xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: zs.c,v 1.24 1996/11/10 21:52:37 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, void *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 struct cfattach zs_ca = {
195 	sizeof(struct zs_softc), zsmatch, zsattach
196 };
197 
198 struct cfdriver zs_cd = {
199 	NULL, "zs", DV_TTY, NULL, 0
200 };
201 
202 /* {b,c}devsw[] function prototypes */
203 dev_type_open(zsopen);
204 dev_type_close(zsclose);
205 dev_type_read(zsread);
206 dev_type_write(zswrite);
207 dev_type_ioctl(zsioctl);
208 dev_type_tty(zstty);
209 
210 /* Interrupt handlers. */
211 int		zshard __P((long));
212 static int	zssoft __P((long));
213 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
215 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
216 
217 static struct zs_chanstate *zslist;
218 
219 /* Routines called from other code. */
220 static void	zsstart __P((struct tty *));
221 void		zsstop __P((struct tty *, int));
222 
223 /* Routines purely local to this driver. */
224 static void	zsoverrun __P((int, long *, char *));
225 static int	zsparam __P((struct tty *, struct termios *));
226 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
227 static int	zs_modem __P((struct zs_chanstate *, int, int));
228 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
229 
230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
231 
232 static int
233 zsmatch(pdp, match, auxp)
234 struct device	*pdp;
235 void		*match, *auxp;
236 {
237 	struct cfdata *cfp = match;
238 
239 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
240 		return(0);
241 	return(1);
242 }
243 
244 /*
245  * Attach a found zs.
246  */
247 static void
248 zsattach(parent, dev, aux)
249 struct device	*parent;
250 struct device	*dev;
251 void		*aux;
252 {
253 	register struct zs_softc		*zi;
254 	register struct zs_chanstate		*cs;
255 	register volatile struct zsdevice	*addr;
256 		 char				tmp;
257 
258 	addr      = (struct zsdevice *)AD_SCC;
259 	zi        = (struct zs_softc *)dev;
260 	zi->zi_zs = addr;
261 	cs        = zi->zi_cs;
262 
263 	/*
264 	 * Get the command register into a known state.
265 	 */
266 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
267 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
268 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
269 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
270 
271 	/*
272 	 * Do a hardware reset.
273 	 */
274 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
275 	delay(50000);	/*enough ? */
276 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
277 
278 	/*
279 	 * Initialize both channels
280 	 */
281 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
282 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
283 
284 	if(machineid & ATARI_TT) {
285 		/*
286 		 * ininitialise TT-MFP timer C: 307200Hz
287 		 * timer C and D share one control register:
288 		 *	bits 0-2 control timer D
289 		 *	bits 4-6 control timer C
290 		 */
291 		int cr = MFP2->mf_tcdcr & 7;
292 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
293 		MFP2->mf_tcdr  = 1;		/* counter 1     */
294 		cr |= T_Q004 << 4;		/* divisor 4     */
295 		MFP2->mf_tcdcr = cr;		/* start timer C */
296 		/*
297 		 * enable scc related interrupts
298 		 */
299 		SCU->sys_mask |= SCU_SCC;
300 
301 		zs_frequencies = zs_freqs_tt;
302 	} else if (machineid & ATARI_FALCON) {
303 		zs_frequencies = zs_freqs_falcon;
304 	} else if (machineid & ATARI_HADES) {
305 		zs_frequencies = zs_freqs_hades;
306 	} else {
307 		zs_frequencies = zs_freqs_generic;
308 	}
309 
310 	/* link into interrupt list with order (A,B) (B=A+1) */
311 	cs[0].cs_next = &cs[1];
312 	cs[1].cs_next = zslist;
313 	zslist        = cs;
314 
315 	cs->cs_unit  = 0;
316 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
317 	cs++;
318 	cs->cs_unit  = 1;
319 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
320 
321 	printf(": serial2 on channel a and modem2 on channel b\n");
322 }
323 
324 /*
325  * Open a zs serial port.
326  */
327 int
328 zsopen(dev, flags, mode, p)
329 dev_t		dev;
330 int		flags;
331 int		mode;
332 struct proc	*p;
333 {
334 	register struct tty		*tp;
335 	register struct zs_chanstate	*cs;
336 		 struct zs_softc	*zi;
337 		 int			unit = ZS_UNIT(dev);
338 		 int			zs = unit >> 1;
339 		 int			error, s;
340 
341 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
342 		return (ENXIO);
343 	cs = &zi->zi_cs[unit & 1];
344 
345 	/*
346 	 * When port A (ser02) is selected on the TT, make sure
347 	 * the port is enabled.
348 	 */
349 	if((machineid & ATARI_TT) && !(unit & 1))
350 		ym2149_ser2_select();
351 
352 	if (cs->cs_rbuf == NULL) {
353 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
354 								   M_WAITOK);
355 	}
356 
357 	tp = cs->cs_ttyp;
358 	if(tp == NULL) {
359 		cs->cs_ttyp = tp = ttymalloc();
360 		tty_attach(tp);
361 		tp->t_dev   = dev;
362 		tp->t_oproc = zsstart;
363 		tp->t_param = zsparam;
364 	}
365 
366 	s  = spltty();
367 	if((tp->t_state & TS_ISOPEN) == 0) {
368 		ttychars(tp);
369 		if(tp->t_ispeed == 0) {
370 			tp->t_iflag = TTYDEF_IFLAG;
371 			tp->t_oflag = TTYDEF_OFLAG;
372 			tp->t_cflag = TTYDEF_CFLAG;
373 			tp->t_lflag = TTYDEF_LFLAG;
374 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
375 		}
376 		(void)zsparam(tp, &tp->t_termios);
377 		ttsetwater(tp);
378 	}
379 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
380 			splx(s);
381 			return (EBUSY);
382 	}
383 	error = 0;
384 	for(;;) {
385 		/* loop, turning on the device, until carrier present */
386 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
387 
388 		/* May never get a status intr. if DCD already on. -gwr */
389 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
390 			tp->t_state |= TS_CARR_ON;
391 		if(cs->cs_softcar)
392 			tp->t_state |= TS_CARR_ON;
393 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
394 		    tp->t_state & TS_CARR_ON)
395 			break;
396 		tp->t_state |= TS_WOPEN;
397 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
398 		    ttopen, 0)) != 0) {
399 			if(!(tp->t_state & TS_ISOPEN)) {
400 				zs_modem(cs, 0, DMSET);
401 				tp->t_state &= ~TS_WOPEN;
402 				ttwakeup(tp);
403 			}
404 			splx(s);
405 			return error;
406 		}
407 	}
408 	splx(s);
409 	if(error == 0)
410 		error = linesw[tp->t_line].l_open(dev, tp);
411 	if(error)
412 		zs_modem(cs, 0, DMSET);
413 	return(error);
414 }
415 
416 /*
417  * Close a zs serial port.
418  */
419 int
420 zsclose(dev, flags, mode, p)
421 dev_t		dev;
422 int		flags;
423 int		mode;
424 struct proc	*p;
425 {
426 	register struct zs_chanstate	*cs;
427 	register struct tty		*tp;
428 		 struct zs_softc	*zi;
429 		 int			unit = ZS_UNIT(dev);
430 		 int			s;
431 
432 	zi = zs_cd.cd_devs[unit >> 1];
433 	cs = &zi->zi_cs[unit & 1];
434 	tp = cs->cs_ttyp;
435 	linesw[tp->t_line].l_close(tp, flags);
436 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
437 	    (tp->t_state & TS_ISOPEN) == 0) {
438 		zs_modem(cs, 0, DMSET);
439 		/* hold low for 1 second */
440 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
441 	}
442 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
443 		s = splzs();
444 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
445 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
446 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
447 		splx(s);
448 	}
449 	ttyclose(tp);
450 
451 	/*
452 	 * Drop all lines and cancel interrupts
453 	 */
454 	s = splzs();
455 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
456 	splx(s);
457 	return (0);
458 }
459 
460 /*
461  * Read/write zs serial port.
462  */
463 int
464 zsread(dev, uio, flags)
465 dev_t		dev;
466 struct uio	*uio;
467 int		flags;
468 {
469 	register struct zs_chanstate	*cs;
470 	register struct zs_softc	*zi;
471 	register struct tty		*tp;
472 		 int			unit;
473 
474 	unit = ZS_UNIT(dev);
475 	zi   = zs_cd.cd_devs[unit >> 1];
476 	cs   = &zi->zi_cs[unit & 1];
477 	tp   = cs->cs_ttyp;
478 
479 	return(linesw[tp->t_line].l_read(tp, uio, flags));
480 }
481 
482 int
483 zswrite(dev, uio, flags)
484 dev_t		dev;
485 struct uio	*uio;
486 int		flags;
487 {
488 	register struct zs_chanstate	*cs;
489 	register struct zs_softc	*zi;
490 	register struct tty		*tp;
491 		 int			unit;
492 
493 	unit = ZS_UNIT(dev);
494 	zi   = zs_cd.cd_devs[unit >> 1];
495 	cs   = &zi->zi_cs[unit & 1];
496 	tp   = cs->cs_ttyp;
497 
498 	return(linesw[tp->t_line].l_write(tp, uio, flags));
499 }
500 
501 struct tty *
502 zstty(dev)
503 dev_t	dev;
504 {
505 	register struct zs_chanstate	*cs;
506 	register struct zs_softc	*zi;
507 		 int			unit;
508 
509 	unit = ZS_UNIT(dev);
510 	zi   = zs_cd.cd_devs[unit >> 1];
511 	cs   = &zi->zi_cs[unit & 1];
512 	return(cs->cs_ttyp);
513 }
514 
515 /*
516  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
517  * channels are kept in (A,B) pairs.
518  *
519  * Do just a little, then get out; set a software interrupt if more
520  * work is needed.
521  *
522  * We deliberately ignore the vectoring Zilog gives us, and match up
523  * only the number of `reset interrupt under service' operations, not
524  * the order.
525  */
526 
527 int
528 zshard(sr)
529 long sr;
530 {
531 	register struct zs_chanstate	*a;
532 #define	b (a + 1)
533 	register volatile struct zschan *zc;
534 	register int			rr3, intflags = 0, v, i;
535 
536 	do {
537 	    intflags &= ~4;
538 	    for(a = zslist; a != NULL; a = b->cs_next) {
539 		rr3 = ZS_READ(a->cs_zc, 3);
540 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
541 			intflags |= 4|2;
542 			zc = a->cs_zc;
543 			i  = a->cs_rbput;
544 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
545 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
546 				intflags |= 1;
547 			}
548 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
549 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
550 				intflags |= 1;
551 			}
552 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
553 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
554 				intflags |= 1;
555 			}
556 			a->cs_rbput = i;
557 		}
558 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
559 			intflags |= 4|2;
560 			zc = b->cs_zc;
561 			i  = b->cs_rbput;
562 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
563 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
564 				intflags |= 1;
565 			}
566 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
567 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
568 				intflags |= 1;
569 			}
570 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
571 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
572 				intflags |= 1;
573 			}
574 			b->cs_rbput = i;
575 		}
576 	    }
577 	} while(intflags & 4);
578 #undef b
579 
580 	if(intflags & 1) {
581 		if(BASEPRI(sr)) {
582 			spl1();
583 			zsshortcuts++;
584 			return(zssoft(sr));
585 		}
586 		else if(!cb_scheduled) {
587 			cb_scheduled++;
588 			add_sicallback((si_farg)zssoft, 0, 0);
589 		}
590 	}
591 	return(intflags & 2);
592 }
593 
594 static int
595 zsrint(cs, zc)
596 register struct zs_chanstate	*cs;
597 register volatile struct zschan	*zc;
598 {
599 	register int c;
600 
601 	/*
602 	 * First read the status, because read of the received char
603 	 * destroy the status of this char.
604 	 */
605 	c = ZS_READ(zc, 1);
606 	c |= (zc->zc_data << 8);
607 
608 	/* clear receive error & interrupt condition */
609 	zc->zc_csr = ZSWR0_RESET_ERRORS;
610 	zc->zc_csr = ZSWR0_CLR_INTR;
611 
612 	return(ZRING_MAKE(ZRING_RINT, c));
613 }
614 
615 static int
616 zsxint(cs, zc)
617 register struct zs_chanstate	*cs;
618 register volatile struct zschan	*zc;
619 {
620 	register int i = cs->cs_tbc;
621 
622 	if(i == 0) {
623 		zc->zc_csr = ZSWR0_RESET_TXINT;
624 		zc->zc_csr = ZSWR0_CLR_INTR;
625 		return(ZRING_MAKE(ZRING_XINT, 0));
626 	}
627 	cs->cs_tbc = i - 1;
628 	zc->zc_data = *cs->cs_tba++;
629 	zc->zc_csr = ZSWR0_CLR_INTR;
630 	return (0);
631 }
632 
633 static int
634 zssint(cs, zc)
635 register struct zs_chanstate	*cs;
636 register volatile struct zschan	*zc;
637 {
638 	register int rr0;
639 
640 	rr0 = zc->zc_csr;
641 	zc->zc_csr = ZSWR0_RESET_STATUS;
642 	zc->zc_csr = ZSWR0_CLR_INTR;
643 	/*
644 	 * The chip's hardware flow control is, as noted in zsreg.h,
645 	 * busted---if the DCD line goes low the chip shuts off the
646 	 * receiver (!).  If we want hardware CTS flow control but do
647 	 * not have it, and carrier is now on, turn HFC on; if we have
648 	 * HFC now but carrier has gone low, turn it off.
649 	 */
650 	if(rr0 & ZSRR0_DCD) {
651 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
652 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
653 			cs->cs_creg[3] |= ZSWR3_HFC;
654 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
655 		}
656 	}
657 	else {
658 		if (cs->cs_creg[3] & ZSWR3_HFC) {
659 			cs->cs_creg[3] &= ~ZSWR3_HFC;
660 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
661 		}
662 	}
663 	return(ZRING_MAKE(ZRING_SINT, rr0));
664 }
665 
666 /*
667  * Print out a ring or fifo overrun error message.
668  */
669 static void
670 zsoverrun(unit, ptime, what)
671 int	unit;
672 long	*ptime;
673 char	*what;
674 {
675 
676 	if(*ptime != time.tv_sec) {
677 		*ptime = time.tv_sec;
678 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
679 		    (unit & 1) + 'a', what);
680 	}
681 }
682 
683 /*
684  * ZS software interrupt.  Scan all channels for deferred interrupts.
685  */
686 int
687 zssoft(sr)
688 long sr;
689 {
690     register struct zs_chanstate	*cs;
691     register volatile struct zschan	*zc;
692     register struct linesw		*line;
693     register struct tty			*tp;
694     register int			get, n, c, cc, unit, s;
695  	     int			retval = 0;
696 
697     cb_scheduled = 0;
698     s = spltty();
699     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
700 	get = cs->cs_rbget;
701 again:
702 	n = cs->cs_rbput;	/* atomic			*/
703 	if(get == n)		/* nothing more on this line	*/
704 		continue;
705 	retval = 1;
706 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
707 	zc     = cs->cs_zc;
708 	tp     = cs->cs_ttyp;
709 	line   = &linesw[tp->t_line];
710 	/*
711 	 * Compute the number of interrupts in the receive ring.
712 	 * If the count is overlarge, we lost some events, and
713 	 * must advance to the first valid one.  It may get
714 	 * overwritten if more data are arriving, but this is
715 	 * too expensive to check and gains nothing (we already
716 	 * lost out; all we can do at this point is trade one
717 	 * kind of loss for another).
718 	 */
719 	n -= get;
720 	if(n > ZLRB_RING_SIZE) {
721 		zsoverrun(unit, &cs->cs_rotime, "ring");
722 		get += n - ZLRB_RING_SIZE;
723 		n    = ZLRB_RING_SIZE;
724 	}
725 	while(--n >= 0) {
726 		/* race to keep ahead of incoming interrupts */
727 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
728 		switch (ZRING_TYPE(c)) {
729 
730 		case ZRING_RINT:
731 			c = ZRING_VALUE(c);
732 			if(c & ZSRR1_DO)
733 				zsoverrun(unit, &cs->cs_fotime, "fifo");
734 			cc = c >> 8;
735 			if(c & ZSRR1_FE)
736 				cc |= TTY_FE;
737 			if(c & ZSRR1_PE)
738 				cc |= TTY_PE;
739 			line->l_rint(cc, tp);
740 			break;
741 
742 		case ZRING_XINT:
743 			/*
744 			 * Transmit done: change registers and resume,
745 			 * or clear BUSY.
746 			 */
747 			if(cs->cs_heldchange) {
748 				int sps;
749 
750 				sps = splzs();
751 				c = zc->zc_csr;
752 				if((c & ZSRR0_DCD) == 0)
753 					cs->cs_preg[3] &= ~ZSWR3_HFC;
754 				bcopy((caddr_t)cs->cs_preg,
755 				    (caddr_t)cs->cs_creg, 16);
756 				zs_loadchannelregs(zc, cs->cs_creg);
757 				splx(sps);
758 				cs->cs_heldchange = 0;
759 				if(cs->cs_heldtbc
760 					&& (tp->t_state & TS_TTSTOP) == 0) {
761 					cs->cs_tbc = cs->cs_heldtbc - 1;
762 					zc->zc_data = *cs->cs_tba++;
763 					goto again;
764 				}
765 			}
766 			tp->t_state &= ~TS_BUSY;
767 			if(tp->t_state & TS_FLUSH)
768 				tp->t_state &= ~TS_FLUSH;
769 			else ndflush(&tp->t_outq,cs->cs_tba
770 						- (caddr_t)tp->t_outq.c_cf);
771 			line->l_start(tp);
772 			break;
773 
774 		case ZRING_SINT:
775 			/*
776 			 * Status line change.  HFC bit is run in
777 			 * hardware interrupt, to avoid locking
778 			 * at splzs here.
779 			 */
780 			c = ZRING_VALUE(c);
781 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
782 				cc = (c & ZSRR0_DCD) != 0;
783 				if(line->l_modem(tp, cc) == 0)
784 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
785 							cc ? DMBIS : DMBIC);
786 			}
787 			cs->cs_rr0 = c;
788 			break;
789 
790 		default:
791 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
792 			    unit >> 1, (unit & 1) + 'a', c);
793 			break;
794 		}
795 	}
796 	cs->cs_rbget = get;
797 	goto again;
798     }
799     splx(s);
800     return (retval);
801 }
802 
803 int
804 zsioctl(dev, cmd, data, flag, p)
805 dev_t		dev;
806 u_long		cmd;
807 caddr_t		data;
808 int		flag;
809 struct proc	*p;
810 {
811 		 int			unit = ZS_UNIT(dev);
812 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
813 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
814 	register int			error, s;
815 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
816 
817 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
818 	if(error >= 0)
819 		return(error);
820 	error = ttioctl(tp, cmd, data, flag, p);
821 	if(error >= 0)
822 		return (error);
823 
824 	switch (cmd) {
825 	case TIOCSBRK:
826 		s = splzs();
827 		cs->cs_preg[5] |= ZSWR5_BREAK;
828 		cs->cs_creg[5] |= ZSWR5_BREAK;
829 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
830 		splx(s);
831 		break;
832 	case TIOCCBRK:
833 		s = splzs();
834 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
835 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
836 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
837 		splx(s);
838 		break;
839 	case TIOCGFLAGS: {
840 		int bits = 0;
841 
842 		if(cs->cs_softcar)
843 			bits |= TIOCFLAG_SOFTCAR;
844 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
845 			bits |= TIOCFLAG_CLOCAL;
846 		if(cs->cs_creg[3] & ZSWR3_HFC)
847 			bits |= TIOCFLAG_CRTSCTS;
848 		*(int *)data = bits;
849 		break;
850 	}
851 	case TIOCSFLAGS: {
852 		int userbits = 0;
853 
854 		error = suser(p->p_ucred, &p->p_acflag);
855 		if(error != 0)
856 			return (EPERM);
857 
858 		userbits = *(int *)data;
859 
860 		/*
861 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
862 		 # defaulting to software flow control.
863 		 */
864 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
865 			return(EINVAL);
866 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
867 			return(ENODEV);
868 
869 		s = splzs();
870 		if((userbits & TIOCFLAG_SOFTCAR)) {
871 			cs->cs_softcar = 1;	/* turn on softcar */
872 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
873 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
874 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
875 		}
876 		else if(userbits & TIOCFLAG_CLOCAL) {
877 			cs->cs_softcar = 0; 	/* turn off softcar */
878 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
879 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
880 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
881 			tp->t_termios.c_cflag |= CLOCAL;
882 		}
883 		if(userbits & TIOCFLAG_CRTSCTS) {
884 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
885 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
886 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
887 			cs->cs_preg[3] |= ZSWR3_HFC;
888 			cs->cs_creg[3] |= ZSWR3_HFC;
889 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
890 			tp->t_termios.c_cflag |= CRTSCTS;
891 		}
892 		else {
893 			/* no mdmbuf, so we must want software flow control */
894 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
895 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
896 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
897 			cs->cs_preg[3] &= ~ZSWR3_HFC;
898 			cs->cs_creg[3] &= ~ZSWR3_HFC;
899 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
900 			tp->t_termios.c_cflag &= ~CRTSCTS;
901 		}
902 		splx(s);
903 		break;
904 	}
905 	case TIOCSDTR:
906 		zs_modem(cs, ZSWR5_DTR, DMBIS);
907 		break;
908 	case TIOCCDTR:
909 		zs_modem(cs, ZSWR5_DTR, DMBIC);
910 		break;
911 	case TIOCMGET:
912 		zs_modem(cs, 0, DMGET);
913 		break;
914 	case TIOCMSET:
915 	case TIOCMBIS:
916 	case TIOCMBIC:
917 	default:
918 		return (ENOTTY);
919 	}
920 	return (0);
921 }
922 
923 /*
924  * Start or restart transmission.
925  */
926 static void
927 zsstart(tp)
928 register struct tty *tp;
929 {
930 	register struct zs_chanstate	*cs;
931 	register int			s, nch;
932 		 int			unit = ZS_UNIT(tp->t_dev);
933 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
934 
935 	cs = &zi->zi_cs[unit & 1];
936 	s  = spltty();
937 
938 	/*
939 	 * If currently active or delaying, no need to do anything.
940 	 */
941 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
942 		goto out;
943 
944 	/*
945 	 * If there are sleepers, and output has drained below low
946 	 * water mark, awaken.
947 	 */
948 	if(tp->t_outq.c_cc <= tp->t_lowat) {
949 		if(tp->t_state & TS_ASLEEP) {
950 			tp->t_state &= ~TS_ASLEEP;
951 			wakeup((caddr_t)&tp->t_outq);
952 		}
953 		selwakeup(&tp->t_wsel);
954 	}
955 
956 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
957 	if(nch) {
958 		register char *p = tp->t_outq.c_cf;
959 
960 		/* mark busy, enable tx done interrupts, & send first byte */
961 		tp->t_state |= TS_BUSY;
962 		(void) splzs();
963 		cs->cs_preg[1] |= ZSWR1_TIE;
964 		cs->cs_creg[1] |= ZSWR1_TIE;
965 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966 		cs->cs_zc->zc_data = *p;
967 		cs->cs_tba = p + 1;
968 		cs->cs_tbc = nch - 1;
969 	} else {
970 		/*
971 		 * Nothing to send, turn off transmit done interrupts.
972 		 * This is useful if something is doing polled output.
973 		 */
974 		(void) splzs();
975 		cs->cs_preg[1] &= ~ZSWR1_TIE;
976 		cs->cs_creg[1] &= ~ZSWR1_TIE;
977 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
978 	}
979 out:
980 	splx(s);
981 }
982 
983 /*
984  * Stop output, e.g., for ^S or output flush.
985  */
986 void
987 zsstop(tp, flag)
988 register struct tty	*tp;
989 	 int		flag;
990 {
991 	register struct zs_chanstate	*cs;
992 	register int			s, unit = ZS_UNIT(tp->t_dev);
993 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
994 
995 	cs = &zi->zi_cs[unit & 1];
996 	s  = splzs();
997 	if(tp->t_state & TS_BUSY) {
998 		/*
999 		 * Device is transmitting; must stop it.
1000 		 */
1001 		cs->cs_tbc = 0;
1002 		if ((tp->t_state & TS_TTSTOP) == 0)
1003 			tp->t_state |= TS_FLUSH;
1004 	}
1005 	splx(s);
1006 }
1007 
1008 /*
1009  * Set ZS tty parameters from termios.
1010  *
1011  * This routine makes use of the fact that only registers
1012  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1013  */
1014 static int
1015 zsparam(tp, t)
1016 register struct tty	*tp;
1017 register struct termios	*t;
1018 {
1019 		 int			unit = ZS_UNIT(tp->t_dev);
1020 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1021 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1022 		 int			cdiv, clkm, brgm, tcon;
1023 	register int			tmp, tmp5, cflag, s;
1024 
1025 	tmp  = t->c_ospeed;
1026 	tmp5 = t->c_ispeed;
1027 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1028 		return(EINVAL);
1029 	if(tmp == 0) {
1030 		/* stty 0 => drop DTR and RTS */
1031 		zs_modem(cs, 0, DMSET);
1032 		return(0);
1033 	}
1034 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1035 	if (tmp < 0)
1036 		return(EINVAL);
1037 	tp->t_ispeed = tp->t_ospeed = tmp;
1038 
1039 	cflag = tp->t_cflag = t->c_cflag;
1040 	if (cflag & CSTOPB)
1041 		cdiv |= ZSWR4_TWOSB;
1042 	else
1043 		cdiv |= ZSWR4_ONESB;
1044 	if (!(cflag & PARODD))
1045 		cdiv |= ZSWR4_EVENP;
1046 	if (cflag & PARENB)
1047 		cdiv |= ZSWR4_PARENB;
1048 
1049 	switch(cflag & CSIZE) {
1050 	case CS5:
1051 		tmp  = ZSWR3_RX_5;
1052 		tmp5 = ZSWR5_TX_5;
1053 		break;
1054 	case CS6:
1055 		tmp  = ZSWR3_RX_6;
1056 		tmp5 = ZSWR5_TX_6;
1057 		break;
1058 	case CS7:
1059 		tmp  = ZSWR3_RX_7;
1060 		tmp5 = ZSWR5_TX_7;
1061 		break;
1062 	case CS8:
1063 	default:
1064 		tmp  = ZSWR3_RX_8;
1065 		tmp5 = ZSWR5_TX_8;
1066 		break;
1067 	}
1068 	tmp  |= ZSWR3_RX_ENABLE;
1069 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1070 
1071 	/*
1072 	 * Block interrupts so that state will not
1073 	 * be altered until we are done setting it up.
1074 	 */
1075 	s = splzs();
1076 	cs->cs_preg[4]  = cdiv;
1077 	cs->cs_preg[11] = clkm;
1078 	cs->cs_preg[12] = tcon;
1079 	cs->cs_preg[13] = tcon >> 8;
1080 	cs->cs_preg[14] = brgm;
1081 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1082 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1083 	cs->cs_preg[10] = ZSWR10_NRZ;
1084 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1085 
1086 	/*
1087 	 * Output hardware flow control on the chip is horrendous: if
1088 	 * carrier detect drops, the receiver is disabled.  Hence we
1089 	 * can only do this when the carrier is on.
1090 	 */
1091 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1092 		tmp |= ZSWR3_HFC;
1093 	cs->cs_preg[3] = tmp;
1094 	cs->cs_preg[5] = tmp5;
1095 
1096 	/*
1097 	 * If nothing is being transmitted, set up new current values,
1098 	 * else mark them as pending.
1099 	 */
1100 	if(cs->cs_heldchange == 0) {
1101 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1102 			cs->cs_heldtbc = cs->cs_tbc;
1103 			cs->cs_tbc = 0;
1104 			cs->cs_heldchange = 1;
1105 		} else {
1106 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1107 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1108 		}
1109 	}
1110 	splx(s);
1111 	return (0);
1112 }
1113 
1114 /*
1115  * search for the best matching baudrate
1116  */
1117 static int
1118 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1119 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1120 {
1121 	int	bestdiff, bestbps, source;
1122 
1123 	bestdiff = bestbps = 0;
1124 	unit = (unit & 1) << 2;
1125 	for (source = 0; source < 4; ++source) {
1126 		long	freq = zs_frequencies[unit + source];
1127 		int	diff, bps, div, clkm, brgm, tcon;
1128 
1129 		bps = div = clkm = brgm = tcon = 0;
1130 		switch (source) {
1131 			case 0:	/* BRgen, PCLK */
1132 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1133 				break;
1134 			case 1:	/* BRgen, RTxC */
1135 				brgm = ZSWR14_BAUD_ENA;
1136 				break;
1137 			case 2: /* RTxC */
1138 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1139 				break;
1140 			case 3: /* TRxC */
1141 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1142 				break;
1143 		}
1144 		switch (source) {
1145 			case 0:
1146 			case 1:
1147 				div  = ZSWR4_CLK_X16;
1148 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1149 				tcon = BPS_TO_TCONST(freq, wanted);
1150 				if (tcon < 0)
1151 					tcon = 0;
1152 				bps  = TCONST_TO_BPS(freq, tcon);
1153 				break;
1154 			case 2:
1155 			case 3:
1156 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1157 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1158 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1159 
1160 				if (d1 < d2 && d1 < d3) {
1161 					div = ZSWR4_CLK_X16;
1162 					bps = b1;
1163 				} else if (d2 < d3 && d2 < d1) {
1164 					div = ZSWR4_CLK_X32;
1165 					bps = b2;
1166 				} else {
1167 					div = ZSWR4_CLK_X64;
1168 					bps = b3;
1169 				}
1170 				brgm = tcon = 0;
1171 				break;
1172 			}
1173 		}
1174 		diff = abs(bps - wanted);
1175 		if (!source || diff < bestdiff) {
1176 			*divisor   = div;
1177 			*clockmode = clkm;
1178 			*brgenmode = brgm;
1179 			*timeconst = tcon;
1180 			bestbps    = bps;
1181 			bestdiff   = diff;
1182 			if (diff == 0)
1183 				break;
1184 		}
1185 	}
1186 	/* Allow deviations upto 5% */
1187 	if (20 * bestdiff > wanted)
1188 		return -1;
1189 	return bestbps;
1190 }
1191 
1192 /*
1193  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1194  * in transmission, the change is deferred.
1195  */
1196 static int
1197 zs_modem(cs, bits, how)
1198 struct zs_chanstate	*cs;
1199 int			bits, how;
1200 {
1201 	int s, mbits;
1202 
1203 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1204 
1205 	s = splzs();
1206 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1207 
1208 	switch(how) {
1209 		case DMSET:
1210 				mbits  = bits;
1211 				break;
1212 		case DMBIS:
1213 				mbits |= bits;
1214 				break;
1215 		case DMBIC:
1216 				mbits &= ~bits;
1217 				break;
1218 		case DMGET:
1219 				splx(s);
1220 				return(mbits);
1221 	}
1222 
1223 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1224 	if(cs->cs_heldchange == 0) {
1225 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1226 			cs->cs_heldtbc = cs->cs_tbc;
1227 			cs->cs_tbc = 0;
1228 			cs->cs_heldchange = 1;
1229 		}
1230 		else {
1231 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1232 		}
1233 	}
1234 	splx(s);
1235 	return(0);
1236 }
1237 
1238 /*
1239  * Write the given register set to the given zs channel in the proper order.
1240  * The channel must not be transmitting at the time.  The receiver will
1241  * be disabled for the time it takes to write all the registers.
1242  */
1243 static void
1244 zs_loadchannelregs(zc, reg)
1245 volatile struct zschan	*zc;
1246 u_char			*reg;
1247 {
1248 	int i;
1249 
1250 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1251 	i = zc->zc_data;		/* drain fifo */
1252 	i = zc->zc_data;
1253 	i = zc->zc_data;
1254 	ZS_WRITE(zc,  4, reg[4]);
1255 	ZS_WRITE(zc, 10, reg[10]);
1256 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1257 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1258 	ZS_WRITE(zc,  1, reg[1]);
1259 	ZS_WRITE(zc,  9, reg[9]);
1260 	ZS_WRITE(zc, 11, reg[11]);
1261 	ZS_WRITE(zc, 12, reg[12]);
1262 	ZS_WRITE(zc, 13, reg[13]);
1263 	ZS_WRITE(zc, 14, reg[14]);
1264 	ZS_WRITE(zc, 15, reg[15]);
1265 	ZS_WRITE(zc,  3, reg[3]);
1266 	ZS_WRITE(zc,  5, reg[5]);
1267 }
1268 #endif /* NZS > 1 */
1269