xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: zs.c,v 1.34 2001/05/02 10:32:15 scw Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(9600 * 1536)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 struct cfattach zs_ca = {
195 	sizeof(struct zs_softc), zsmatch, zsattach
196 };
197 
198 extern struct cfdriver zs_cd;
199 
200 /* {b,c}devsw[] function prototypes */
201 dev_type_open(zsopen);
202 dev_type_close(zsclose);
203 dev_type_read(zsread);
204 dev_type_write(zswrite);
205 dev_type_poll(zspoll);
206 dev_type_ioctl(zsioctl);
207 dev_type_tty(zstty);
208 
209 /* Interrupt handlers. */
210 int		zshard __P((long));
211 static int	zssoft __P((long));
212 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
213 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
215 
216 static struct zs_chanstate *zslist;
217 
218 /* Routines called from other code. */
219 static void	zsstart __P((struct tty *));
220 void		zsstop __P((struct tty *, int));
221 
222 /* Routines purely local to this driver. */
223 static void	zsoverrun __P((int, long *, char *));
224 static int	zsparam __P((struct tty *, struct termios *));
225 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
226 static int	zs_modem __P((struct zs_chanstate *, int, int));
227 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
228 static void	zs_shutdown __P((struct zs_chanstate *));
229 
230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
231 
232 static int
233 zsmatch(pdp, cfp, auxp)
234 struct device	*pdp;
235 struct cfdata	*cfp;
236 void		*auxp;
237 {
238 	static int	zs_matched = 0;
239 
240 	if(strcmp("zs", auxp) || zs_matched)
241 		return(0);
242 	zs_matched = 1;
243 	return(1);
244 }
245 
246 /*
247  * Attach a found zs.
248  */
249 static void
250 zsattach(parent, dev, aux)
251 struct device	*parent;
252 struct device	*dev;
253 void		*aux;
254 {
255 	register struct zs_softc		*zi;
256 	register struct zs_chanstate		*cs;
257 	register volatile struct zsdevice	*addr;
258 		 char				tmp;
259 
260 	addr      = (struct zsdevice *)AD_SCC;
261 	zi        = (struct zs_softc *)dev;
262 	zi->zi_zs = addr;
263 	cs        = zi->zi_cs;
264 
265 	/*
266 	 * Get the command register into a known state.
267 	 */
268 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
269 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
270 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
271 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
272 
273 	/*
274 	 * Do a hardware reset.
275 	 */
276 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
277 	delay(50000);	/*enough ? */
278 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
279 
280 	/*
281 	 * Initialize both channels
282 	 */
283 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
284 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
285 
286 	if(machineid & ATARI_TT) {
287 		/*
288 		 * ininitialise TT-MFP timer C: 307200Hz
289 		 * timer C and D share one control register:
290 		 *	bits 0-2 control timer D
291 		 *	bits 4-6 control timer C
292 		 */
293 		int cr = MFP2->mf_tcdcr & 7;
294 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
295 		MFP2->mf_tcdr  = 1;		/* counter 1     */
296 		cr |= T_Q004 << 4;		/* divisor 4     */
297 		MFP2->mf_tcdcr = cr;		/* start timer C */
298 		/*
299 		 * enable scc related interrupts
300 		 */
301 		SCU->vme_mask |= SCU_SCC;
302 
303 		zs_frequencies = zs_freqs_tt;
304 	} else if (machineid & ATARI_FALCON) {
305 		zs_frequencies = zs_freqs_falcon;
306 	} else if (machineid & ATARI_HADES) {
307 		zs_frequencies = zs_freqs_hades;
308 	} else {
309 		zs_frequencies = zs_freqs_generic;
310 	}
311 
312 	/* link into interrupt list with order (A,B) (B=A+1) */
313 	cs[0].cs_next = &cs[1];
314 	cs[1].cs_next = zslist;
315 	zslist        = cs;
316 
317 	cs->cs_unit  = 0;
318 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
319 	cs++;
320 	cs->cs_unit  = 1;
321 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
322 
323 	printf(": serial2 on channel a and modem2 on channel b\n");
324 }
325 
326 /*
327  * Open a zs serial port.
328  */
329 int
330 zsopen(dev, flags, mode, p)
331 dev_t		dev;
332 int		flags;
333 int		mode;
334 struct proc	*p;
335 {
336 	register struct tty		*tp;
337 	register struct zs_chanstate	*cs;
338 		 struct zs_softc	*zi;
339 		 int			unit = ZS_UNIT(dev);
340 		 int			zs = unit >> 1;
341 		 int			error, s;
342 
343 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
344 		return (ENXIO);
345 	cs = &zi->zi_cs[unit & 1];
346 
347 	/*
348 	 * When port A (ser02) is selected on the TT, make sure
349 	 * the port is enabled.
350 	 */
351 	if((machineid & ATARI_TT) && !(unit & 1))
352 		ym2149_ser2(1);
353 
354 	if (cs->cs_rbuf == NULL) {
355 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
356 								   M_WAITOK);
357 	}
358 
359 	tp = cs->cs_ttyp;
360 	if(tp == NULL) {
361 		cs->cs_ttyp = tp = ttymalloc();
362 		tty_attach(tp);
363 		tp->t_dev   = dev;
364 		tp->t_oproc = zsstart;
365 		tp->t_param = zsparam;
366 	}
367 
368 	if ((tp->t_state & TS_ISOPEN) &&
369 	    (tp->t_state & TS_XCLUDE) &&
370 	    p->p_ucred->cr_uid != 0)
371 		return (EBUSY);
372 
373 	s  = spltty();
374 
375 	/*
376 	 * Do the following iff this is a first open.
377 	 */
378 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
379 		if(tp->t_ispeed == 0) {
380 			tp->t_iflag = TTYDEF_IFLAG;
381 			tp->t_oflag = TTYDEF_OFLAG;
382 			tp->t_cflag = TTYDEF_CFLAG;
383 			tp->t_lflag = TTYDEF_LFLAG;
384 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
385 		}
386 		ttychars(tp);
387 		ttsetwater(tp);
388 
389 		(void)zsparam(tp, &tp->t_termios);
390 
391 		/*
392 		 * Turn on DTR.  We must always do this, even if carrier is not
393 		 * present, because otherwise we'd have to use TIOCSDTR
394 		 * immediately after setting CLOCAL, which applications do not
395 		 * expect.  We always assert DTR while the device is open
396 		 * unless explicitly requested to deassert it.
397 		 */
398 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
399 		/* May never get a status intr. if DCD already on. -gwr */
400 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
401 			tp->t_state |= TS_CARR_ON;
402 		if(cs->cs_softcar)
403 			tp->t_state |= TS_CARR_ON;
404 	}
405 
406 	splx(s);
407 
408 	error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK));
409 	if (error)
410 		goto bad;
411 
412 	error = tp->t_linesw->l_open(dev, tp);
413 	if(error)
414 		goto bad;
415 	return (0);
416 
417 bad:
418 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
419 		/*
420 		 * We failed to open the device, and nobody else had it opened.
421 		 * Clean up the state as appropriate.
422 		 */
423 		zs_shutdown(cs);
424 	}
425 	return(error);
426 }
427 
428 /*
429  * Close a zs serial port.
430  */
431 int
432 zsclose(dev, flags, mode, p)
433 dev_t		dev;
434 int		flags;
435 int		mode;
436 struct proc	*p;
437 {
438 	register struct zs_chanstate	*cs;
439 	register struct tty		*tp;
440 		 struct zs_softc	*zi;
441 		 int			unit = ZS_UNIT(dev);
442 
443 	zi = zs_cd.cd_devs[unit >> 1];
444 	cs = &zi->zi_cs[unit & 1];
445 	tp = cs->cs_ttyp;
446 
447 	tp->t_linesw->l_close(tp, flags);
448 	ttyclose(tp);
449 
450 	if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) {
451 		/*
452 		 * Although we got a last close, the device may still be in
453 		 * use; e.g. if this was the dialout node, and there are still
454 		 * processes waiting for carrier on the non-dialout node.
455 		 */
456 		zs_shutdown(cs);
457 	}
458 	return (0);
459 }
460 
461 /*
462  * Read/write zs serial port.
463  */
464 int
465 zsread(dev, uio, flags)
466 dev_t		dev;
467 struct uio	*uio;
468 int		flags;
469 {
470 	register struct zs_chanstate	*cs;
471 	register struct zs_softc	*zi;
472 	register struct tty		*tp;
473 		 int			unit;
474 
475 	unit = ZS_UNIT(dev);
476 	zi   = zs_cd.cd_devs[unit >> 1];
477 	cs   = &zi->zi_cs[unit & 1];
478 	tp   = cs->cs_ttyp;
479 
480 	return(tp->t_linesw->l_read(tp, uio, flags));
481 }
482 
483 int
484 zswrite(dev, uio, flags)
485 dev_t		dev;
486 struct uio	*uio;
487 int		flags;
488 {
489 	register struct zs_chanstate	*cs;
490 	register struct zs_softc	*zi;
491 	register struct tty		*tp;
492 		 int			unit;
493 
494 	unit = ZS_UNIT(dev);
495 	zi   = zs_cd.cd_devs[unit >> 1];
496 	cs   = &zi->zi_cs[unit & 1];
497 	tp   = cs->cs_ttyp;
498 
499 	return(tp->t_linesw->l_write(tp, uio, flags));
500 }
501 
502 int
503 zspoll(dev, events, p)
504 dev_t		dev;
505 int		events;
506 struct proc	*p;
507 {
508 	register struct zs_chanstate	*cs;
509 	register struct zs_softc	*zi;
510 	register struct tty		*tp;
511 		 int			unit;
512 
513 	unit = ZS_UNIT(dev);
514 	zi   = zs_cd.cd_devs[unit >> 1];
515 	cs   = &zi->zi_cs[unit & 1];
516 	tp   = cs->cs_ttyp;
517 
518 	return ((*tp->t_linesw->l_poll)(tp, events, p));
519 }
520 
521 struct tty *
522 zstty(dev)
523 dev_t	dev;
524 {
525 	register struct zs_chanstate	*cs;
526 	register struct zs_softc	*zi;
527 		 int			unit;
528 
529 	unit = ZS_UNIT(dev);
530 	zi   = zs_cd.cd_devs[unit >> 1];
531 	cs   = &zi->zi_cs[unit & 1];
532 	return(cs->cs_ttyp);
533 }
534 
535 /*
536  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
537  * channels are kept in (A,B) pairs.
538  *
539  * Do just a little, then get out; set a software interrupt if more
540  * work is needed.
541  *
542  * We deliberately ignore the vectoring Zilog gives us, and match up
543  * only the number of `reset interrupt under service' operations, not
544  * the order.
545  */
546 
547 int
548 zshard(sr)
549 long sr;
550 {
551 	register struct zs_chanstate	*a;
552 #define	b (a + 1)
553 	register volatile struct zschan *zc;
554 	register int			rr3, intflags = 0, v, i;
555 
556 	do {
557 	    intflags &= ~4;
558 	    for(a = zslist; a != NULL; a = b->cs_next) {
559 		rr3 = ZS_READ(a->cs_zc, 3);
560 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
561 			intflags |= 4|2;
562 			zc = a->cs_zc;
563 			i  = a->cs_rbput;
564 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
565 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
566 				intflags |= 1;
567 			}
568 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
569 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
570 				intflags |= 1;
571 			}
572 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
573 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
574 				intflags |= 1;
575 			}
576 			a->cs_rbput = i;
577 		}
578 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
579 			intflags |= 4|2;
580 			zc = b->cs_zc;
581 			i  = b->cs_rbput;
582 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
583 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
584 				intflags |= 1;
585 			}
586 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
587 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
588 				intflags |= 1;
589 			}
590 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
591 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
592 				intflags |= 1;
593 			}
594 			b->cs_rbput = i;
595 		}
596 	    }
597 	} while(intflags & 4);
598 #undef b
599 
600 	if(intflags & 1) {
601 		if(BASEPRI(sr)) {
602 			spl1();
603 			zsshortcuts++;
604 			return(zssoft(sr));
605 		}
606 		else if(!cb_scheduled) {
607 			cb_scheduled++;
608 			add_sicallback((si_farg)zssoft, 0, 0);
609 		}
610 	}
611 	return(intflags & 2);
612 }
613 
614 static int
615 zsrint(cs, zc)
616 register struct zs_chanstate	*cs;
617 register volatile struct zschan	*zc;
618 {
619 	register int c;
620 
621 	/*
622 	 * First read the status, because read of the received char
623 	 * destroy the status of this char.
624 	 */
625 	c = ZS_READ(zc, 1);
626 	c |= (zc->zc_data << 8);
627 
628 	/* clear receive error & interrupt condition */
629 	zc->zc_csr = ZSWR0_RESET_ERRORS;
630 	zc->zc_csr = ZSWR0_CLR_INTR;
631 
632 	return(ZRING_MAKE(ZRING_RINT, c));
633 }
634 
635 static int
636 zsxint(cs, zc)
637 register struct zs_chanstate	*cs;
638 register volatile struct zschan	*zc;
639 {
640 	register int i = cs->cs_tbc;
641 
642 	if(i == 0) {
643 		zc->zc_csr = ZSWR0_RESET_TXINT;
644 		zc->zc_csr = ZSWR0_CLR_INTR;
645 		return(ZRING_MAKE(ZRING_XINT, 0));
646 	}
647 	cs->cs_tbc = i - 1;
648 	zc->zc_data = *cs->cs_tba++;
649 	zc->zc_csr = ZSWR0_CLR_INTR;
650 	return (0);
651 }
652 
653 static int
654 zssint(cs, zc)
655 register struct zs_chanstate	*cs;
656 register volatile struct zschan	*zc;
657 {
658 	register int rr0;
659 
660 	rr0 = zc->zc_csr;
661 	zc->zc_csr = ZSWR0_RESET_STATUS;
662 	zc->zc_csr = ZSWR0_CLR_INTR;
663 	/*
664 	 * The chip's hardware flow control is, as noted in zsreg.h,
665 	 * busted---if the DCD line goes low the chip shuts off the
666 	 * receiver (!).  If we want hardware CTS flow control but do
667 	 * not have it, and carrier is now on, turn HFC on; if we have
668 	 * HFC now but carrier has gone low, turn it off.
669 	 */
670 	if(rr0 & ZSRR0_DCD) {
671 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
672 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
673 			cs->cs_creg[3] |= ZSWR3_HFC;
674 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
675 		}
676 	}
677 	else {
678 		if (cs->cs_creg[3] & ZSWR3_HFC) {
679 			cs->cs_creg[3] &= ~ZSWR3_HFC;
680 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
681 		}
682 	}
683 	return(ZRING_MAKE(ZRING_SINT, rr0));
684 }
685 
686 /*
687  * Print out a ring or fifo overrun error message.
688  */
689 static void
690 zsoverrun(unit, ptime, what)
691 int	unit;
692 long	*ptime;
693 char	*what;
694 {
695 
696 	if(*ptime != time.tv_sec) {
697 		*ptime = time.tv_sec;
698 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
699 		    (unit & 1) + 'a', what);
700 	}
701 }
702 
703 /*
704  * ZS software interrupt.  Scan all channels for deferred interrupts.
705  */
706 int
707 zssoft(sr)
708 long sr;
709 {
710     register struct zs_chanstate	*cs;
711     register volatile struct zschan	*zc;
712     register struct linesw		*line;
713     register struct tty			*tp;
714     register int			get, n, c, cc, unit, s;
715  	     int			retval = 0;
716 
717     cb_scheduled = 0;
718     s = spltty();
719     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
720 	get = cs->cs_rbget;
721 again:
722 	n = cs->cs_rbput;	/* atomic			*/
723 	if(get == n)		/* nothing more on this line	*/
724 		continue;
725 	retval = 1;
726 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
727 	zc     = cs->cs_zc;
728 	tp     = cs->cs_ttyp;
729 	line   = tp->t_linesw;
730 	/*
731 	 * Compute the number of interrupts in the receive ring.
732 	 * If the count is overlarge, we lost some events, and
733 	 * must advance to the first valid one.  It may get
734 	 * overwritten if more data are arriving, but this is
735 	 * too expensive to check and gains nothing (we already
736 	 * lost out; all we can do at this point is trade one
737 	 * kind of loss for another).
738 	 */
739 	n -= get;
740 	if(n > ZLRB_RING_SIZE) {
741 		zsoverrun(unit, &cs->cs_rotime, "ring");
742 		get += n - ZLRB_RING_SIZE;
743 		n    = ZLRB_RING_SIZE;
744 	}
745 	while(--n >= 0) {
746 		/* race to keep ahead of incoming interrupts */
747 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
748 		switch (ZRING_TYPE(c)) {
749 
750 		case ZRING_RINT:
751 			c = ZRING_VALUE(c);
752 			if(c & ZSRR1_DO)
753 				zsoverrun(unit, &cs->cs_fotime, "fifo");
754 			cc = c >> 8;
755 			if(c & ZSRR1_FE)
756 				cc |= TTY_FE;
757 			if(c & ZSRR1_PE)
758 				cc |= TTY_PE;
759 			line->l_rint(cc, tp);
760 			break;
761 
762 		case ZRING_XINT:
763 			/*
764 			 * Transmit done: change registers and resume,
765 			 * or clear BUSY.
766 			 */
767 			if(cs->cs_heldchange) {
768 				int sps;
769 
770 				sps = splzs();
771 				c = zc->zc_csr;
772 				if((c & ZSRR0_DCD) == 0)
773 					cs->cs_preg[3] &= ~ZSWR3_HFC;
774 				bcopy((caddr_t)cs->cs_preg,
775 				    (caddr_t)cs->cs_creg, 16);
776 				zs_loadchannelregs(zc, cs->cs_creg);
777 				splx(sps);
778 				cs->cs_heldchange = 0;
779 				if(cs->cs_heldtbc
780 					&& (tp->t_state & TS_TTSTOP) == 0) {
781 					cs->cs_tbc = cs->cs_heldtbc - 1;
782 					zc->zc_data = *cs->cs_tba++;
783 					goto again;
784 				}
785 			}
786 			tp->t_state &= ~TS_BUSY;
787 			if(tp->t_state & TS_FLUSH)
788 				tp->t_state &= ~TS_FLUSH;
789 			else ndflush(&tp->t_outq,cs->cs_tba
790 						- (caddr_t)tp->t_outq.c_cf);
791 			line->l_start(tp);
792 			break;
793 
794 		case ZRING_SINT:
795 			/*
796 			 * Status line change.  HFC bit is run in
797 			 * hardware interrupt, to avoid locking
798 			 * at splzs here.
799 			 */
800 			c = ZRING_VALUE(c);
801 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
802 				cc = (c & ZSRR0_DCD) != 0;
803 				if(line->l_modem(tp, cc) == 0)
804 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
805 							cc ? DMBIS : DMBIC);
806 			}
807 			cs->cs_rr0 = c;
808 			break;
809 
810 		default:
811 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
812 			    unit >> 1, (unit & 1) + 'a', c);
813 			break;
814 		}
815 	}
816 	cs->cs_rbget = get;
817 	goto again;
818     }
819     splx(s);
820     return (retval);
821 }
822 
823 int
824 zsioctl(dev, cmd, data, flag, p)
825 dev_t		dev;
826 u_long		cmd;
827 caddr_t		data;
828 int		flag;
829 struct proc	*p;
830 {
831 		 int			unit = ZS_UNIT(dev);
832 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
833 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
834 	register int			error, s;
835 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
836 
837 	error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p);
838 	if(error >= 0)
839 		return(error);
840 	error = ttioctl(tp, cmd, data, flag, p);
841 	if(error >= 0)
842 		return (error);
843 
844 	switch (cmd) {
845 	case TIOCSBRK:
846 		s = splzs();
847 		cs->cs_preg[5] |= ZSWR5_BREAK;
848 		cs->cs_creg[5] |= ZSWR5_BREAK;
849 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
850 		splx(s);
851 		break;
852 	case TIOCCBRK:
853 		s = splzs();
854 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
855 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
856 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
857 		splx(s);
858 		break;
859 	case TIOCGFLAGS: {
860 		int bits = 0;
861 
862 		if(cs->cs_softcar)
863 			bits |= TIOCFLAG_SOFTCAR;
864 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
865 			bits |= TIOCFLAG_CLOCAL;
866 		if(cs->cs_creg[3] & ZSWR3_HFC)
867 			bits |= TIOCFLAG_CRTSCTS;
868 		*(int *)data = bits;
869 		break;
870 	}
871 	case TIOCSFLAGS: {
872 		int userbits = 0;
873 
874 		error = suser(p->p_ucred, &p->p_acflag);
875 		if(error != 0)
876 			return (EPERM);
877 
878 		userbits = *(int *)data;
879 
880 		/*
881 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
882 		 # defaulting to software flow control.
883 		 */
884 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
885 			return(EINVAL);
886 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
887 			return(ENODEV);
888 
889 		s = splzs();
890 		if((userbits & TIOCFLAG_SOFTCAR)) {
891 			cs->cs_softcar = 1;	/* turn on softcar */
892 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
893 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
894 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
895 		}
896 		else if(userbits & TIOCFLAG_CLOCAL) {
897 			cs->cs_softcar = 0; 	/* turn off softcar */
898 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
899 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
900 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
901 			tp->t_termios.c_cflag |= CLOCAL;
902 		}
903 		if(userbits & TIOCFLAG_CRTSCTS) {
904 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
905 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
906 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
907 			cs->cs_preg[3] |= ZSWR3_HFC;
908 			cs->cs_creg[3] |= ZSWR3_HFC;
909 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
910 			tp->t_termios.c_cflag |= CRTSCTS;
911 		}
912 		else {
913 			/* no mdmbuf, so we must want software flow control */
914 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
915 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
916 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
917 			cs->cs_preg[3] &= ~ZSWR3_HFC;
918 			cs->cs_creg[3] &= ~ZSWR3_HFC;
919 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
920 			tp->t_termios.c_cflag &= ~CRTSCTS;
921 		}
922 		splx(s);
923 		break;
924 	}
925 	case TIOCSDTR:
926 		zs_modem(cs, ZSWR5_DTR, DMBIS);
927 		break;
928 	case TIOCCDTR:
929 		zs_modem(cs, ZSWR5_DTR, DMBIC);
930 		break;
931 	case TIOCMGET:
932 		zs_modem(cs, 0, DMGET);
933 		break;
934 	case TIOCMSET:
935 	case TIOCMBIS:
936 	case TIOCMBIC:
937 	default:
938 		return (ENOTTY);
939 	}
940 	return (0);
941 }
942 
943 /*
944  * Start or restart transmission.
945  */
946 static void
947 zsstart(tp)
948 register struct tty *tp;
949 {
950 	register struct zs_chanstate	*cs;
951 	register int			s, nch;
952 		 int			unit = ZS_UNIT(tp->t_dev);
953 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
954 
955 	cs = &zi->zi_cs[unit & 1];
956 	s  = spltty();
957 
958 	/*
959 	 * If currently active or delaying, no need to do anything.
960 	 */
961 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
962 		goto out;
963 
964 	/*
965 	 * If there are sleepers, and output has drained below low
966 	 * water mark, awaken.
967 	 */
968 	if(tp->t_outq.c_cc <= tp->t_lowat) {
969 		if(tp->t_state & TS_ASLEEP) {
970 			tp->t_state &= ~TS_ASLEEP;
971 			wakeup((caddr_t)&tp->t_outq);
972 		}
973 		selwakeup(&tp->t_wsel);
974 	}
975 
976 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
977 	if(nch) {
978 		register char *p = tp->t_outq.c_cf;
979 
980 		/* mark busy, enable tx done interrupts, & send first byte */
981 		tp->t_state |= TS_BUSY;
982 		(void) splzs();
983 		cs->cs_preg[1] |= ZSWR1_TIE;
984 		cs->cs_creg[1] |= ZSWR1_TIE;
985 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
986 		cs->cs_zc->zc_data = *p;
987 		cs->cs_tba = p + 1;
988 		cs->cs_tbc = nch - 1;
989 	} else {
990 		/*
991 		 * Nothing to send, turn off transmit done interrupts.
992 		 * This is useful if something is doing polled output.
993 		 */
994 		(void) splzs();
995 		cs->cs_preg[1] &= ~ZSWR1_TIE;
996 		cs->cs_creg[1] &= ~ZSWR1_TIE;
997 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
998 	}
999 out:
1000 	splx(s);
1001 }
1002 
1003 /*
1004  * Stop output, e.g., for ^S or output flush.
1005  */
1006 void
1007 zsstop(tp, flag)
1008 register struct tty	*tp;
1009 	 int		flag;
1010 {
1011 	register struct zs_chanstate	*cs;
1012 	register int			s, unit = ZS_UNIT(tp->t_dev);
1013 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1014 
1015 	cs = &zi->zi_cs[unit & 1];
1016 	s  = splzs();
1017 	if(tp->t_state & TS_BUSY) {
1018 		/*
1019 		 * Device is transmitting; must stop it.
1020 		 */
1021 		cs->cs_tbc = 0;
1022 		if ((tp->t_state & TS_TTSTOP) == 0)
1023 			tp->t_state |= TS_FLUSH;
1024 	}
1025 	splx(s);
1026 }
1027 
1028 static void
1029 zs_shutdown(cs)
1030 	struct zs_chanstate	*cs;
1031 {
1032 	struct tty	*tp = cs->cs_ttyp;
1033 	int		s;
1034 
1035 	s = splzs();
1036 
1037 	/*
1038 	 * Hang up if necessary.  Wait a bit, so the other side has time to
1039 	 * notice even if we immediately open the port again.
1040 	 */
1041 	if(tp->t_cflag & HUPCL) {
1042 		zs_modem(cs, 0, DMSET);
1043 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
1044 	}
1045 
1046 	/* Clear any break condition set with TIOCSBRK. */
1047 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
1048 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
1049 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
1050 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1051 	}
1052 
1053 	/*
1054 	 * Drop all lines and cancel interrupts
1055 	 */
1056 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
1057 	splx(s);
1058 }
1059 
1060 /*
1061  * Set ZS tty parameters from termios.
1062  *
1063  * This routine makes use of the fact that only registers
1064  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1065  */
1066 static int
1067 zsparam(tp, t)
1068 register struct tty	*tp;
1069 register struct termios	*t;
1070 {
1071 		 int			unit = ZS_UNIT(tp->t_dev);
1072 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1073 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1074 		 int			cdiv, clkm, brgm, tcon;
1075 	register int			tmp, tmp5, cflag, s;
1076 
1077 	tmp  = t->c_ospeed;
1078 	tmp5 = t->c_ispeed;
1079 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1080 		return(EINVAL);
1081 	if(tmp == 0) {
1082 		/* stty 0 => drop DTR and RTS */
1083 		zs_modem(cs, 0, DMSET);
1084 		return(0);
1085 	}
1086 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1087 	if (tmp < 0)
1088 		return(EINVAL);
1089 	tp->t_ispeed = tp->t_ospeed = tmp;
1090 
1091 	cflag = tp->t_cflag = t->c_cflag;
1092 	if (cflag & CSTOPB)
1093 		cdiv |= ZSWR4_TWOSB;
1094 	else
1095 		cdiv |= ZSWR4_ONESB;
1096 	if (!(cflag & PARODD))
1097 		cdiv |= ZSWR4_EVENP;
1098 	if (cflag & PARENB)
1099 		cdiv |= ZSWR4_PARENB;
1100 
1101 	switch(cflag & CSIZE) {
1102 	case CS5:
1103 		tmp  = ZSWR3_RX_5;
1104 		tmp5 = ZSWR5_TX_5;
1105 		break;
1106 	case CS6:
1107 		tmp  = ZSWR3_RX_6;
1108 		tmp5 = ZSWR5_TX_6;
1109 		break;
1110 	case CS7:
1111 		tmp  = ZSWR3_RX_7;
1112 		tmp5 = ZSWR5_TX_7;
1113 		break;
1114 	case CS8:
1115 	default:
1116 		tmp  = ZSWR3_RX_8;
1117 		tmp5 = ZSWR5_TX_8;
1118 		break;
1119 	}
1120 	tmp  |= ZSWR3_RX_ENABLE;
1121 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1122 
1123 	/*
1124 	 * Block interrupts so that state will not
1125 	 * be altered until we are done setting it up.
1126 	 */
1127 	s = splzs();
1128 	cs->cs_preg[4]  = cdiv;
1129 	cs->cs_preg[11] = clkm;
1130 	cs->cs_preg[12] = tcon;
1131 	cs->cs_preg[13] = tcon >> 8;
1132 	cs->cs_preg[14] = brgm;
1133 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1134 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1135 	cs->cs_preg[10] = ZSWR10_NRZ;
1136 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1137 
1138 	/*
1139 	 * Output hardware flow control on the chip is horrendous: if
1140 	 * carrier detect drops, the receiver is disabled.  Hence we
1141 	 * can only do this when the carrier is on.
1142 	 */
1143 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1144 		tmp |= ZSWR3_HFC;
1145 	cs->cs_preg[3] = tmp;
1146 	cs->cs_preg[5] = tmp5;
1147 
1148 	/*
1149 	 * If nothing is being transmitted, set up new current values,
1150 	 * else mark them as pending.
1151 	 */
1152 	if(cs->cs_heldchange == 0) {
1153 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1154 			cs->cs_heldtbc = cs->cs_tbc;
1155 			cs->cs_tbc = 0;
1156 			cs->cs_heldchange = 1;
1157 		} else {
1158 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1159 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1160 		}
1161 	}
1162 	splx(s);
1163 	return (0);
1164 }
1165 
1166 /*
1167  * search for the best matching baudrate
1168  */
1169 static int
1170 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1171 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1172 {
1173 	int	bestdiff, bestbps, source;
1174 
1175 	bestdiff = bestbps = 0;
1176 	unit = (unit & 1) << 2;
1177 	for (source = 0; source < 4; ++source) {
1178 		long	freq = zs_frequencies[unit + source];
1179 		int	diff, bps, div, clkm, brgm, tcon;
1180 
1181 		bps = div = clkm = brgm = tcon = 0;
1182 		switch (source) {
1183 			case 0:	/* BRgen, PCLK */
1184 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1185 				break;
1186 			case 1:	/* BRgen, RTxC */
1187 				brgm = ZSWR14_BAUD_ENA;
1188 				break;
1189 			case 2: /* RTxC */
1190 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1191 				break;
1192 			case 3: /* TRxC */
1193 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1194 				break;
1195 		}
1196 		switch (source) {
1197 			case 0:
1198 			case 1:
1199 				div  = ZSWR4_CLK_X16;
1200 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1201 				tcon = BPS_TO_TCONST(freq, wanted);
1202 				if (tcon < 0)
1203 					tcon = 0;
1204 				bps  = TCONST_TO_BPS(freq, tcon);
1205 				break;
1206 			case 2:
1207 			case 3:
1208 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1209 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1210 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1211 
1212 				if (d1 < d2 && d1 < d3) {
1213 					div = ZSWR4_CLK_X16;
1214 					bps = b1;
1215 				} else if (d2 < d3 && d2 < d1) {
1216 					div = ZSWR4_CLK_X32;
1217 					bps = b2;
1218 				} else {
1219 					div = ZSWR4_CLK_X64;
1220 					bps = b3;
1221 				}
1222 				brgm = tcon = 0;
1223 				break;
1224 			}
1225 		}
1226 		diff = abs(bps - wanted);
1227 		if (!source || diff < bestdiff) {
1228 			*divisor   = div;
1229 			*clockmode = clkm;
1230 			*brgenmode = brgm;
1231 			*timeconst = tcon;
1232 			bestbps    = bps;
1233 			bestdiff   = diff;
1234 			if (diff == 0)
1235 				break;
1236 		}
1237 	}
1238 	/* Allow deviations upto 5% */
1239 	if (20 * bestdiff > wanted)
1240 		return -1;
1241 	return bestbps;
1242 }
1243 
1244 /*
1245  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1246  * in transmission, the change is deferred.
1247  */
1248 static int
1249 zs_modem(cs, bits, how)
1250 struct zs_chanstate	*cs;
1251 int			bits, how;
1252 {
1253 	int s, mbits;
1254 
1255 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1256 
1257 	s = splzs();
1258 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1259 
1260 	switch(how) {
1261 		case DMSET:
1262 				mbits  = bits;
1263 				break;
1264 		case DMBIS:
1265 				mbits |= bits;
1266 				break;
1267 		case DMBIC:
1268 				mbits &= ~bits;
1269 				break;
1270 		case DMGET:
1271 				splx(s);
1272 				return(mbits);
1273 	}
1274 
1275 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1276 	if(cs->cs_heldchange == 0) {
1277 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1278 			cs->cs_heldtbc = cs->cs_tbc;
1279 			cs->cs_tbc = 0;
1280 			cs->cs_heldchange = 1;
1281 		}
1282 		else {
1283 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1284 		}
1285 	}
1286 	splx(s);
1287 	return(0);
1288 }
1289 
1290 /*
1291  * Write the given register set to the given zs channel in the proper order.
1292  * The channel must not be transmitting at the time.  The receiver will
1293  * be disabled for the time it takes to write all the registers.
1294  */
1295 static void
1296 zs_loadchannelregs(zc, reg)
1297 volatile struct zschan	*zc;
1298 u_char			*reg;
1299 {
1300 	int i;
1301 
1302 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1303 	i = zc->zc_data;		/* drain fifo */
1304 	i = zc->zc_data;
1305 	i = zc->zc_data;
1306 	ZS_WRITE(zc,  4, reg[4]);
1307 	ZS_WRITE(zc, 10, reg[10]);
1308 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1309 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1310 	ZS_WRITE(zc,  1, reg[1]);
1311 	ZS_WRITE(zc,  9, reg[9]);
1312 	ZS_WRITE(zc, 11, reg[11]);
1313 	ZS_WRITE(zc, 12, reg[12]);
1314 	ZS_WRITE(zc, 13, reg[13]);
1315 	ZS_WRITE(zc, 14, reg[14]);
1316 	ZS_WRITE(zc, 15, reg[15]);
1317 	ZS_WRITE(zc,  3, reg[3]);
1318 	ZS_WRITE(zc,  5, reg[5]);
1319 }
1320 #endif /* NZS > 1 */
1321