xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*	$NetBSD: zs.c,v 1.21 1996/06/18 05:55:02 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 
86 #define splzs	spl5
87 
88 /*
89  * Software state per found chip.
90  */
91 struct zs_softc {
92     struct	device		zi_dev;    /* base device		  */
93     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
94     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
95 };
96 
97 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
98 /*
99  * Define the registers for a closed port
100  */
101 static u_char zs_init_regs[16] = {
102 /*  0 */	0,
103 /*  1 */	0,
104 /*  2 */	0x60,
105 /*  3 */	0,
106 /*  4 */	0,
107 /*  5 */	0,
108 /*  6 */	0,
109 /*  7 */	0,
110 /*  8 */	0,
111 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
112 /* 10 */	ZSWR10_NRZ,
113 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
114 /* 12 */	0,
115 /* 13 */	0,
116 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
117 /* 15 */	0
118 };
119 
120 /*
121  * Define the machine dependant clock frequencies
122  * If BRgen feeds sender/receiver we always use a
123  * divisor 16, therefor the division by 16 can as
124  * well be done here.
125  */
126 static u_long zs_freqs_tt[] = {
127 	/*
128 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
129 	 * which is set to 307.2KHz during initialisation
130 	 * and never changed afterwards.
131 	 */
132 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
133 	 229500,	/* BRgen, RTxCA, divisor 16	*/
134 	3672000,	/* RTxCA, from PCLK4		*/
135 	      0,	/* TRxCA, external		*/
136 
137 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
138 	  19200,	/* BRgen, RTxCB, divisor 16	*/
139 	 307200,	/* RTxCB, from TT-MFP TCO	*/
140 	2457600		/* TRxCB, from BCLK		*/
141 };
142 static u_long zs_freqs_falcon[] = {
143 	/*
144 	 * Atari Falcon, XXX no specs available, this might be wrong
145 	 */
146 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
147 	 229500,	/* BRgen, RTxCA, divisor 16	*/
148 	3672000,	/* RTxCA, ???			*/
149 	      0,	/* TRxCA, external		*/
150 
151 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
152 	 229500,	/* BRgen, RTxCB, divisor 16	*/
153 	3672000,	/* RTxCB, ???			*/
154 	2457600		/* TRxCB, ???			*/
155 };
156 static u_long zs_freqs_generic[] = {
157 	/*
158 	 * other machines, assume only PCLK is available
159 	 */
160 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
161 	      0,	/* BRgen, RTxCA, divisor 16	*/
162 	      0,	/* RTxCA, unknown		*/
163 	      0,	/* TRxCA, unknown		*/
164 
165 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
166 	      0,	/* BRgen, RTxCB, divisor 16	*/
167 	      0,	/* RTxCB, unknown		*/
168 	      0		/* TRxCB, unknown		*/
169 };
170 static u_long *zs_frequencies;
171 
172 /* Definition of the driver for autoconfig. */
173 static int	zsmatch __P((struct device *, void *, void *));
174 static void	zsattach __P((struct device *, struct device *, void *));
175 
176 struct cfattach zs_ca = {
177 	sizeof(struct zs_softc), zsmatch, zsattach
178 };
179 
180 struct cfdriver zs_cd = {
181 	NULL, "zs", DV_TTY, NULL, 0
182 };
183 
184 /* {b,c}devsw[] function prototypes */
185 dev_type_open(zsopen);
186 dev_type_close(zsclose);
187 dev_type_read(zsread);
188 dev_type_write(zswrite);
189 dev_type_ioctl(zsioctl);
190 dev_type_tty(zstty);
191 
192 /* Interrupt handlers. */
193 int		zshard __P((long));
194 static int	zssoft __P((long));
195 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
196 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
197 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
198 
199 static struct zs_chanstate *zslist;
200 
201 /* Routines called from other code. */
202 static void	zsstart __P((struct tty *));
203 void		zsstop __P((struct tty *, int));
204 
205 /* Routines purely local to this driver. */
206 static void	zsoverrun __P((int, long *, char *));
207 static int	zsparam __P((struct tty *, struct termios *));
208 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
209 static int	zs_modem __P((struct zs_chanstate *, int, int));
210 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
211 
212 static int zsshortcuts;	/* number of "shortcut" software interrupts */
213 
214 static int
215 zsmatch(pdp, match, auxp)
216 struct device	*pdp;
217 void		*match, *auxp;
218 {
219 	struct cfdata *cfp = match;
220 
221 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
222 		return(0);
223 	return(1);
224 }
225 
226 /*
227  * Attach a found zs.
228  */
229 static void
230 zsattach(parent, dev, aux)
231 struct device	*parent;
232 struct device	*dev;
233 void		*aux;
234 {
235 	register struct zs_softc		*zi;
236 	register struct zs_chanstate		*cs;
237 	register volatile struct zsdevice	*addr;
238 		 char				tmp;
239 
240 	addr      = (struct zsdevice *)AD_SCC;
241 	zi        = (struct zs_softc *)dev;
242 	zi->zi_zs = addr;
243 	cs        = zi->zi_cs;
244 
245 	/*
246 	 * Get the command register into a known state.
247 	 */
248 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
249 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
250 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
251 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
252 
253 	/*
254 	 * Do a hardware reset.
255 	 */
256 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
257 	delay(50000);	/*enough ? */
258 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
259 
260 	/*
261 	 * Initialize both channels
262 	 */
263 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
264 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
265 
266 	if(machineid & ATARI_TT) {
267 		/*
268 		 * ininitialise TT-MFP timer C: 307200Hz
269 		 * timer C and D share one control register:
270 		 *	bits 0-2 control timer D
271 		 *	bits 4-6 control timer C
272 		 */
273 		int cr = MFP2->mf_tcdcr & 7;
274 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
275 		MFP2->mf_tcdr  = 1;		/* counter 1     */
276 		cr |= T_Q004 << 4;		/* divisor 4     */
277 		MFP2->mf_tcdcr = cr;		/* start timer C */
278 		/*
279 		 * enable scc related interrupts
280 		 */
281 		SCU->sys_mask |= SCU_SCC;
282 
283 		zs_frequencies = zs_freqs_tt;
284 	} else if (machineid & ATARI_FALCON) {
285 		zs_frequencies = zs_freqs_falcon;
286 	} else {
287 		zs_frequencies = zs_freqs_generic;
288 	}
289 
290 	/* link into interrupt list with order (A,B) (B=A+1) */
291 	cs[0].cs_next = &cs[1];
292 	cs[1].cs_next = zslist;
293 	zslist        = cs;
294 
295 	cs->cs_unit  = 0;
296 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
297 	cs++;
298 	cs->cs_unit  = 1;
299 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
300 
301 	printf(": serial2 on channel a and modem2 on channel b\n");
302 }
303 
304 /*
305  * Open a zs serial port.
306  */
307 int
308 zsopen(dev, flags, mode, p)
309 dev_t		dev;
310 int		flags;
311 int		mode;
312 struct proc	*p;
313 {
314 	register struct tty		*tp;
315 	register struct zs_chanstate	*cs;
316 		 struct zs_softc	*zi;
317 		 int			unit = ZS_UNIT(dev);
318 		 int			zs = unit >> 1;
319 		 int			error, s;
320 
321 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
322 		return (ENXIO);
323 	cs = &zi->zi_cs[unit & 1];
324 
325 	/*
326 	 * When port A (ser02) is selected on the TT, make sure
327 	 * the port is enabled.
328 	 */
329 	if((machineid & ATARI_TT) && !(unit & 1))
330 		ym2149_ser2_select();
331 
332 	if (cs->cs_rbuf == NULL) {
333 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
334 								   M_WAITOK);
335 	}
336 
337 	tp = cs->cs_ttyp;
338 	if(tp == NULL) {
339 		cs->cs_ttyp = tp = ttymalloc();
340 		tty_attach(tp);
341 		tp->t_dev   = dev;
342 		tp->t_oproc = zsstart;
343 		tp->t_param = zsparam;
344 	}
345 
346 	s  = spltty();
347 	if((tp->t_state & TS_ISOPEN) == 0) {
348 		ttychars(tp);
349 		if(tp->t_ispeed == 0) {
350 			tp->t_iflag = TTYDEF_IFLAG;
351 			tp->t_oflag = TTYDEF_OFLAG;
352 			tp->t_cflag = TTYDEF_CFLAG;
353 			tp->t_lflag = TTYDEF_LFLAG;
354 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
355 		}
356 		(void)zsparam(tp, &tp->t_termios);
357 		ttsetwater(tp);
358 	}
359 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
360 			splx(s);
361 			return (EBUSY);
362 	}
363 	error = 0;
364 	for(;;) {
365 		/* loop, turning on the device, until carrier present */
366 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
367 
368 		/* May never get a status intr. if DCD already on. -gwr */
369 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
370 			tp->t_state |= TS_CARR_ON;
371 		if(cs->cs_softcar)
372 			tp->t_state |= TS_CARR_ON;
373 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
374 		    tp->t_state & TS_CARR_ON)
375 			break;
376 		tp->t_state |= TS_WOPEN;
377 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
378 		    ttopen, 0)) != 0) {
379 			if(!(tp->t_state & TS_ISOPEN)) {
380 				zs_modem(cs, 0, DMSET);
381 				tp->t_state &= ~TS_WOPEN;
382 				ttwakeup(tp);
383 			}
384 			splx(s);
385 			return error;
386 		}
387 	}
388 	splx(s);
389 	if(error == 0)
390 		error = linesw[tp->t_line].l_open(dev, tp);
391 	if(error)
392 		zs_modem(cs, 0, DMSET);
393 	return(error);
394 }
395 
396 /*
397  * Close a zs serial port.
398  */
399 int
400 zsclose(dev, flags, mode, p)
401 dev_t		dev;
402 int		flags;
403 int		mode;
404 struct proc	*p;
405 {
406 	register struct zs_chanstate	*cs;
407 	register struct tty		*tp;
408 		 struct zs_softc	*zi;
409 		 int			unit = ZS_UNIT(dev);
410 		 int			s;
411 
412 	zi = zs_cd.cd_devs[unit >> 1];
413 	cs = &zi->zi_cs[unit & 1];
414 	tp = cs->cs_ttyp;
415 	linesw[tp->t_line].l_close(tp, flags);
416 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
417 	    (tp->t_state & TS_ISOPEN) == 0) {
418 		zs_modem(cs, 0, DMSET);
419 		/* hold low for 1 second */
420 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
421 	}
422 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
423 		s = splzs();
424 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
425 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
426 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
427 		splx(s);
428 	}
429 	ttyclose(tp);
430 
431 	/*
432 	 * Drop all lines and cancel interrupts
433 	 */
434 	s = splzs();
435 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
436 	splx(s);
437 	return (0);
438 }
439 
440 /*
441  * Read/write zs serial port.
442  */
443 int
444 zsread(dev, uio, flags)
445 dev_t		dev;
446 struct uio	*uio;
447 int		flags;
448 {
449 	register struct zs_chanstate	*cs;
450 	register struct zs_softc	*zi;
451 	register struct tty		*tp;
452 		 int			unit;
453 
454 	unit = ZS_UNIT(dev);
455 	zi   = zs_cd.cd_devs[unit >> 1];
456 	cs   = &zi->zi_cs[unit & 1];
457 	tp   = cs->cs_ttyp;
458 
459 	return(linesw[tp->t_line].l_read(tp, uio, flags));
460 }
461 
462 int
463 zswrite(dev, uio, flags)
464 dev_t		dev;
465 struct uio	*uio;
466 int		flags;
467 {
468 	register struct zs_chanstate	*cs;
469 	register struct zs_softc	*zi;
470 	register struct tty		*tp;
471 		 int			unit;
472 
473 	unit = ZS_UNIT(dev);
474 	zi   = zs_cd.cd_devs[unit >> 1];
475 	cs   = &zi->zi_cs[unit & 1];
476 	tp   = cs->cs_ttyp;
477 
478 	return(linesw[tp->t_line].l_write(tp, uio, flags));
479 }
480 
481 struct tty *
482 zstty(dev)
483 dev_t	dev;
484 {
485 	register struct zs_chanstate	*cs;
486 	register struct zs_softc	*zi;
487 		 int			unit;
488 
489 	unit = ZS_UNIT(dev);
490 	zi   = zs_cd.cd_devs[unit >> 1];
491 	cs   = &zi->zi_cs[unit & 1];
492 	return(cs->cs_ttyp);
493 }
494 
495 /*
496  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
497  * channels are kept in (A,B) pairs.
498  *
499  * Do just a little, then get out; set a software interrupt if more
500  * work is needed.
501  *
502  * We deliberately ignore the vectoring Zilog gives us, and match up
503  * only the number of `reset interrupt under service' operations, not
504  * the order.
505  */
506 
507 int
508 zshard(sr)
509 long sr;
510 {
511 	register struct zs_chanstate	*a;
512 #define	b (a + 1)
513 	register volatile struct zschan *zc;
514 	register int			rr3, intflags = 0, v, i;
515 
516 	do {
517 	    intflags &= ~4;
518 	    for(a = zslist; a != NULL; a = b->cs_next) {
519 		rr3 = ZS_READ(a->cs_zc, 3);
520 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
521 			intflags |= 4|2;
522 			zc = a->cs_zc;
523 			i  = a->cs_rbput;
524 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
525 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
526 				intflags |= 1;
527 			}
528 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
529 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
530 				intflags |= 1;
531 			}
532 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
533 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
534 				intflags |= 1;
535 			}
536 			a->cs_rbput = i;
537 		}
538 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
539 			intflags |= 4|2;
540 			zc = b->cs_zc;
541 			i  = b->cs_rbput;
542 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
543 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
544 				intflags |= 1;
545 			}
546 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
547 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
548 				intflags |= 1;
549 			}
550 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
551 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
552 				intflags |= 1;
553 			}
554 			b->cs_rbput = i;
555 		}
556 	    }
557 	} while(intflags & 4);
558 #undef b
559 
560 	if(intflags & 1) {
561 		if(BASEPRI(sr)) {
562 			spl1();
563 			zsshortcuts++;
564 			return(zssoft(sr));
565 		}
566 		else if(!cb_scheduled) {
567 			cb_scheduled++;
568 			add_sicallback((si_farg)zssoft, 0, 0);
569 		}
570 	}
571 	return(intflags & 2);
572 }
573 
574 static int
575 zsrint(cs, zc)
576 register struct zs_chanstate	*cs;
577 register volatile struct zschan	*zc;
578 {
579 	register int c;
580 
581 	/*
582 	 * First read the status, because read of the received char
583 	 * destroy the status of this char.
584 	 */
585 	c = ZS_READ(zc, 1);
586 	c |= (zc->zc_data << 8);
587 
588 	/* clear receive error & interrupt condition */
589 	zc->zc_csr = ZSWR0_RESET_ERRORS;
590 	zc->zc_csr = ZSWR0_CLR_INTR;
591 
592 	return(ZRING_MAKE(ZRING_RINT, c));
593 }
594 
595 static int
596 zsxint(cs, zc)
597 register struct zs_chanstate	*cs;
598 register volatile struct zschan	*zc;
599 {
600 	register int i = cs->cs_tbc;
601 
602 	if(i == 0) {
603 		zc->zc_csr = ZSWR0_RESET_TXINT;
604 		zc->zc_csr = ZSWR0_CLR_INTR;
605 		return(ZRING_MAKE(ZRING_XINT, 0));
606 	}
607 	cs->cs_tbc = i - 1;
608 	zc->zc_data = *cs->cs_tba++;
609 	zc->zc_csr = ZSWR0_CLR_INTR;
610 	return (0);
611 }
612 
613 static int
614 zssint(cs, zc)
615 register struct zs_chanstate	*cs;
616 register volatile struct zschan	*zc;
617 {
618 	register int rr0;
619 
620 	rr0 = zc->zc_csr;
621 	zc->zc_csr = ZSWR0_RESET_STATUS;
622 	zc->zc_csr = ZSWR0_CLR_INTR;
623 	/*
624 	 * The chip's hardware flow control is, as noted in zsreg.h,
625 	 * busted---if the DCD line goes low the chip shuts off the
626 	 * receiver (!).  If we want hardware CTS flow control but do
627 	 * not have it, and carrier is now on, turn HFC on; if we have
628 	 * HFC now but carrier has gone low, turn it off.
629 	 */
630 	if(rr0 & ZSRR0_DCD) {
631 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
632 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
633 			cs->cs_creg[3] |= ZSWR3_HFC;
634 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
635 		}
636 	}
637 	else {
638 		if (cs->cs_creg[3] & ZSWR3_HFC) {
639 			cs->cs_creg[3] &= ~ZSWR3_HFC;
640 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
641 		}
642 	}
643 	return(ZRING_MAKE(ZRING_SINT, rr0));
644 }
645 
646 /*
647  * Print out a ring or fifo overrun error message.
648  */
649 static void
650 zsoverrun(unit, ptime, what)
651 int	unit;
652 long	*ptime;
653 char	*what;
654 {
655 
656 	if(*ptime != time.tv_sec) {
657 		*ptime = time.tv_sec;
658 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
659 		    (unit & 1) + 'a', what);
660 	}
661 }
662 
663 /*
664  * ZS software interrupt.  Scan all channels for deferred interrupts.
665  */
666 int
667 zssoft(sr)
668 long sr;
669 {
670     register struct zs_chanstate	*cs;
671     register volatile struct zschan	*zc;
672     register struct linesw		*line;
673     register struct tty			*tp;
674     register int			get, n, c, cc, unit, s;
675  	     int			retval = 0;
676 
677     cb_scheduled = 0;
678     s = spltty();
679     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
680 	get = cs->cs_rbget;
681 again:
682 	n = cs->cs_rbput;	/* atomic			*/
683 	if(get == n)		/* nothing more on this line	*/
684 		continue;
685 	retval = 1;
686 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
687 	zc     = cs->cs_zc;
688 	tp     = cs->cs_ttyp;
689 	line   = &linesw[tp->t_line];
690 	/*
691 	 * Compute the number of interrupts in the receive ring.
692 	 * If the count is overlarge, we lost some events, and
693 	 * must advance to the first valid one.  It may get
694 	 * overwritten if more data are arriving, but this is
695 	 * too expensive to check and gains nothing (we already
696 	 * lost out; all we can do at this point is trade one
697 	 * kind of loss for another).
698 	 */
699 	n -= get;
700 	if(n > ZLRB_RING_SIZE) {
701 		zsoverrun(unit, &cs->cs_rotime, "ring");
702 		get += n - ZLRB_RING_SIZE;
703 		n    = ZLRB_RING_SIZE;
704 	}
705 	while(--n >= 0) {
706 		/* race to keep ahead of incoming interrupts */
707 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
708 		switch (ZRING_TYPE(c)) {
709 
710 		case ZRING_RINT:
711 			c = ZRING_VALUE(c);
712 			if(c & ZSRR1_DO)
713 				zsoverrun(unit, &cs->cs_fotime, "fifo");
714 			cc = c >> 8;
715 			if(c & ZSRR1_FE)
716 				cc |= TTY_FE;
717 			if(c & ZSRR1_PE)
718 				cc |= TTY_PE;
719 			line->l_rint(cc, tp);
720 			break;
721 
722 		case ZRING_XINT:
723 			/*
724 			 * Transmit done: change registers and resume,
725 			 * or clear BUSY.
726 			 */
727 			if(cs->cs_heldchange) {
728 				int sps;
729 
730 				sps = splzs();
731 				c = zc->zc_csr;
732 				if((c & ZSRR0_DCD) == 0)
733 					cs->cs_preg[3] &= ~ZSWR3_HFC;
734 				bcopy((caddr_t)cs->cs_preg,
735 				    (caddr_t)cs->cs_creg, 16);
736 				zs_loadchannelregs(zc, cs->cs_creg);
737 				splx(sps);
738 				cs->cs_heldchange = 0;
739 				if(cs->cs_heldtbc
740 					&& (tp->t_state & TS_TTSTOP) == 0) {
741 					cs->cs_tbc = cs->cs_heldtbc - 1;
742 					zc->zc_data = *cs->cs_tba++;
743 					goto again;
744 				}
745 			}
746 			tp->t_state &= ~TS_BUSY;
747 			if(tp->t_state & TS_FLUSH)
748 				tp->t_state &= ~TS_FLUSH;
749 			else ndflush(&tp->t_outq,cs->cs_tba
750 						- (caddr_t)tp->t_outq.c_cf);
751 			line->l_start(tp);
752 			break;
753 
754 		case ZRING_SINT:
755 			/*
756 			 * Status line change.  HFC bit is run in
757 			 * hardware interrupt, to avoid locking
758 			 * at splzs here.
759 			 */
760 			c = ZRING_VALUE(c);
761 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
762 				cc = (c & ZSRR0_DCD) != 0;
763 				if(line->l_modem(tp, cc) == 0)
764 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
765 							cc ? DMBIS : DMBIC);
766 			}
767 			cs->cs_rr0 = c;
768 			break;
769 
770 		default:
771 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
772 			    unit >> 1, (unit & 1) + 'a', c);
773 			break;
774 		}
775 	}
776 	cs->cs_rbget = get;
777 	goto again;
778     }
779     splx(s);
780     return (retval);
781 }
782 
783 int
784 zsioctl(dev, cmd, data, flag, p)
785 dev_t		dev;
786 u_long		cmd;
787 caddr_t		data;
788 int		flag;
789 struct proc	*p;
790 {
791 		 int			unit = ZS_UNIT(dev);
792 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
793 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
794 	register int			error, s;
795 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
796 
797 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
798 	if(error >= 0)
799 		return(error);
800 	error = ttioctl(tp, cmd, data, flag, p);
801 	if(error >= 0)
802 		return (error);
803 
804 	switch (cmd) {
805 	case TIOCSBRK:
806 		s = splzs();
807 		cs->cs_preg[5] |= ZSWR5_BREAK;
808 		cs->cs_creg[5] |= ZSWR5_BREAK;
809 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
810 		splx(s);
811 		break;
812 	case TIOCCBRK:
813 		s = splzs();
814 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
815 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
816 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
817 		splx(s);
818 		break;
819 	case TIOCGFLAGS: {
820 		int bits = 0;
821 
822 		if(cs->cs_softcar)
823 			bits |= TIOCFLAG_SOFTCAR;
824 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
825 			bits |= TIOCFLAG_CLOCAL;
826 		if(cs->cs_creg[3] & ZSWR3_HFC)
827 			bits |= TIOCFLAG_CRTSCTS;
828 		*(int *)data = bits;
829 		break;
830 	}
831 	case TIOCSFLAGS: {
832 		int userbits = 0;
833 
834 		error = suser(p->p_ucred, &p->p_acflag);
835 		if(error != 0)
836 			return (EPERM);
837 
838 		userbits = *(int *)data;
839 
840 		/*
841 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
842 		 # defaulting to software flow control.
843 		 */
844 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
845 			return(EINVAL);
846 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
847 			return(ENODEV);
848 
849 		s = splzs();
850 		if((userbits & TIOCFLAG_SOFTCAR)) {
851 			cs->cs_softcar = 1;	/* turn on softcar */
852 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
853 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
854 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
855 		}
856 		else if(userbits & TIOCFLAG_CLOCAL) {
857 			cs->cs_softcar = 0; 	/* turn off softcar */
858 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
859 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
860 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
861 			tp->t_termios.c_cflag |= CLOCAL;
862 		}
863 		if(userbits & TIOCFLAG_CRTSCTS) {
864 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
865 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
866 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
867 			cs->cs_preg[3] |= ZSWR3_HFC;
868 			cs->cs_creg[3] |= ZSWR3_HFC;
869 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
870 			tp->t_termios.c_cflag |= CRTSCTS;
871 		}
872 		else {
873 			/* no mdmbuf, so we must want software flow control */
874 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
875 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
876 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
877 			cs->cs_preg[3] &= ~ZSWR3_HFC;
878 			cs->cs_creg[3] &= ~ZSWR3_HFC;
879 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
880 			tp->t_termios.c_cflag &= ~CRTSCTS;
881 		}
882 		splx(s);
883 		break;
884 	}
885 	case TIOCSDTR:
886 		zs_modem(cs, ZSWR5_DTR, DMBIS);
887 		break;
888 	case TIOCCDTR:
889 		zs_modem(cs, ZSWR5_DTR, DMBIC);
890 		break;
891 	case TIOCMGET:
892 		zs_modem(cs, 0, DMGET);
893 		break;
894 	case TIOCMSET:
895 	case TIOCMBIS:
896 	case TIOCMBIC:
897 	default:
898 		return (ENOTTY);
899 	}
900 	return (0);
901 }
902 
903 /*
904  * Start or restart transmission.
905  */
906 static void
907 zsstart(tp)
908 register struct tty *tp;
909 {
910 	register struct zs_chanstate	*cs;
911 	register int			s, nch;
912 		 int			unit = ZS_UNIT(tp->t_dev);
913 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
914 
915 	cs = &zi->zi_cs[unit & 1];
916 	s  = spltty();
917 
918 	/*
919 	 * If currently active or delaying, no need to do anything.
920 	 */
921 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
922 		goto out;
923 
924 	/*
925 	 * If there are sleepers, and output has drained below low
926 	 * water mark, awaken.
927 	 */
928 	if(tp->t_outq.c_cc <= tp->t_lowat) {
929 		if(tp->t_state & TS_ASLEEP) {
930 			tp->t_state &= ~TS_ASLEEP;
931 			wakeup((caddr_t)&tp->t_outq);
932 		}
933 		selwakeup(&tp->t_wsel);
934 	}
935 
936 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
937 	if(nch) {
938 		register char *p = tp->t_outq.c_cf;
939 
940 		/* mark busy, enable tx done interrupts, & send first byte */
941 		tp->t_state |= TS_BUSY;
942 		(void) splzs();
943 		cs->cs_preg[1] |= ZSWR1_TIE;
944 		cs->cs_creg[1] |= ZSWR1_TIE;
945 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
946 		cs->cs_zc->zc_data = *p;
947 		cs->cs_tba = p + 1;
948 		cs->cs_tbc = nch - 1;
949 	} else {
950 		/*
951 		 * Nothing to send, turn off transmit done interrupts.
952 		 * This is useful if something is doing polled output.
953 		 */
954 		(void) splzs();
955 		cs->cs_preg[1] &= ~ZSWR1_TIE;
956 		cs->cs_creg[1] &= ~ZSWR1_TIE;
957 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
958 	}
959 out:
960 	splx(s);
961 }
962 
963 /*
964  * Stop output, e.g., for ^S or output flush.
965  */
966 void
967 zsstop(tp, flag)
968 register struct tty	*tp;
969 	 int		flag;
970 {
971 	register struct zs_chanstate	*cs;
972 	register int			s, unit = ZS_UNIT(tp->t_dev);
973 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
974 
975 	cs = &zi->zi_cs[unit & 1];
976 	s  = splzs();
977 	if(tp->t_state & TS_BUSY) {
978 		/*
979 		 * Device is transmitting; must stop it.
980 		 */
981 		cs->cs_tbc = 0;
982 		if ((tp->t_state & TS_TTSTOP) == 0)
983 			tp->t_state |= TS_FLUSH;
984 	}
985 	splx(s);
986 }
987 
988 /*
989  * Set ZS tty parameters from termios.
990  *
991  * This routine makes use of the fact that only registers
992  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
993  */
994 static int
995 zsparam(tp, t)
996 register struct tty	*tp;
997 register struct termios	*t;
998 {
999 		 int			unit = ZS_UNIT(tp->t_dev);
1000 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1001 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1002 		 int			cdiv, clkm, brgm, tcon;
1003 	register int			tmp, tmp5, cflag, s;
1004 
1005 	tmp  = t->c_ospeed;
1006 	tmp5 = t->c_ispeed;
1007 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1008 		return(EINVAL);
1009 	if(tmp == 0) {
1010 		/* stty 0 => drop DTR and RTS */
1011 		zs_modem(cs, 0, DMSET);
1012 		return(0);
1013 	}
1014 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1015 	if (tmp < 0)
1016 		return(EINVAL);
1017 	tp->t_ispeed = tp->t_ospeed = tmp;
1018 
1019 	cflag = tp->t_cflag = t->c_cflag;
1020 	if (cflag & CSTOPB)
1021 		cdiv |= ZSWR4_TWOSB;
1022 	else
1023 		cdiv |= ZSWR4_ONESB;
1024 	if (!(cflag & PARODD))
1025 		cdiv |= ZSWR4_EVENP;
1026 	if (cflag & PARENB)
1027 		cdiv |= ZSWR4_PARENB;
1028 
1029 	switch(cflag & CSIZE) {
1030 	case CS5:
1031 		tmp  = ZSWR3_RX_5;
1032 		tmp5 = ZSWR5_TX_5;
1033 		break;
1034 	case CS6:
1035 		tmp  = ZSWR3_RX_6;
1036 		tmp5 = ZSWR5_TX_6;
1037 		break;
1038 	case CS7:
1039 		tmp  = ZSWR3_RX_7;
1040 		tmp5 = ZSWR5_TX_7;
1041 		break;
1042 	case CS8:
1043 	default:
1044 		tmp  = ZSWR3_RX_8;
1045 		tmp5 = ZSWR5_TX_8;
1046 		break;
1047 	}
1048 	tmp  |= ZSWR3_RX_ENABLE;
1049 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1050 
1051 	/*
1052 	 * Block interrupts so that state will not
1053 	 * be altered until we are done setting it up.
1054 	 */
1055 	s = splzs();
1056 	cs->cs_preg[4]  = cdiv;
1057 	cs->cs_preg[11] = clkm;
1058 	cs->cs_preg[12] = tcon;
1059 	cs->cs_preg[13] = tcon >> 8;
1060 	cs->cs_preg[14] = brgm;
1061 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1062 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1063 	cs->cs_preg[10] = ZSWR10_NRZ;
1064 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1065 
1066 	/*
1067 	 * Output hardware flow control on the chip is horrendous: if
1068 	 * carrier detect drops, the receiver is disabled.  Hence we
1069 	 * can only do this when the carrier is on.
1070 	 */
1071 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1072 		tmp |= ZSWR3_HFC;
1073 	cs->cs_preg[3] = tmp;
1074 	cs->cs_preg[5] = tmp5;
1075 
1076 	/*
1077 	 * If nothing is being transmitted, set up new current values,
1078 	 * else mark them as pending.
1079 	 */
1080 	if(cs->cs_heldchange == 0) {
1081 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1082 			cs->cs_heldtbc = cs->cs_tbc;
1083 			cs->cs_tbc = 0;
1084 			cs->cs_heldchange = 1;
1085 		} else {
1086 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1087 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1088 		}
1089 	}
1090 	splx(s);
1091 	return (0);
1092 }
1093 
1094 /*
1095  * search for the best matching baudrate
1096  */
1097 static int
1098 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1099 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1100 {
1101 	int	bestdiff, bestbps, source;
1102 
1103 	bestdiff = bestbps = 0;
1104 	unit = (unit & 1) << 2;
1105 	for (source = 0; source < 4; ++source) {
1106 		long	freq = zs_frequencies[unit + source];
1107 		int	diff, bps, div, clkm, brgm, tcon;
1108 
1109 		bps = div = clkm = brgm = tcon = 0;
1110 		switch (source) {
1111 			case 0:	/* BRgen, PCLK */
1112 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1113 				break;
1114 			case 1:	/* BRgen, RTxC */
1115 				brgm = ZSWR14_BAUD_ENA;
1116 				break;
1117 			case 2: /* RTxC */
1118 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1119 				break;
1120 			case 3: /* TRxC */
1121 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1122 				break;
1123 		}
1124 		switch (source) {
1125 			case 0:
1126 			case 1:
1127 				div  = ZSWR4_CLK_X16;
1128 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1129 				tcon = BPS_TO_TCONST(freq, wanted);
1130 				if (tcon < 0)
1131 					tcon = 0;
1132 				bps  = TCONST_TO_BPS(freq, tcon);
1133 				break;
1134 			case 2:
1135 			case 3:
1136 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1137 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1138 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1139 
1140 				if (d1 < d2 && d1 < d3) {
1141 					div = ZSWR4_CLK_X16;
1142 					bps = b1;
1143 				} else if (d2 < d3 && d2 < d1) {
1144 					div = ZSWR4_CLK_X32;
1145 					bps = b2;
1146 				} else {
1147 					div = ZSWR4_CLK_X64;
1148 					bps = b3;
1149 				}
1150 				brgm = tcon = 0;
1151 				break;
1152 			}
1153 		}
1154 		diff = abs(bps - wanted);
1155 		if (!source || diff < bestdiff) {
1156 			*divisor   = div;
1157 			*clockmode = clkm;
1158 			*brgenmode = brgm;
1159 			*timeconst = tcon;
1160 			bestbps    = bps;
1161 			bestdiff   = diff;
1162 			if (diff == 0)
1163 				break;
1164 		}
1165 	}
1166 	/* Allow deviations upto 5% */
1167 	if (20 * bestdiff > wanted)
1168 		return -1;
1169 	return bestbps;
1170 }
1171 
1172 /*
1173  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1174  * in transmission, the change is deferred.
1175  */
1176 static int
1177 zs_modem(cs, bits, how)
1178 struct zs_chanstate	*cs;
1179 int			bits, how;
1180 {
1181 	int s, mbits;
1182 
1183 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1184 
1185 	s = splzs();
1186 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1187 
1188 	switch(how) {
1189 		case DMSET:
1190 				mbits  = bits;
1191 				break;
1192 		case DMBIS:
1193 				mbits |= bits;
1194 				break;
1195 		case DMBIC:
1196 				mbits &= ~bits;
1197 				break;
1198 		case DMGET:
1199 				splx(s);
1200 				return(mbits);
1201 	}
1202 
1203 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1204 	if(cs->cs_heldchange == 0) {
1205 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1206 			cs->cs_heldtbc = cs->cs_tbc;
1207 			cs->cs_tbc = 0;
1208 			cs->cs_heldchange = 1;
1209 		}
1210 		else {
1211 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1212 		}
1213 	}
1214 	splx(s);
1215 	return(0);
1216 }
1217 
1218 /*
1219  * Write the given register set to the given zs channel in the proper order.
1220  * The channel must not be transmitting at the time.  The receiver will
1221  * be disabled for the time it takes to write all the registers.
1222  */
1223 static void
1224 zs_loadchannelregs(zc, reg)
1225 volatile struct zschan	*zc;
1226 u_char			*reg;
1227 {
1228 	int i;
1229 
1230 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1231 	i = zc->zc_data;		/* drain fifo */
1232 	i = zc->zc_data;
1233 	i = zc->zc_data;
1234 	ZS_WRITE(zc,  4, reg[4]);
1235 	ZS_WRITE(zc, 10, reg[10]);
1236 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1237 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1238 	ZS_WRITE(zc,  1, reg[1]);
1239 	ZS_WRITE(zc,  9, reg[9]);
1240 	ZS_WRITE(zc, 11, reg[11]);
1241 	ZS_WRITE(zc, 12, reg[12]);
1242 	ZS_WRITE(zc, 13, reg[13]);
1243 	ZS_WRITE(zc, 14, reg[14]);
1244 	ZS_WRITE(zc, 15, reg[15]);
1245 	ZS_WRITE(zc,  3, reg[3]);
1246 	ZS_WRITE(zc,  5, reg[5]);
1247 }
1248 #endif /* NZS > 1 */
1249