ring or fifo overrun error message.
665  */
666 static void
667 zsoverrun(unit, ptime, what)
668 int	unit;
669 long	*ptime;
670 char	*what;
671 {
672 
673 	if(*ptime != time.tv_sec) {
674 		*ptime = time.tv_sec;
675 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
676 		    (unit & 1) + 'a', what);
677 	}
678 }
679 
680 /*
681  * ZS software interrupt.  Scan all channels for deferred interrupts.
682  */
683 int
684 zssoft(sr)
685 long sr;
686 {
687     register struct zs_chanstate	*cs;
688     register volatile struct zschan	*zc;
689     register struct linesw		*line;
690     register struct tty			*tp;
691     register int			get, n, c, cc, unit, s;
692  	     int			retval = 0;
693 
694     cb_scheduled = 0;
695     s = spltty();
696     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
697 	get = cs->cs_rbget;
698 again:
699 	n = cs->cs_rbput;	/* atomic			*/
700 	if(get == n)		/* nothing more on this line	*/
701 		continue;
702 	retval = 1;
703 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
704 	zc     = cs->cs_zc;
705 	tp     = cs->cs_ttyp;
706 	line   = &linesw[tp->t_line];
707 	/*
708 	 * Compute the number of interrupts in the receive ring.
709 	 * If the count is overlarge, we lost some events, and
710 	 * must advance to the first valid one.  It may get
711 	 * overwritten if more data are arriving, but this is
712 	 * too expensive to check and gains nothing (we already
713 	 * lost out; all we can do at this point is trade one
714 	 * kind of loss for another).
715 	 */
716 	n -= get;
717 	if(n > ZLRB_RING_SIZE) {
718 		zsoverrun(unit, &cs->cs_rotime, "ring");
719 		get += n - ZLRB_RING_SIZE;
720 		n    = ZLRB_RING_SIZE;
721 	}
722 	while(--n >= 0) {
723 		/* race to keep ahead of incoming interrupts */
724 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
725 		switch (ZRING_TYPE(c)) {
726 
727 		case ZRING_RINT:
728 			c = ZRING_VALUE(c);
729 			if(c & ZSRR1_DO)
730 				zsoverrun(unit, &cs->cs_fotime, "fifo");
731 			cc = c >> 8;
732 			if(c & ZSRR1_FE)
733 				cc |= TTY_FE;
734 			if(c & ZSRR1_PE)
735 				cc |= TTY_PE;
736 			line->l_rint(cc, tp);
737 			break;
738 
739 		case ZRING_XINT:
740 			/*
741 			 * Transmit done: change registers and resume,
742 			 * or clear BUSY.
743 			 */
744 			if(cs->cs_heldchange) {
745 				int sps;
746 
747 				sps = splzs();
748 				c = zc->zc_csr;
749 				if((c & ZSRR0_DCD) == 0)
750 					cs->cs_preg[3] &= ~ZSWR3_HFC;
751 				bcopy((caddr_t)cs->cs_preg,
752 				    (caddr_t)cs->cs_creg, 16);
753 				zs_loadchannelregs(zc, cs->cs_creg);
754 				splx(sps);
755 				cs->cs_heldchange = 0;
756 				if(cs->cs_heldtbc
757 					&& (tp->t_state & TS_TTSTOP) == 0) {
758 					cs->cs_tbc = cs->cs_heldtbc - 1;
759 					zc->zc_data = *cs->cs_tba++;
760 					goto again;
761 				}
762 			}
763 			tp->t_state &= ~TS_BUSY;
764 			if(tp->t_state & TS_FLUSH)
765 				tp->t_state &= ~TS_FLUSH;
766 			else ndflush(&tp->t_outq,cs->cs_tba
767 						- (caddr_t)tp->t_outq.c_cf);
768 			line->l_start(tp);
769 			break;
770 
771 		case ZRING_SINT:
772 			/*
773 			 * Status line change.  HFC bit is run in
774 			 * hardware interrupt, to avoid locking
775 			 * at splzs here.
776 			 */
777 			c = ZRING_VALUE(c);
778 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
779 				cc = (c & ZSRR0_DCD) != 0;
780 				if(line->l_modem(tp, cc) == 0)
781 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
782 							cc ? DMBIS : DMBIC);
783 			}
784 			cs->cs_rr0 = c;
785 			break;
786 
787 		default:
788 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
789 			    unit >> 1, (unit & 1) + 'a', c);
790 			break;
791 		}
792 	}
793 	cs->cs_rbget = get;
794 	goto again;
795     }
796     splx(s);
797     return (retval);
798 }
799 
800 int
801 zsioctl(dev, cmd, data, flag, p)
802 dev_t		dev;
803 u_long		cmd;
804 caddr_t		data;
805 int		flag;
806 struct proc	*p;
807 {
808 		 int			unit = ZS_UNIT(dev);
809 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
810 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
811 	register int			error, s;
812 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
813 
814 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
815 	if(error >= 0)
816 		return(error);
817 	error = ttioctl(tp, cmd, data, flag, p);
818 	if(error >= 0)
819 		return (error);
820 
821 	switch (cmd) {
822 	case TIOCSBRK:
823 		s = splzs();
824 		cs->cs_preg[5] |= ZSWR5_BREAK;
825 		cs->cs_creg[5] |= ZSWR5_BREAK;
826 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
827 		splx(s);
828 		break;
829 	case TIOCCBRK:
830 		s = splzs();
831 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
832 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
833 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
834 		splx(s);
835 		break;
836 	case TIOCGFLAGS: {
837 		int bits = 0;
838 
839 		if(cs->cs_softcar)
840 			bits |= TIOCFLAG_SOFTCAR;
841 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
842 			bits |= TIOCFLAG_CLOCAL;
843 		if(cs->cs_creg[3] & ZSWR3_HFC)
844 			bits |= TIOCFLAG_CRTSCTS;
845 		*(int *)data = bits;
846 		break;
847 	}
848 	case TIOCSFLAGS: {
849 		int userbits = 0;
850 
851 		error = suser(p->p_ucred, &p->p_acflag);
852 		if(error != 0)
853 			return (EPERM);
854 
855 		userbits = *(int *)data;
856 
857 		/*
858 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
859 		 # defaulting to software flow control.
860 		 */
861 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
862 			return(EINVAL);
863 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
864 			return(ENODEV);
865 
866 		s = splzs();
867 		if((userbits & TIOCFLAG_SOFTCAR)) {
868 			cs->cs_softcar = 1;	/* turn on softcar */
869 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
870 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
871 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
872 		}
873 		else if(userbits & TIOCFLAG_CLOCAL) {
874 			cs->cs_softcar = 0; 	/* turn off softcar */
875 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
876 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
877 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
878 			tp->t_termios.c_cflag |= CLOCAL;
879 		}
880 		if(userbits & TIOCFLAG_CRTSCTS) {
881 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
882 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
883 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
884 			cs->cs_preg[3] |= ZSWR3_HFC;
885 			cs->cs_creg[3] |= ZSWR3_HFC;
886 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
887 			tp->t_termios.c_cflag |= CRTSCTS;
888 		}
889 		else {
890 			/* no mdmbuf, so we must want software flow control */
891 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
892 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
893 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
894 			cs->cs_preg[3] &= ~ZSWR3_HFC;
895 			cs->cs_creg[3] &= ~ZSWR3_HFC;
896 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
897 			tp->t_termios.c_cflag &= ~CRTSCTS;
898 		}
899 		splx(s);
900 		break;
901 	}
902 	case TIOCSDTR:
903 		zs_modem(cs, ZSWR5_DTR, DMBIS);
904 		break;
905 	case TIOCCDTR:
906 		zs_modem(cs, ZSWR5_DTR, DMBIC);
907 		break;
908 	case TIOCMGET:
909 		zs_modem(cs, 0, DMGET);
910 		break;
911 	case TIOCMSET:
912 	case TIOCMBIS:
913 	case TIOCMBIC:
914 	default:
915 		return (ENOTTY);
916 	}
917 	return (0);
918 }
919 
920 /*
921  * Start or restart transmission.
922  */
923 static void
924 zsstart(tp)
925 register struct tty *tp;
926 {
927 	register struct zs_chanstate	*cs;
928 	register int			s, nch;
929 		 int			unit = ZS_UNIT(tp->t_dev);
930 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
931 
932 	cs = &zi->zi_cs[unit & 1];
933 	s  = spltty();
934 
935 	/*
936 	 * If currently active or delaying, no need to do anything.
937 	 */
938 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
939 		goto out;
940 
941 	/*
942 	 * If there are sleepers, and output has drained below low
943 	 * water mark, awaken.
944 	 */
945 	if(tp->t_outq.c_cc <= tp->t_lowat) {
946 		if(tp->t_state & TS_ASLEEP) {
947 			tp->t_state &= ~TS_ASLEEP;
948 			wakeup((caddr_t)&tp->t_outq);
949 		}
950 		selwakeup(&tp->t_wsel);
951 	}
952 
953 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
954 	if(nch) {
955 		register char *p = tp->t_outq.c_cf;
956 
957 		/* mark busy, enable tx done interrupts, & send first byte */
958 		tp->t_state |= TS_BUSY;
959 		(void) splzs();
960 		cs->cs_preg[1] |= ZSWR1_TIE;
961 		cs->cs_creg[1] |= ZSWR1_TIE;
962 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
963 		cs->cs_zc->zc_data = *p;
964 		cs->cs_tba = p + 1;
965 		cs->cs_tbc = nch - 1;
966 	} else {
967 		/*
968 		 * Nothing to send, turn off transmit done interrupts.
969 		 * This is useful if something is doing polled output.
970 		 */
971 		(void) splzs();
972 		cs->cs_preg[1] &= ~ZSWR1_TIE;
973 		cs->cs_creg[1] &= ~ZSWR1_TIE;
974 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
975 	}
976 out:
977 	splx(s);
978 }
979 
980 /*
981  * Stop output, e.g., for ^S or output flush.
982  */
983 void
984 zsstop(tp, flag)
985 register struct tty	*tp;
986 	 int		flag;
987 {
988 	register struct zs_chanstate	*cs;
989 	register int			s, unit = ZS_UNIT(tp->t_dev);
990 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
991 
992 	cs = &zi->zi_cs[unit & 1];
993 	s  = splzs();
994 	if(tp->t_state & TS_BUSY) {
995 		/*
996 		 * Device is transmitting; must stop it.
997 		 */
998 		cs->cs_tbc = 0;
999 		if ((tp->t_state & TS_TTSTOP) == 0)
1000 			tp->t_state |= TS_FLUSH;
1001 	}
1002 	splx(s);
1003 }
1004 
1005 static void
1006 zs_shutdown(cs)
1007 	struct zs_chanstate	*cs;
1008 {
1009 	struct tty	*tp = cs->cs_ttyp;
1010 	int		s;
1011 
1012 	s = splzs();
1013 
1014 	/*
1015 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1016 	 * notice even if we immediately open the port again.
1017 	 */
1018 	if(tp->t_cflag & HUPCL) {
1019 		zs_modem(cs, 0, DMSET);
1020 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1021 	}
1022 
1023 	/* Clear any break condition set with TIOCSBRK. */
1024 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1025 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1026 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1027 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1028 	}
1029 
1030 	/*
1031 	 * Drop all lines and cancel interrupts
1032 	 */
1033 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1034 	splx(s);
1035 }
1036 
1037 /*
1038  * Set ZS tty parameters from termios.
1039  *
1040  * This routine makes use of the fact that only registers
1041  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1042  */
1043 static int
1044 zsparam(tp, t)
1045 register struct tty	*tp;
1046 register struct termios	*t;
1047 {
1048 		 int			unit = ZS_UNIT(tp->t_dev);
1049 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1050 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1051 		 int			cdiv, clkm, brgm, tcon;
1052 	register int			tmp, tmp5, cflag, s;
1053 
1054 	tmp  = t->c_ospeed;
1055 	tmp5 = t->c_ispeed;
1056 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1057 		return(EINVAL);
1058 	if(tmp == 0) {
1059 		/* stty 0 => drop DTR and RTS */
1060 		zs_modem(cs, 0, DMSET);
1061 		return(0);
1062 	}
1063 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1064 	if (tmp < 0)
1065 		return(EINVAL);
1066 	tp->t_ispeed = tp->t_ospeed = tmp;
1067 
1068 	cflag = tp->t_cflag = t->c_cflag;
1069 	if (cflag & CSTOPB)
1070 		cdiv |= ZSWR4_TWOSB;
1071 	else
1072 		cdiv |= ZSWR4_ONESB;
1073 	if (!(cflag & PARODD))
1074 		cdiv |= ZSWR4_EVENP;
1075 	if (cflag & PARENB)
1076 		cdiv |= ZSWR4_PARENB;
1077 
1078 	switch(cflag & CSIZE) {
1079 	case CS5:
1080 		tmp  = ZSWR3_RX_5;
1081 		tmp5 = ZSWR5_TX_5;
1082 		break;
1083 	case CS6:
1084 		tmp  = ZSWR3_RX_6;
1085 		tmp5 = ZSWR5_TX_6;
1086 		break;
1087 	case CS7:
1088 		tmp  = ZSWR3_RX_7;
1089 		tmp5 = ZSWR5_TX_7;
1090 		break;
1091 	case CS8:
1092 	default:
1093 		tmp  = ZSWR3_RX_8;
1094 		tmp5 = ZSWR5_TX_8;
1095 		break;
1096 	}
1097 	tmp  |= ZSWR3_RX_ENABLE;
1098 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1099 
1100 	/*
1101 	 * Block interrupts so that state will not
1102 	 * be altered until we are done setting it up.
1103 	 */
1104 	s = splzs();
1105 	cs->cs_preg[4]  = cdiv;
1106 	cs->cs_preg[11] = clkm;
1107 	cs->cs_preg[12] = tcon;
1108 	cs->cs_preg[13] = tcon >> 8;
1109 	cs->cs_preg[14] = brgm;
1110 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1111 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1112 	cs->cs_preg[10] = ZSWR10_NRZ;
1113 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1114 
1115 	/*
1116 	 * Output hardware flow control on the chip is horrendous: if
1117 	 * carrier detect drops, the receiver is disabled.  Hence we
1118 	 * can only do this when the carrier is on.
1119 	 */
1120 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1121 		tmp |= ZSWR3_HFC;
1122 	cs->cs_preg[3] = tmp;
1123 	cs->cs_preg[5] = tmp5;
1124 
1125 	/*
1126 	 * If nothing is being transmitted, set up new current values,
1127 	 * else mark them as pending.
1128 	 */
1129 	if(cs->cs_heldchange == 0) {
1130 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1131 			cs->cs_heldtbc = cs->cs_tbc;
1132 			cs->cs_tbc = 0;
1133 			cs->cs_heldchange = 1;
1134 		} else {
1135 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1136 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1137 		}
1138 	}
1139 	splx(s);
1140 	return (0);
1141 }
1142 
1143 /*
1144  * search for the best matching baudrate
1145  */
1146 static int
1147 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1148 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1149 {
1150 	int	bestdiff, bestbps, source;
1151 
1152 	bestdiff = bestbps = 0;
1153 	unit = (unit & 1) << 2;
1154 	for (source = 0; source < 4; ++source) {
1155 		long	freq = zs_frequencies[unit + source];
1156 		int	diff, bps, div, clkm, brgm, tcon;
1157 
1158 		bps = div = clkm = brgm = tcon = 0;
1159 		switch (source) {
1160 			case 0:	/* BRgen, PCLK */
1161 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1162 				break;
1163 			case 1:	/* BRgen, RTxC */
1164 				brgm = ZSWR14_BAUD_ENA;
1165 				break;
1166 			case 2: /* RTxC */
1167 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1168 				break;
1169 			case 3: /* TRxC */
1170 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1171 				break;
1172 		}
1173 		switch (source) {
1174 			case 0:
1175 			case 1:
1176 				div  = ZSWR4_CLK_X16;
1177 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1178 				tcon = BPS_TO_TCONST(freq, wanted);
1179 				if (tcon < 0)
1180 					tcon = 0;
1181 				bps  = TCONST_TO_BPS(freq, tcon);
1182 				break;
1183 			case 2:
1184 			case 3:
1185 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1186 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1187 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1188 
1189 				if (d1 < d2 && d1 < d3) {
1190 					div = ZSWR4_CLK_X16;
1191 					bps = b1;
1192 				} else if (d2 < d3 && d2 < d1) {
1193 					div = ZSWR4_CLK_X32;
1194 					bps = b2;
1195 				} else {
1196 					div = ZSWR4_CLK_X64;
1197 					bps = b3;
1198 				}
1199 				brgm = tcon = 0;
1200 				break;
1201 			}
1202 		}
1203 		diff = abs(bps - wanted);
1204 		if (!source || diff < bestdiff) {
1205 			*divisor   = div;
1206 			*clockmode = clkm;
1207 			*brgenmode = brgm;
1208 			*timeconst = tcon;
1209 			bestbps    = bps;
1210 			bestdiff   = diff;
1211 			if (diff == 0)
1212 				break;
1213 		}
1214 	}
1215 	/* Allow deviations upto 5% */
1216 	if (20 * bestdiff > wanted)
1217 		return -1;
1218 	return bestbps;
1219 }
1220 
1221 /*
1222  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1223  * in transmission, the change is deferred.
1224  */
1225 static int
1226 zs_modem(cs, bits, how)
1227 struct zs_chanstate	*cs;
1228 int			bits, how;
1229 {
1230 	int s, mbits;
1231 
1232 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1233 
1234 	s = splzs();
1235 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1236 
1237 	switch(how) {
1238 		case DMSET:
1239 				mbits  = bits;
1240 				break;
1241 		case DMBIS:
1242 				mbits |= bits;
1243 				break;
1244 		case DMBIC:
1245 				mbits &= ~bits;
1246 				break;
1247 		case DMGET:
1248 				splx(s);
1249 				return(mbits);
1250 	}
1251 
1252 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1253 	if(cs->cs_heldchange == 0) {
1254 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1255 			cs->cs_heldtbc = cs->cs_tbc;
1256 			cs->cs_tbc = 0;
1257 			cs->cs_heldchange = 1;
1258 		}
1259 		else {
1260 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1261 		}
1262 	}
1263 	splx(s);
1264 	return(0);
1265 }
1266 
1267 /*
1268  * Write the given register set to the given zs channel in the proper order.
1269  * The channel must not be transmitting at the time.  The receiver will
1270  * be disabled for the time it takes to write all the registers.
1271  */
1272 static void
1273 zs_loadchannelregs(zc, reg)
1274 volatile struct zschan	*zc;
1275 u_char			*reg;
1276 {
1277 	int i;
1278 
1279 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1280 	i = zc->zc_data;		/* drain fifo */
1281 	i = zc->zc_data;
1282 	i = zc->zc_data;
1283 	ZS_WRITE(zc,  4, reg[4]);
1284 	ZS_WRITE(zc, 10, reg[10]);
1285 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1286 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1287 	ZS_WRITE(zc,  1, reg[1]);
1288 	ZS_WRITE(zc,  9, reg[9]);
1289 	ZS_WRITE(zc, 11, reg[11]);
1290 	ZS_WRITE(zc, 12, reg[12]);
1291 	ZS_WRITE(zc, 13, reg[13]);
1292 	ZS_WRITE(zc, 14, reg[14]);
1293 	ZS_WRITE(zc, 15, reg[15]);
1294 	ZS_WRITE(zc,  3, reg[3]);
1295 	ZS_WRITE(zc,  5, reg[5]);
1296 }
1297 #endif /* NZS > 1 */
1298