xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: zs.c,v 1.31 2000/03/29 14:19:23 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 struct cfattach zs_ca = {
195 	sizeof(struct zs_softc), zsmatch, zsattach
196 };
197 
198 extern struct cfdriver zs_cd;
199 
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_ioctl(zsioctl);
206 dev_type_tty(zstty);
207 
208 /* Interrupt handlers. */
209 int		zshard __P((long));
210 static int	zssoft __P((long));
211 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
212 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
214 
215 static struct zs_chanstate *zslist;
216 
217 /* Routines called from other code. */
218 static void	zsstart __P((struct tty *));
219 void		zsstop __P((struct tty *, int));
220 
221 /* Routines purely local to this driver. */
222 static void	zsoverrun __P((int, long *, char *));
223 static int	zsparam __P((struct tty *, struct termios *));
224 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
225 static int	zs_modem __P((struct zs_chanstate *, int, int));
226 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
227 static void	zs_shutdown __P((struct zs_chanstate *));
228 
229 static int zsshortcuts;	/* number of "shortcut" software interrupts */
230 
231 static int
232 zsmatch(pdp, cfp, auxp)
233 struct device	*pdp;
234 struct cfdata	*cfp;
235 void		*auxp;
236 {
237 	static int	zs_matched = 0;
238 
239 	if(strcmp("zs", auxp) || zs_matched)
240 		return(0);
241 	zs_matched = 1;
242 	return(1);
243 }
244 
245 /*
246  * Attach a found zs.
247  */
248 static void
249 zsattach(parent, dev, aux)
250 struct device	*parent;
251 struct device	*dev;
252 void		*aux;
253 {
254 	register struct zs_softc		*zi;
255 	register struct zs_chanstate		*cs;
256 	register volatile struct zsdevice	*addr;
257 		 char				tmp;
258 
259 	addr      = (struct zsdevice *)AD_SCC;
260 	zi        = (struct zs_softc *)dev;
261 	zi->zi_zs = addr;
262 	cs        = zi->zi_cs;
263 
264 	/*
265 	 * Get the command register into a known state.
266 	 */
267 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
268 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
270 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271 
272 	/*
273 	 * Do a hardware reset.
274 	 */
275 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
276 	delay(50000);	/*enough ? */
277 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
278 
279 	/*
280 	 * Initialize both channels
281 	 */
282 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
283 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
284 
285 	if(machineid & ATARI_TT) {
286 		/*
287 		 * ininitialise TT-MFP timer C: 307200Hz
288 		 * timer C and D share one control register:
289 		 *	bits 0-2 control timer D
290 		 *	bits 4-6 control timer C
291 		 */
292 		int cr = MFP2->mf_tcdcr & 7;
293 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
294 		MFP2->mf_tcdr  = 1;		/* counter 1     */
295 		cr |= T_Q004 << 4;		/* divisor 4     */
296 		MFP2->mf_tcdcr = cr;		/* start timer C */
297 		/*
298 		 * enable scc related interrupts
299 		 */
300 		SCU->vme_mask |= SCU_SCC;
301 
302 		zs_frequencies = zs_freqs_tt;
303 	} else if (machineid & ATARI_FALCON) {
304 		zs_frequencies = zs_freqs_falcon;
305 	} else if (machineid & ATARI_HADES) {
306 		zs_frequencies = zs_freqs_hades;
307 	} else {
308 		zs_frequencies = zs_freqs_generic;
309 	}
310 
311 	/* link into interrupt list with order (A,B) (B=A+1) */
312 	cs[0].cs_next = &cs[1];
313 	cs[1].cs_next = zslist;
314 	zslist        = cs;
315 
316 	cs->cs_unit  = 0;
317 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
318 	cs++;
319 	cs->cs_unit  = 1;
320 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
321 
322 	printf(": serial2 on channel a and modem2 on channel b\n");
323 }
324 
325 /*
326  * Open a zs serial port.
327  */
328 int
329 zsopen(dev, flags, mode, p)
330 dev_t		dev;
331 int		flags;
332 int		mode;
333 struct proc	*p;
334 {
335 	register struct tty		*tp;
336 	register struct zs_chanstate	*cs;
337 		 struct zs_softc	*zi;
338 		 int			unit = ZS_UNIT(dev);
339 		 int			zs = unit >> 1;
340 		 int			error, s;
341 
342 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
343 		return (ENXIO);
344 	cs = &zi->zi_cs[unit & 1];
345 
346 	/*
347 	 * When port A (ser02) is selected on the TT, make sure
348 	 * the port is enabled.
349 	 */
350 	if((machineid & ATARI_TT) && !(unit & 1))
351 		ym2149_ser2(1);
352 
353 	if (cs->cs_rbuf == NULL) {
354 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
355 								   M_WAITOK);
356 	}
357 
358 	tp = cs->cs_ttyp;
359 	if(tp == NULL) {
360 		cs->cs_ttyp = tp = ttymalloc();
361 		tty_attach(tp);
362 		tp->t_dev   = dev;
363 		tp->t_oproc = zsstart;
364 		tp->t_param = zsparam;
365 	}
366 
367 	if ((tp->t_state & TS_ISOPEN) &&
368 	    (tp->t_state & TS_XCLUDE) &&
369 	    p->p_ucred->cr_uid != 0)
370 		return (EBUSY);
371 
372 	s  = spltty();
373 
374 	/*
375 	 * Do the following iff this is a first open.
376 	 */
377 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
378 		if(tp->t_ispeed == 0) {
379 			tp->t_iflag = TTYDEF_IFLAG;
380 			tp->t_oflag = TTYDEF_OFLAG;
381 			tp->t_cflag = TTYDEF_CFLAG;
382 			tp->t_lflag = TTYDEF_LFLAG;
383 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
384 		}
385 		ttychars(tp);
386 		ttsetwater(tp);
387 
388 		(void)zsparam(tp, &tp->t_termios);
389 
390 		/*
391 		 * Turn on DTR.  We must always do this, even if carrier is not
392 		 * present, because otherwise we'd have to use TIOCSDTR
393 		 * immediately after setting CLOCAL, which applications do not
394 		 * expect.  We always assert DTR while the device is open
395 		 * unless explicitly requested to deassert it.
396 		 */
397 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
398 		/* May never get a status intr. if DCD already on. -gwr */
399 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
400 			tp->t_state |= TS_CARR_ON;
401 		if(cs->cs_softcar)
402 			tp->t_state |= TS_CARR_ON;
403 	}
404 
405 	splx(s);
406 
407 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
408 	if (error)
409 		goto bad;
410 
411 	error = linesw[tp->t_line].l_open(dev, tp);
412 	if(error)
413 		goto bad;
414 	return (0);
415 
416 bad:
417 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
418 		/*
419 		 * We failed to open the device, and nobody else had it opened.
420 		 * Clean up the state as appropriate.
421 		 */
422 		zs_shutdown(cs);
423 	}
424 	return(error);
425 }
426 
427 /*
428  * Close a zs serial port.
429  */
430 int
431 zsclose(dev, flags, mode, p)
432 dev_t		dev;
433 int		flags;
434 int		mode;
435 struct proc	*p;
436 {
437 	register struct zs_chanstate	*cs;
438 	register struct tty		*tp;
439 		 struct zs_softc	*zi;
440 		 int			unit = ZS_UNIT(dev);
441 
442 	zi = zs_cd.cd_devs[unit >> 1];
443 	cs = &zi->zi_cs[unit & 1];
444 	tp = cs->cs_ttyp;
445 
446 	linesw[tp->t_line].l_close(tp, flags);
447 	ttyclose(tp);
448 
449 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
450 		/*
451 		 * Although we got a last close, the device may still be in
452 		 * use; e.g. if this was the dialout node, and there are still
453 		 * processes waiting for carrier on the non-dialout node.
454 		 */
455 		zs_shutdown(cs);
456 	}
457 	return (0);
458 }
459 
460 /*
461  * Read/write zs serial port.
462  */
463 int
464 zsread(dev, uio, flags)
465 dev_t		dev;
466 struct uio	*uio;
467 int		flags;
468 {
469 	register struct zs_chanstate	*cs;
470 	register struct zs_softc	*zi;
471 	register struct tty		*tp;
472 		 int			unit;
473 
474 	unit = ZS_UNIT(dev);
475 	zi   = zs_cd.cd_devs[unit >> 1];
476 	cs   = &zi->zi_cs[unit & 1];
477 	tp   = cs->cs_ttyp;
478 
479 	return(linesw[tp->t_line].l_read(tp, uio, flags));
480 }
481 
482 int
483 zswrite(dev, uio, flags)
484 dev_t		dev;
485 struct uio	*uio;
486 int		flags;
487 {
488 	register struct zs_chanstate	*cs;
489 	register struct zs_softc	*zi;
490 	register struct tty		*tp;
491 		 int			unit;
492 
493 	unit = ZS_UNIT(dev);
494 	zi   = zs_cd.cd_devs[unit >> 1];
495 	cs   = &zi->zi_cs[unit & 1];
496 	tp   = cs->cs_ttyp;
497 
498 	return(linesw[tp->t_line].l_write(tp, uio, flags));
499 }
500 
501 struct tty *
502 zstty(dev)
503 dev_t	dev;
504 {
505 	register struct zs_chanstate	*cs;
506 	register struct zs_softc	*zi;
507 		 int			unit;
508 
509 	unit = ZS_UNIT(dev);
510 	zi   = zs_cd.cd_devs[unit >> 1];
511 	cs   = &zi->zi_cs[unit & 1];
512 	return(cs->cs_ttyp);
513 }
514 
515 /*
516  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
517  * channels are kept in (A,B) pairs.
518  *
519  * Do just a little, then get out; set a software interrupt if more
520  * work is needed.
521  *
522  * We deliberately ignore the vectoring Zilog gives us, and match up
523  * only the number of `reset interrupt under service' operations, not
524  * the order.
525  */
526 
527 int
528 zshard(sr)
529 long sr;
530 {
531 	register struct zs_chanstate	*a;
532 #define	b (a + 1)
533 	register volatile struct zschan *zc;
534 	register int			rr3, intflags = 0, v, i;
535 
536 	do {
537 	    intflags &= ~4;
538 	    for(a = zslist; a != NULL; a = b->cs_next) {
539 		rr3 = ZS_READ(a->cs_zc, 3);
540 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
541 			intflags |= 4|2;
542 			zc = a->cs_zc;
543 			i  = a->cs_rbput;
544 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
545 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
546 				intflags |= 1;
547 			}
548 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
549 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
550 				intflags |= 1;
551 			}
552 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
553 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
554 				intflags |= 1;
555 			}
556 			a->cs_rbput = i;
557 		}
558 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
559 			intflags |= 4|2;
560 			zc = b->cs_zc;
561 			i  = b->cs_rbput;
562 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
563 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
564 				intflags |= 1;
565 			}
566 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
567 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
568 				intflags |= 1;
569 			}
570 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
571 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
572 				intflags |= 1;
573 			}
574 			b->cs_rbput = i;
575 		}
576 	    }
577 	} while(intflags & 4);
578 #undef b
579 
580 	if(intflags & 1) {
581 		if(BASEPRI(sr)) {
582 			spl1();
583 			zsshortcuts++;
584 			return(zssoft(sr));
585 		}
586 		else if(!cb_scheduled) {
587 			cb_scheduled++;
588 			add_sicallback((si_farg)zssoft, 0, 0);
589 		}
590 	}
591 	return(intflags & 2);
592 }
593 
594 static int
595 zsrint(cs, zc)
596 register struct zs_chanstate	*cs;
597 register volatile struct zschan	*zc;
598 {
599 	register int c;
600 
601 	/*
602 	 * First read the status, because read of the received char
603 	 * destroy the status of this char.
604 	 */
605 	c = ZS_READ(zc, 1);
606 	c |= (zc->zc_data << 8);
607 
608 	/* clear receive error & interrupt condition */
609 	zc->zc_csr = ZSWR0_RESET_ERRORS;
610 	zc->zc_csr = ZSWR0_CLR_INTR;
611 
612 	return(ZRING_MAKE(ZRING_RINT, c));
613 }
614 
615 static int
616 zsxint(cs, zc)
617 register struct zs_chanstate	*cs;
618 register volatile struct zschan	*zc;
619 {
620 	register int i = cs->cs_tbc;
621 
622 	if(i == 0) {
623 		zc->zc_csr = ZSWR0_RESET_TXINT;
624 		zc->zc_csr = ZSWR0_CLR_INTR;
625 		return(ZRING_MAKE(ZRING_XINT, 0));
626 	}
627 	cs->cs_tbc = i - 1;
628 	zc->zc_data = *cs->cs_tba++;
629 	zc->zc_csr = ZSWR0_CLR_INTR;
630 	return (0);
631 }
632 
633 static int
634 zssint(cs, zc)
635 register struct zs_chanstate	*cs;
636 register volatile struct zschan	*zc;
637 {
638 	register int rr0;
639 
640 	rr0 = zc->zc_csr;
641 	zc->zc_csr = ZSWR0_RESET_STATUS;
642 	zc->zc_csr = ZSWR0_CLR_INTR;
643 	/*
644 	 * The chip's hardware flow control is, as noted in zsreg.h,
645 	 * busted---if the DCD line goes low the chip shuts off the
646 	 * receiver (!).  If we want hardware CTS flow control but do
647 	 * not have it, and carrier is now on, turn HFC on; if we have
648 	 * HFC now but carrier has gone low, turn it off.
649 	 */
650 	if(rr0 & ZSRR0_DCD) {
651 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
652 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
653 			cs->cs_creg[3] |= ZSWR3_HFC;
654 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
655 		}
656 	}
657 	else {
658 		if (cs->cs_creg[3] & ZSWR3_HFC) {
659 			cs->cs_creg[3] &= ~ZSWR3_HFC;
660 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
661 		}
662 	}
663 	return(ZRING_MAKE(ZRING_SINT, rr0));
664 }
665 
666 /*
667  * Print out a ring or fifo overrun error message.
668  */
669 static void
670 zsoverrun(unit, ptime, what)
671 int	unit;
672 long	*ptime;
673 char	*what;
674 {
675 
676 	if(*ptime != time.tv_sec) {
677 		*ptime = time.tv_sec;
678 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
679 		    (unit & 1) + 'a', what);
680 	}
681 }
682 
683 /*
684  * ZS software interrupt.  Scan all channels for deferred interrupts.
685  */
686 int
687 zssoft(sr)
688 long sr;
689 {
690     register struct zs_chanstate	*cs;
691     register volatile struct zschan	*zc;
692     register struct linesw		*line;
693     register struct tty			*tp;
694     register int			get, n, c, cc, unit, s;
695  	     int			retval = 0;
696 
697     cb_scheduled = 0;
698     s = spltty();
699     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
700 	get = cs->cs_rbget;
701 again:
702 	n = cs->cs_rbput;	/* atomic			*/
703 	if(get == n)		/* nothing more on this line	*/
704 		continue;
705 	retval = 1;
706 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
707 	zc     = cs->cs_zc;
708 	tp     = cs->cs_ttyp;
709 	line   = &linesw[tp->t_line];
710 	/*
711 	 * Compute the number of interrupts in the receive ring.
712 	 * If the count is overlarge, we lost some events, and
713 	 * must advance to the first valid one.  It may get
714 	 * overwritten if more data are arriving, but this is
715 	 * too expensive to check and gains nothing (we already
716 	 * lost out; all we can do at this point is trade one
717 	 * kind of loss for another).
718 	 */
719 	n -= get;
720 	if(n > ZLRB_RING_SIZE) {
721 		zsoverrun(unit, &cs->cs_rotime, "ring");
722 		get += n - ZLRB_RING_SIZE;
723 		n    = ZLRB_RING_SIZE;
724 	}
725 	while(--n >= 0) {
726 		/* race to keep ahead of incoming interrupts */
727 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
728 		switch (ZRING_TYPE(c)) {
729 
730 		case ZRING_RINT:
731 			c = ZRING_VALUE(c);
732 			if(c & ZSRR1_DO)
733 				zsoverrun(unit, &cs->cs_fotime, "fifo");
734 			cc = c >> 8;
735 			if(c & ZSRR1_FE)
736 				cc |= TTY_FE;
737 			if(c & ZSRR1_PE)
738 				cc |= TTY_PE;
739 			line->l_rint(cc, tp);
740 			break;
741 
742 		case ZRING_XINT:
743 			/*
744 			 * Transmit done: change registers and resume,
745 			 * or clear BUSY.
746 			 */
747 			if(cs->cs_heldchange) {
748 				int sps;
749 
750 				sps = splzs();
751 				c = zc->zc_csr;
752 				if((c & ZSRR0_DCD) == 0)
753 					cs->cs_preg[3] &= ~ZSWR3_HFC;
754 				bcopy((caddr_t)cs->cs_preg,
755 				    (caddr_t)cs->cs_creg, 16);
756 				zs_loadchannelregs(zc, cs->cs_creg);
757 				splx(sps);
758 				cs->cs_heldchange = 0;
759 				if(cs->cs_heldtbc
760 					&& (tp->t_state & TS_TTSTOP) == 0) {
761 					cs->cs_tbc = cs->cs_heldtbc - 1;
762 					zc->zc_data = *cs->cs_tba++;
763 					goto again;
764 				}
765 			}
766 			tp->t_state &= ~TS_BUSY;
767 			if(tp->t_state & TS_FLUSH)
768 				tp->t_state &= ~TS_FLUSH;
769 			else ndflush(&tp->t_outq,cs->cs_tba
770 						- (caddr_t)tp->t_outq.c_cf);
771 			line->l_start(tp);
772 			break;
773 
774 		case ZRING_SINT:
775 			/*
776 			 * Status line change.  HFC bit is run in
777 			 * hardware interrupt, to avoid locking
778 			 * at splzs here.
779 			 */
780 			c = ZRING_VALUE(c);
781 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
782 				cc = (c & ZSRR0_DCD) != 0;
783 				if(line->l_modem(tp, cc) == 0)
784 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
785 							cc ? DMBIS : DMBIC);
786 			}
787 			cs->cs_rr0 = c;
788 			break;
789 
790 		default:
791 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
792 			    unit >> 1, (unit & 1) + 'a', c);
793 			break;
794 		}
795 	}
796 	cs->cs_rbget = get;
797 	goto again;
798     }
799     splx(s);
800     return (retval);
801 }
802 
803 int
804 zsioctl(dev, cmd, data, flag, p)
805 dev_t		dev;
806 u_long		cmd;
807 caddr_t		data;
808 int		flag;
809 struct proc	*p;
810 {
811 		 int			unit = ZS_UNIT(dev);
812 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
813 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
814 	register int			error, s;
815 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
816 
817 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
818 	if(error >= 0)
819 		return(error);
820 	error = ttioctl(tp, cmd, data, flag, p);
821 	if(error >= 0)
822 		return (error);
823 
824 	switch (cmd) {
825 	case TIOCSBRK:
826 		s = splzs();
827 		cs->cs_preg[5] |= ZSWR5_BREAK;
828 		cs->cs_creg[5] |= ZSWR5_BREAK;
829 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
830 		splx(s);
831 		break;
832 	case TIOCCBRK:
833 		s = splzs();
834 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
835 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
836 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
837 		splx(s);
838 		break;
839 	case TIOCGFLAGS: {
840 		int bits = 0;
841 
842 		if(cs->cs_softcar)
843 			bits |= TIOCFLAG_SOFTCAR;
844 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
845 			bits |= TIOCFLAG_CLOCAL;
846 		if(cs->cs_creg[3] & ZSWR3_HFC)
847 			bits |= TIOCFLAG_CRTSCTS;
848 		*(int *)data = bits;
849 		break;
850 	}
851 	case TIOCSFLAGS: {
852 		int userbits = 0;
853 
854 		error = suser(p->p_ucred, &p->p_acflag);
855 		if(error != 0)
856 			return (EPERM);
857 
858 		userbits = *(int *)data;
859 
860 		/*
861 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
862 		 # defaulting to software flow control.
863 		 */
864 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
865 			return(EINVAL);
866 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
867 			return(ENODEV);
868 
869 		s = splzs();
870 		if((userbits & TIOCFLAG_SOFTCAR)) {
871 			cs->cs_softcar = 1;	/* turn on softcar */
872 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
873 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
874 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
875 		}
876 		else if(userbits & TIOCFLAG_CLOCAL) {
877 			cs->cs_softcar = 0; 	/* turn off softcar */
878 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
879 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
880 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
881 			tp->t_termios.c_cflag |= CLOCAL;
882 		}
883 		if(userbits & TIOCFLAG_CRTSCTS) {
884 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
885 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
886 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
887 			cs->cs_preg[3] |= ZSWR3_HFC;
888 			cs->cs_creg[3] |= ZSWR3_HFC;
889 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
890 			tp->t_termios.c_cflag |= CRTSCTS;
891 		}
892 		else {
893 			/* no mdmbuf, so we must want software flow control */
894 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
895 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
896 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
897 			cs->cs_preg[3] &= ~ZSWR3_HFC;
898 			cs->cs_creg[3] &= ~ZSWR3_HFC;
899 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
900 			tp->t_termios.c_cflag &= ~CRTSCTS;
901 		}
902 		splx(s);
903 		break;
904 	}
905 	case TIOCSDTR:
906 		zs_modem(cs, ZSWR5_DTR, DMBIS);
907 		break;
908 	case TIOCCDTR:
909 		zs_modem(cs, ZSWR5_DTR, DMBIC);
910 		break;
911 	case TIOCMGET:
912 		zs_modem(cs, 0, DMGET);
913 		break;
914 	case TIOCMSET:
915 	case TIOCMBIS:
916 	case TIOCMBIC:
917 	default:
918 		return (ENOTTY);
919 	}
920 	return (0);
921 }
922 
923 /*
924  * Start or restart transmission.
925  */
926 static void
927 zsstart(tp)
928 register struct tty *tp;
929 {
930 	register struct zs_chanstate	*cs;
931 	register int			s, nch;
932 		 int			unit = ZS_UNIT(tp->t_dev);
933 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
934 
935 	cs = &zi->zi_cs[unit & 1];
936 	s  = spltty();
937 
938 	/*
939 	 * If currently active or delaying, no need to do anything.
940 	 */
941 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
942 		goto out;
943 
944 	/*
945 	 * If there are sleepers, and output has drained below low
946 	 * water mark, awaken.
947 	 */
948 	if(tp->t_outq.c_cc <= tp->t_lowat) {
949 		if(tp->t_state & TS_ASLEEP) {
950 			tp->t_state &= ~TS_ASLEEP;
951 			wakeup((caddr_t)&tp->t_outq);
952 		}
953 		selwakeup(&tp->t_wsel);
954 	}
955 
956 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
957 	if(nch) {
958 		register char *p = tp->t_outq.c_cf;
959 
960 		/* mark busy, enable tx done interrupts, & send first byte */
961 		tp->t_state |= TS_BUSY;
962 		(void) splzs();
963 		cs->cs_preg[1] |= ZSWR1_TIE;
964 		cs->cs_creg[1] |= ZSWR1_TIE;
965 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
966 		cs->cs_zc->zc_data = *p;
967 		cs->cs_tba = p + 1;
968 		cs->cs_tbc = nch - 1;
969 	} else {
970 		/*
971 		 * Nothing to send, turn off transmit done interrupts.
972 		 * This is useful if something is doing polled output.
973 		 */
974 		(void) splzs();
975 		cs->cs_preg[1] &= ~ZSWR1_TIE;
976 		cs->cs_creg[1] &= ~ZSWR1_TIE;
977 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
978 	}
979 out:
980 	splx(s);
981 }
982 
983 /*
984  * Stop output, e.g., for ^S or output flush.
985  */
986 void
987 zsstop(tp, flag)
988 register struct tty	*tp;
989 	 int		flag;
990 {
991 	register struct zs_chanstate	*cs;
992 	register int			s, unit = ZS_UNIT(tp->t_dev);
993 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
994 
995 	cs = &zi->zi_cs[unit & 1];
996 	s  = splzs();
997 	if(tp->t_state & TS_BUSY) {
998 		/*
999 		 * Device is transmitting; must stop it.
1000 		 */
1001 		cs->cs_tbc = 0;
1002 		if ((tp->t_state & TS_TTSTOP) == 0)
1003 			tp->t_state |= TS_FLUSH;
1004 	}
1005 	splx(s);
1006 }
1007 
1008 static void
1009 zs_shutdown(cs)
1010 	struct zs_chanstate	*cs;
1011 {
1012 	struct tty	*tp = cs->cs_ttyp;
1013 	int		s;
1014 
1015 	s = splzs();
1016 
1017 	/*
1018 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1019 	 * notice even if we immediately open the port again.
1020 	 */
1021 	if(tp->t_cflag & HUPCL) {
1022 		zs_modem(cs, 0, DMSET);
1023 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1024 	}
1025 
1026 	/* Clear any break condition set with TIOCSBRK. */
1027 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1028 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1029 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1030 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1031 	}
1032 
1033 	/*
1034 	 * Drop all lines and cancel interrupts
1035 	 */
1036 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1037 	splx(s);
1038 }
1039 
1040 /*
1041  * Set ZS tty parameters from termios.
1042  *
1043  * This routine makes use of the fact that only registers
1044  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1045  */
1046 static int
1047 zsparam(tp, t)
1048 register struct tty	*tp;
1049 register struct termios	*t;
1050 {
1051 		 int			unit = ZS_UNIT(tp->t_dev);
1052 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1053 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1054 		 int			cdiv, clkm, brgm, tcon;
1055 	register int			tmp, tmp5, cflag, s;
1056 
1057 	tmp  = t->c_ospeed;
1058 	tmp5 = t->c_ispeed;
1059 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1060 		return(EINVAL);
1061 	if(tmp == 0) {
1062 		/* stty 0 => drop DTR and RTS */
1063 		zs_modem(cs, 0, DMSET);
1064 		return(0);
1065 	}
1066 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1067 	if (tmp < 0)
1068 		return(EINVAL);
1069 	tp->t_ispeed = tp->t_ospeed = tmp;
1070 
1071 	cflag = tp->t_cflag = t->c_cflag;
1072 	if (cflag & CSTOPB)
1073 		cdiv |= ZSWR4_TWOSB;
1074 	else
1075 		cdiv |= ZSWR4_ONESB;
1076 	if (!(cflag & PARODD))
1077 		cdiv |= ZSWR4_EVENP;
1078 	if (cflag & PARENB)
1079 		cdiv |= ZSWR4_PARENB;
1080 
1081 	switch(cflag & CSIZE) {
1082 	case CS5:
1083 		tmp  = ZSWR3_RX_5;
1084 		tmp5 = ZSWR5_TX_5;
1085 		break;
1086 	case CS6:
1087 		tmp  = ZSWR3_RX_6;
1088 		tmp5 = ZSWR5_TX_6;
1089 		break;
1090 	case CS7:
1091 		tmp  = ZSWR3_RX_7;
1092 		tmp5 = ZSWR5_TX_7;
1093 		break;
1094 	case CS8:
1095 	default:
1096 		tmp  = ZSWR3_RX_8;
1097 		tmp5 = ZSWR5_TX_8;
1098 		break;
1099 	}
1100 	tmp  |= ZSWR3_RX_ENABLE;
1101 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1102 
1103 	/*
1104 	 * Block interrupts so that state will not
1105 	 * be altered until we are done setting it up.
1106 	 */
1107 	s = splzs();
1108 	cs->cs_preg[4]  = cdiv;
1109 	cs->cs_preg[11] = clkm;
1110 	cs->cs_preg[12] = tcon;
1111 	cs->cs_preg[13] = tcon >> 8;
1112 	cs->cs_preg[14] = brgm;
1113 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1114 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1115 	cs->cs_preg[10] = ZSWR10_NRZ;
1116 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1117 
1118 	/*
1119 	 * Output hardware flow control on the chip is horrendous: if
1120 	 * carrier detect drops, the receiver is disabled.  Hence we
1121 	 * can only do this when the carrier is on.
1122 	 */
1123 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1124 		tmp |= ZSWR3_HFC;
1125 	cs->cs_preg[3] = tmp;
1126 	cs->cs_preg[5] = tmp5;
1127 
1128 	/*
1129 	 * If nothing is being transmitted, set up new current values,
1130 	 * else mark them as pending.
1131 	 */
1132 	if(cs->cs_heldchange == 0) {
1133 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1134 			cs->cs_heldtbc = cs->cs_tbc;
1135 			cs->cs_tbc = 0;
1136 			cs->cs_heldchange = 1;
1137 		} else {
1138 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1139 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1140 		}
1141 	}
1142 	splx(s);
1143 	return (0);
1144 }
1145 
1146 /*
1147  * search for the best matching baudrate
1148  */
1149 static int
1150 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1151 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1152 {
1153 	int	bestdiff, bestbps, source;
1154 
1155 	bestdiff = bestbps = 0;
1156 	unit = (unit & 1) << 2;
1157 	for (source = 0; source < 4; ++source) {
1158 		long	freq = zs_frequencies[unit + source];
1159 		int	diff, bps, div, clkm, brgm, tcon;
1160 
1161 		bps = div = clkm = brgm = tcon = 0;
1162 		switch (source) {
1163 			case 0:	/* BRgen, PCLK */
1164 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1165 				break;
1166 			case 1:	/* BRgen, RTxC */
1167 				brgm = ZSWR14_BAUD_ENA;
1168 				break;
1169 			case 2: /* RTxC */
1170 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1171 				break;
1172 			case 3: /* TRxC */
1173 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1174 				break;
1175 		}
1176 		switch (source) {
1177 			case 0:
1178 			case 1:
1179 				div  = ZSWR4_CLK_X16;
1180 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1181 				tcon = BPS_TO_TCONST(freq, wanted);
1182 				if (tcon < 0)
1183 					tcon = 0;
1184 				bps  = TCONST_TO_BPS(freq, tcon);
1185 				break;
1186 			case 2:
1187 			case 3:
1188 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1189 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1190 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1191 
1192 				if (d1 < d2 && d1 < d3) {
1193 					div = ZSWR4_CLK_X16;
1194 					bps = b1;
1195 				} else if (d2 < d3 && d2 < d1) {
1196 					div = ZSWR4_CLK_X32;
1197 					bps = b2;
1198 				} else {
1199 					div = ZSWR4_CLK_X64;
1200 					bps = b3;
1201 				}
1202 				brgm = tcon = 0;
1203 				break;
1204 			}
1205 		}
1206 		diff = abs(bps - wanted);
1207 		if (!source || diff < bestdiff) {
1208 			*divisor   = div;
1209 			*clockmode = clkm;
1210 			*brgenmode = brgm;
1211 			*timeconst = tcon;
1212 			bestbps    = bps;
1213 			bestdiff   = diff;
1214 			if (diff == 0)
1215 				break;
1216 		}
1217 	}
1218 	/* Allow deviations upto 5% */
1219 	if (20 * bestdiff > wanted)
1220 		return -1;
1221 	return bestbps;
1222 }
1223 
1224 /*
1225  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1226  * in transmission, the change is deferred.
1227  */
1228 static int
1229 zs_modem(cs, bits, how)
1230 struct zs_chanstate	*cs;
1231 int			bits, how;
1232 {
1233 	int s, mbits;
1234 
1235 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1236 
1237 	s = splzs();
1238 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1239 
1240 	switch(how) {
1241 		case DMSET:
1242 				mbits  = bits;
1243 				break;
1244 		case DMBIS:
1245 				mbits |= bits;
1246 				break;
1247 		case DMBIC:
1248 				mbits &= ~bits;
1249 				break;
1250 		case DMGET:
1251 				splx(s);
1252 				return(mbits);
1253 	}
1254 
1255 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1256 	if(cs->cs_heldchange == 0) {
1257 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1258 			cs->cs_heldtbc = cs->cs_tbc;
1259 			cs->cs_tbc = 0;
1260 			cs->cs_heldchange = 1;
1261 		}
1262 		else {
1263 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1264 		}
1265 	}
1266 	splx(s);
1267 	return(0);
1268 }
1269 
1270 /*
1271  * Write the given register set to the given zs channel in the proper order.
1272  * The channel must not be transmitting at the time.  The receiver will
1273  * be disabled for the time it takes to write all the registers.
1274  */
1275 static void
1276 zs_loadchannelregs(zc, reg)
1277 volatile struct zschan	*zc;
1278 u_char			*reg;
1279 {
1280 	int i;
1281 
1282 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1283 	i = zc->zc_data;		/* drain fifo */
1284 	i = zc->zc_data;
1285 	i = zc->zc_data;
1286 	ZS_WRITE(zc,  4, reg[4]);
1287 	ZS_WRITE(zc, 10, reg[10]);
1288 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1289 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1290 	ZS_WRITE(zc,  1, reg[1]);
1291 	ZS_WRITE(zc,  9, reg[9]);
1292 	ZS_WRITE(zc, 11, reg[11]);
1293 	ZS_WRITE(zc, 12, reg[12]);
1294 	ZS_WRITE(zc, 13, reg[13]);
1295 	ZS_WRITE(zc, 14, reg[14]);
1296 	ZS_WRITE(zc, 15, reg[15]);
1297 	ZS_WRITE(zc,  3, reg[3]);
1298 	ZS_WRITE(zc,  5, reg[5]);
1299 }
1300 #endif /* NZS > 1 */
1301