1 /* $NetBSD: zs.c,v 1.34 2001/05/02 10:32:15 scw Exp $ */ 2 3 /* 4 * Copyright (c) 1995 L. Weppelman (Atari modifications) 5 * Copyright (c) 1992, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This software was developed by the Computer Systems Engineering group 9 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 10 * contributed to Berkeley. 11 * 12 * 13 * All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Lawrence Berkeley Laboratory. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. All advertising materials mentioning features or use of this software 27 * must display the following acknowledgement: 28 * This product includes software developed by the University of 29 * California, Berkeley and its contributors. 30 * 4. Neither the name of the University nor the names of its contributors 31 * may be used to endorse or promote products derived from this software 32 * without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 35 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 36 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 37 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 38 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 39 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 40 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 41 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 42 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 43 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 44 * SUCH DAMAGE. 45 * 46 * @(#)zs.c 8.1 (Berkeley) 7/19/93 47 */ 48 49 /* 50 * Zilog Z8530 (ZSCC) driver. 51 * 52 * Runs two tty ports (modem2 and serial2) on zs0. 53 * 54 * This driver knows far too much about chip to usage mappings. 55 */ 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/device.h> 60 #include <sys/conf.h> 61 #include <sys/file.h> 62 #include <sys/ioctl.h> 63 #include <sys/malloc.h> 64 #include <sys/tty.h> 65 #include <sys/time.h> 66 #include <sys/kernel.h> 67 #include <sys/syslog.h> 68 69 #include <machine/cpu.h> 70 #include <machine/iomap.h> 71 #include <machine/scu.h> 72 #include <machine/mfp.h> 73 #include <atari/dev/ym2149reg.h> 74 75 #include <dev/ic/z8530reg.h> 76 #include <atari/dev/zsvar.h> 77 #include "zs.h" 78 #if NZS > 1 79 #error "This driver supports only 1 85C30!" 80 #endif 81 82 #if NZS > 0 83 84 #define PCLK (8053976) /* PCLK pin input clock rate */ 85 #define PCLK_HD (9600 * 1536) /* PCLK on Hades pin input clock rate */ 86 87 #define splzs spl5 88 89 /* 90 * Software state per found chip. 91 */ 92 struct zs_softc { 93 struct device zi_dev; /* base device */ 94 volatile struct zsdevice *zi_zs; /* chip registers */ 95 struct zs_chanstate zi_cs[2]; /* chan A and B software state */ 96 }; 97 98 static u_char cb_scheduled = 0; /* Already asked for callback? */ 99 /* 100 * Define the registers for a closed port 101 */ 102 static u_char zs_init_regs[16] = { 103 /* 0 */ 0, 104 /* 1 */ 0, 105 /* 2 */ 0x60, 106 /* 3 */ 0, 107 /* 4 */ 0, 108 /* 5 */ 0, 109 /* 6 */ 0, 110 /* 7 */ 0, 111 /* 8 */ 0, 112 /* 9 */ ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT, 113 /* 10 */ ZSWR10_NRZ, 114 /* 11 */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 115 /* 12 */ 0, 116 /* 13 */ 0, 117 /* 14 */ ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA, 118 /* 15 */ 0 119 }; 120 121 /* 122 * Define the machine dependant clock frequencies 123 * If BRgen feeds sender/receiver we always use a 124 * divisor 16, therefor the division by 16 can as 125 * well be done here. 126 */ 127 static u_long zs_freqs_tt[] = { 128 /* 129 * Atari TT, RTxCB is generated by TT-MFP timer C, 130 * which is set to 307.2KHz during initialisation 131 * and never changed afterwards. 132 */ 133 PCLK/16, /* BRgen, PCLK, divisor 16 */ 134 229500, /* BRgen, RTxCA, divisor 16 */ 135 3672000, /* RTxCA, from PCLK4 */ 136 0, /* TRxCA, external */ 137 138 PCLK/16, /* BRgen, PCLK, divisor 16 */ 139 19200, /* BRgen, RTxCB, divisor 16 */ 140 307200, /* RTxCB, from TT-MFP TCO */ 141 2457600 /* TRxCB, from BCLK */ 142 }; 143 144 static u_long zs_freqs_falcon[] = { 145 /* 146 * Atari Falcon, XXX no specs available, this might be wrong 147 */ 148 PCLK/16, /* BRgen, PCLK, divisor 16 */ 149 229500, /* BRgen, RTxCA, divisor 16 */ 150 3672000, /* RTxCA, ??? */ 151 0, /* TRxCA, external */ 152 153 PCLK/16, /* BRgen, PCLK, divisor 16 */ 154 229500, /* BRgen, RTxCB, divisor 16 */ 155 3672000, /* RTxCB, ??? */ 156 2457600 /* TRxCB, ??? */ 157 }; 158 159 static u_long zs_freqs_hades[] = { 160 /* 161 * XXX: Channel-A unchecked!!!!! 162 */ 163 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */ 164 229500, /* BRgen, RTxCA, divisor 16 */ 165 3672000, /* RTxCA, from PCLK4 */ 166 0, /* TRxCA, external */ 167 168 PCLK_HD/16, /* BRgen, PCLK, divisor 16 */ 169 235550, /* BRgen, RTxCB, divisor 16 */ 170 3768800, /* RTxCB, 3.7688MHz */ 171 3768800 /* TRxCB, 3.7688MHz */ 172 }; 173 174 static u_long zs_freqs_generic[] = { 175 /* 176 * other machines, assume only PCLK is available 177 */ 178 PCLK/16, /* BRgen, PCLK, divisor 16 */ 179 0, /* BRgen, RTxCA, divisor 16 */ 180 0, /* RTxCA, unknown */ 181 0, /* TRxCA, unknown */ 182 183 PCLK/16, /* BRgen, PCLK, divisor 16 */ 184 0, /* BRgen, RTxCB, divisor 16 */ 185 0, /* RTxCB, unknown */ 186 0 /* TRxCB, unknown */ 187 }; 188 static u_long *zs_frequencies; 189 190 /* Definition of the driver for autoconfig. */ 191 static int zsmatch __P((struct device *, struct cfdata *, void *)); 192 static void zsattach __P((struct device *, struct device *, void *)); 193 194 struct cfattach zs_ca = { 195 sizeof(struct zs_softc), zsmatch, zsattach 196 }; 197 198 extern struct cfdriver zs_cd; 199 200 /* {b,c}devsw[] function prototypes */ 201 dev_type_open(zsopen); 202 dev_type_close(zsclose); 203 dev_type_read(zsread); 204 dev_type_write(zswrite); 205 dev_type_poll(zspoll); 206 dev_type_ioctl(zsioctl); 207 dev_type_tty(zstty); 208 209 /* Interrupt handlers. */ 210 int zshard __P((long)); 211 static int zssoft __P((long)); 212 static int zsrint __P((struct zs_chanstate *, volatile struct zschan *)); 213 static int zsxint __P((struct zs_chanstate *, volatile struct zschan *)); 214 static int zssint __P((struct zs_chanstate *, volatile struct zschan *)); 215 216 static struct zs_chanstate *zslist; 217 218 /* Routines called from other code. */ 219 static void zsstart __P((struct tty *)); 220 void zsstop __P((struct tty *, int)); 221 222 /* Routines purely local to this driver. */ 223 static void zsoverrun __P((int, long *, char *)); 224 static int zsparam __P((struct tty *, struct termios *)); 225 static int zsbaudrate __P((int, int, int *, int *, int *, int *)); 226 static int zs_modem __P((struct zs_chanstate *, int, int)); 227 static void zs_loadchannelregs __P((volatile struct zschan *, u_char *)); 228 static void zs_shutdown __P((struct zs_chanstate *)); 229 230 static int zsshortcuts; /* number of "shortcut" software interrupts */ 231 232 static int 233 zsmatch(pdp, cfp, auxp) 234 struct device *pdp; 235 struct cfdata *cfp; 236 void *auxp; 237 { 238 static int zs_matched = 0; 239 240 if(strcmp("zs", auxp) || zs_matched) 241 return(0); 242 zs_matched = 1; 243 return(1); 244 } 245 246 /* 247 * Attach a found zs. 248 */ 249 static void 250 zsattach(parent, dev, aux) 251 struct device *parent; 252 struct device *dev; 253 void *aux; 254 { 255 register struct zs_softc *zi; 256 register struct zs_chanstate *cs; 257 register volatile struct zsdevice *addr; 258 char tmp; 259 260 addr = (struct zsdevice *)AD_SCC; 261 zi = (struct zs_softc *)dev; 262 zi->zi_zs = addr; 263 cs = zi->zi_cs; 264 265 /* 266 * Get the command register into a known state. 267 */ 268 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr; 269 tmp = addr->zs_chan[ZS_CHAN_A].zc_csr; 270 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr; 271 tmp = addr->zs_chan[ZS_CHAN_B].zc_csr; 272 273 /* 274 * Do a hardware reset. 275 */ 276 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET); 277 delay(50000); /*enough ? */ 278 ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0); 279 280 /* 281 * Initialize both channels 282 */ 283 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs); 284 zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs); 285 286 if(machineid & ATARI_TT) { 287 /* 288 * ininitialise TT-MFP timer C: 307200Hz 289 * timer C and D share one control register: 290 * bits 0-2 control timer D 291 * bits 4-6 control timer C 292 */ 293 int cr = MFP2->mf_tcdcr & 7; 294 MFP2->mf_tcdcr = cr; /* stop timer C */ 295 MFP2->mf_tcdr = 1; /* counter 1 */ 296 cr |= T_Q004 << 4; /* divisor 4 */ 297 MFP2->mf_tcdcr = cr; /* start timer C */ 298 /* 299 * enable scc related interrupts 300 */ 301 SCU->vme_mask |= SCU_SCC; 302 303 zs_frequencies = zs_freqs_tt; 304 } else if (machineid & ATARI_FALCON) { 305 zs_frequencies = zs_freqs_falcon; 306 } else if (machineid & ATARI_HADES) { 307 zs_frequencies = zs_freqs_hades; 308 } else { 309 zs_frequencies = zs_freqs_generic; 310 } 311 312 /* link into interrupt list with order (A,B) (B=A+1) */ 313 cs[0].cs_next = &cs[1]; 314 cs[1].cs_next = zslist; 315 zslist = cs; 316 317 cs->cs_unit = 0; 318 cs->cs_zc = &addr->zs_chan[ZS_CHAN_A]; 319 cs++; 320 cs->cs_unit = 1; 321 cs->cs_zc = &addr->zs_chan[ZS_CHAN_B]; 322 323 printf(": serial2 on channel a and modem2 on channel b\n"); 324 } 325 326 /* 327 * Open a zs serial port. 328 */ 329 int 330 zsopen(dev, flags, mode, p) 331 dev_t dev; 332 int flags; 333 int mode; 334 struct proc *p; 335 { 336 register struct tty *tp; 337 register struct zs_chanstate *cs; 338 struct zs_softc *zi; 339 int unit = ZS_UNIT(dev); 340 int zs = unit >> 1; 341 int error, s; 342 343 if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL) 344 return (ENXIO); 345 cs = &zi->zi_cs[unit & 1]; 346 347 /* 348 * When port A (ser02) is selected on the TT, make sure 349 * the port is enabled. 350 */ 351 if((machineid & ATARI_TT) && !(unit & 1)) 352 ym2149_ser2(1); 353 354 if (cs->cs_rbuf == NULL) { 355 cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF, 356 M_WAITOK); 357 } 358 359 tp = cs->cs_ttyp; 360 if(tp == NULL) { 361 cs->cs_ttyp = tp = ttymalloc(); 362 tty_attach(tp); 363 tp->t_dev = dev; 364 tp->t_oproc = zsstart; 365 tp->t_param = zsparam; 366 } 367 368 if ((tp->t_state & TS_ISOPEN) && 369 (tp->t_state & TS_XCLUDE) && 370 p->p_ucred->cr_uid != 0) 371 return (EBUSY); 372 373 s = spltty(); 374 375 /* 376 * Do the following iff this is a first open. 377 */ 378 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) { 379 if(tp->t_ispeed == 0) { 380 tp->t_iflag = TTYDEF_IFLAG; 381 tp->t_oflag = TTYDEF_OFLAG; 382 tp->t_cflag = TTYDEF_CFLAG; 383 tp->t_lflag = TTYDEF_LFLAG; 384 tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED; 385 } 386 ttychars(tp); 387 ttsetwater(tp); 388 389 (void)zsparam(tp, &tp->t_termios); 390 391 /* 392 * Turn on DTR. We must always do this, even if carrier is not 393 * present, because otherwise we'd have to use TIOCSDTR 394 * immediately after setting CLOCAL, which applications do not 395 * expect. We always assert DTR while the device is open 396 * unless explicitly requested to deassert it. 397 */ 398 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET); 399 /* May never get a status intr. if DCD already on. -gwr */ 400 if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD) 401 tp->t_state |= TS_CARR_ON; 402 if(cs->cs_softcar) 403 tp->t_state |= TS_CARR_ON; 404 } 405 406 splx(s); 407 408 error = ttyopen(tp, ZS_DIALOUT(dev), (flags & O_NONBLOCK)); 409 if (error) 410 goto bad; 411 412 error = tp->t_linesw->l_open(dev, tp); 413 if(error) 414 goto bad; 415 return (0); 416 417 bad: 418 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) { 419 /* 420 * We failed to open the device, and nobody else had it opened. 421 * Clean up the state as appropriate. 422 */ 423 zs_shutdown(cs); 424 } 425 return(error); 426 } 427 428 /* 429 * Close a zs serial port. 430 */ 431 int 432 zsclose(dev, flags, mode, p) 433 dev_t dev; 434 int flags; 435 int mode; 436 struct proc *p; 437 { 438 register struct zs_chanstate *cs; 439 register struct tty *tp; 440 struct zs_softc *zi; 441 int unit = ZS_UNIT(dev); 442 443 zi = zs_cd.cd_devs[unit >> 1]; 444 cs = &zi->zi_cs[unit & 1]; 445 tp = cs->cs_ttyp; 446 447 tp->t_linesw->l_close(tp, flags); 448 ttyclose(tp); 449 450 if (!(tp->t_state & TS_ISOPEN) && tp->t_wopen == 0) { 451 /* 452 * Although we got a last close, the device may still be in 453 * use; e.g. if this was the dialout node, and there are still 454 * processes waiting for carrier on the non-dialout node. 455 */ 456 zs_shutdown(cs); 457 } 458 return (0); 459 } 460 461 /* 462 * Read/write zs serial port. 463 */ 464 int 465 zsread(dev, uio, flags) 466 dev_t dev; 467 struct uio *uio; 468 int flags; 469 { 470 register struct zs_chanstate *cs; 471 register struct zs_softc *zi; 472 register struct tty *tp; 473 int unit; 474 475 unit = ZS_UNIT(dev); 476 zi = zs_cd.cd_devs[unit >> 1]; 477 cs = &zi->zi_cs[unit & 1]; 478 tp = cs->cs_ttyp; 479 480 return(tp->t_linesw->l_read(tp, uio, flags)); 481 } 482 483 int 484 zswrite(dev, uio, flags) 485 dev_t dev; 486 struct uio *uio; 487 int flags; 488 { 489 register struct zs_chanstate *cs; 490 register struct zs_softc *zi; 491 register struct tty *tp; 492 int unit; 493 494 unit = ZS_UNIT(dev); 495 zi = zs_cd.cd_devs[unit >> 1]; 496 cs = &zi->zi_cs[unit & 1]; 497 tp = cs->cs_ttyp; 498 499 return(tp->t_linesw->l_write(tp, uio, flags)); 500 } 501 502 int 503 zspoll(dev, events, p) 504 dev_t dev; 505 int events; 506 struct proc *p; 507 { 508 register struct zs_chanstate *cs; 509 register struct zs_softc *zi; 510 register struct tty *tp; 511 int unit; 512 513 unit = ZS_UNIT(dev); 514 zi = zs_cd.cd_devs[unit >> 1]; 515 cs = &zi->zi_cs[unit & 1]; 516 tp = cs->cs_ttyp; 517 518 return ((*tp->t_linesw->l_poll)(tp, events, p)); 519 } 520 521 struct tty * 522 zstty(dev) 523 dev_t dev; 524 { 525 register struct zs_chanstate *cs; 526 register struct zs_softc *zi; 527 int unit; 528 529 unit = ZS_UNIT(dev); 530 zi = zs_cd.cd_devs[unit >> 1]; 531 cs = &zi->zi_cs[unit & 1]; 532 return(cs->cs_ttyp); 533 } 534 535 /* 536 * ZS hardware interrupt. Scan all ZS channels. NB: we know here that 537 * channels are kept in (A,B) pairs. 538 * 539 * Do just a little, then get out; set a software interrupt if more 540 * work is needed. 541 * 542 * We deliberately ignore the vectoring Zilog gives us, and match up 543 * only the number of `reset interrupt under service' operations, not 544 * the order. 545 */ 546 547 int 548 zshard(sr) 549 long sr; 550 { 551 register struct zs_chanstate *a; 552 #define b (a + 1) 553 register volatile struct zschan *zc; 554 register int rr3, intflags = 0, v, i; 555 556 do { 557 intflags &= ~4; 558 for(a = zslist; a != NULL; a = b->cs_next) { 559 rr3 = ZS_READ(a->cs_zc, 3); 560 if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) { 561 intflags |= 4|2; 562 zc = a->cs_zc; 563 i = a->cs_rbput; 564 if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) { 565 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 566 intflags |= 1; 567 } 568 if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) { 569 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 570 intflags |= 1; 571 } 572 if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) { 573 a->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 574 intflags |= 1; 575 } 576 a->cs_rbput = i; 577 } 578 if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) { 579 intflags |= 4|2; 580 zc = b->cs_zc; 581 i = b->cs_rbput; 582 if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) { 583 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 584 intflags |= 1; 585 } 586 if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) { 587 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 588 intflags |= 1; 589 } 590 if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) { 591 b->cs_rbuf[i++ & ZLRB_RING_MASK] = v; 592 intflags |= 1; 593 } 594 b->cs_rbput = i; 595 } 596 } 597 } while(intflags & 4); 598 #undef b 599 600 if(intflags & 1) { 601 if(BASEPRI(sr)) { 602 spl1(); 603 zsshortcuts++; 604 return(zssoft(sr)); 605 } 606 else if(!cb_scheduled) { 607 cb_scheduled++; 608 add_sicallback((si_farg)zssoft, 0, 0); 609 } 610 } 611 return(intflags & 2); 612 } 613 614 static int 615 zsrint(cs, zc) 616 register struct zs_chanstate *cs; 617 register volatile struct zschan *zc; 618 { 619 register int c; 620 621 /* 622 * First read the status, because read of the received char 623 * destroy the status of this char. 624 */ 625 c = ZS_READ(zc, 1); 626 c |= (zc->zc_data << 8); 627 628 /* clear receive error & interrupt condition */ 629 zc->zc_csr = ZSWR0_RESET_ERRORS; 630 zc->zc_csr = ZSWR0_CLR_INTR; 631 632 return(ZRING_MAKE(ZRING_RINT, c)); 633 } 634 635 static int 636 zsxint(cs, zc) 637 register struct zs_chanstate *cs; 638 register volatile struct zschan *zc; 639 { 640 register int i = cs->cs_tbc; 641 642 if(i == 0) { 643 zc->zc_csr = ZSWR0_RESET_TXINT; 644 zc->zc_csr = ZSWR0_CLR_INTR; 645 return(ZRING_MAKE(ZRING_XINT, 0)); 646 } 647 cs->cs_tbc = i - 1; 648 zc->zc_data = *cs->cs_tba++; 649 zc->zc_csr = ZSWR0_CLR_INTR; 650 return (0); 651 } 652 653 static int 654 zssint(cs, zc) 655 register struct zs_chanstate *cs; 656 register volatile struct zschan *zc; 657 { 658 register int rr0; 659 660 rr0 = zc->zc_csr; 661 zc->zc_csr = ZSWR0_RESET_STATUS; 662 zc->zc_csr = ZSWR0_CLR_INTR; 663 /* 664 * The chip's hardware flow control is, as noted in zsreg.h, 665 * busted---if the DCD line goes low the chip shuts off the 666 * receiver (!). If we want hardware CTS flow control but do 667 * not have it, and carrier is now on, turn HFC on; if we have 668 * HFC now but carrier has gone low, turn it off. 669 */ 670 if(rr0 & ZSRR0_DCD) { 671 if(cs->cs_ttyp->t_cflag & CCTS_OFLOW && 672 (cs->cs_creg[3] & ZSWR3_HFC) == 0) { 673 cs->cs_creg[3] |= ZSWR3_HFC; 674 ZS_WRITE(zc, 3, cs->cs_creg[3]); 675 } 676 } 677 else { 678 if (cs->cs_creg[3] & ZSWR3_HFC) { 679 cs->cs_creg[3] &= ~ZSWR3_HFC; 680 ZS_WRITE(zc, 3, cs->cs_creg[3]); 681 } 682 } 683 return(ZRING_MAKE(ZRING_SINT, rr0)); 684 } 685 686 /* 687 * Print out a ring or fifo overrun error message. 688 */ 689 static void 690 zsoverrun(unit, ptime, what) 691 int unit; 692 long *ptime; 693 char *what; 694 { 695 696 if(*ptime != time.tv_sec) { 697 *ptime = time.tv_sec; 698 log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1, 699 (unit & 1) + 'a', what); 700 } 701 } 702 703 /* 704 * ZS software interrupt. Scan all channels for deferred interrupts. 705 */ 706 int 707 zssoft(sr) 708 long sr; 709 { 710 register struct zs_chanstate *cs; 711 register volatile struct zschan *zc; 712 register struct linesw *line; 713 register struct tty *tp; 714 register int get, n, c, cc, unit, s; 715 int retval = 0; 716 717 cb_scheduled = 0; 718 s = spltty(); 719 for(cs = zslist; cs != NULL; cs = cs->cs_next) { 720 get = cs->cs_rbget; 721 again: 722 n = cs->cs_rbput; /* atomic */ 723 if(get == n) /* nothing more on this line */ 724 continue; 725 retval = 1; 726 unit = cs->cs_unit; /* set up to handle interrupts */ 727 zc = cs->cs_zc; 728 tp = cs->cs_ttyp; 729 line = tp->t_linesw; 730 /* 731 * Compute the number of interrupts in the receive ring. 732 * If the count is overlarge, we lost some events, and 733 * must advance to the first valid one. It may get 734 * overwritten if more data are arriving, but this is 735 * too expensive to check and gains nothing (we already 736 * lost out; all we can do at this point is trade one 737 * kind of loss for another). 738 */ 739 n -= get; 740 if(n > ZLRB_RING_SIZE) { 741 zsoverrun(unit, &cs->cs_rotime, "ring"); 742 get += n - ZLRB_RING_SIZE; 743 n = ZLRB_RING_SIZE; 744 } 745 while(--n >= 0) { 746 /* race to keep ahead of incoming interrupts */ 747 c = cs->cs_rbuf[get++ & ZLRB_RING_MASK]; 748 switch (ZRING_TYPE(c)) { 749 750 case ZRING_RINT: 751 c = ZRING_VALUE(c); 752 if(c & ZSRR1_DO) 753 zsoverrun(unit, &cs->cs_fotime, "fifo"); 754 cc = c >> 8; 755 if(c & ZSRR1_FE) 756 cc |= TTY_FE; 757 if(c & ZSRR1_PE) 758 cc |= TTY_PE; 759 line->l_rint(cc, tp); 760 break; 761 762 case ZRING_XINT: 763 /* 764 * Transmit done: change registers and resume, 765 * or clear BUSY. 766 */ 767 if(cs->cs_heldchange) { 768 int sps; 769 770 sps = splzs(); 771 c = zc->zc_csr; 772 if((c & ZSRR0_DCD) == 0) 773 cs->cs_preg[3] &= ~ZSWR3_HFC; 774 bcopy((caddr_t)cs->cs_preg, 775 (caddr_t)cs->cs_creg, 16); 776 zs_loadchannelregs(zc, cs->cs_creg); 777 splx(sps); 778 cs->cs_heldchange = 0; 779 if(cs->cs_heldtbc 780 && (tp->t_state & TS_TTSTOP) == 0) { 781 cs->cs_tbc = cs->cs_heldtbc - 1; 782 zc->zc_data = *cs->cs_tba++; 783 goto again; 784 } 785 } 786 tp->t_state &= ~TS_BUSY; 787 if(tp->t_state & TS_FLUSH) 788 tp->t_state &= ~TS_FLUSH; 789 else ndflush(&tp->t_outq,cs->cs_tba 790 - (caddr_t)tp->t_outq.c_cf); 791 line->l_start(tp); 792 break; 793 794 case ZRING_SINT: 795 /* 796 * Status line change. HFC bit is run in 797 * hardware interrupt, to avoid locking 798 * at splzs here. 799 */ 800 c = ZRING_VALUE(c); 801 if((c ^ cs->cs_rr0) & ZSRR0_DCD) { 802 cc = (c & ZSRR0_DCD) != 0; 803 if(line->l_modem(tp, cc) == 0) 804 zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, 805 cc ? DMBIS : DMBIC); 806 } 807 cs->cs_rr0 = c; 808 break; 809 810 default: 811 log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n", 812 unit >> 1, (unit & 1) + 'a', c); 813 break; 814 } 815 } 816 cs->cs_rbget = get; 817 goto again; 818 } 819 splx(s); 820 return (retval); 821 } 822 823 int 824 zsioctl(dev, cmd, data, flag, p) 825 dev_t dev; 826 u_long cmd; 827 caddr_t data; 828 int flag; 829 struct proc *p; 830 { 831 int unit = ZS_UNIT(dev); 832 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1]; 833 register struct tty *tp = zi->zi_cs[unit & 1].cs_ttyp; 834 register int error, s; 835 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 836 837 error = tp->t_linesw->l_ioctl(tp, cmd, data, flag, p); 838 if(error >= 0) 839 return(error); 840 error = ttioctl(tp, cmd, data, flag, p); 841 if(error >= 0) 842 return (error); 843 844 switch (cmd) { 845 case TIOCSBRK: 846 s = splzs(); 847 cs->cs_preg[5] |= ZSWR5_BREAK; 848 cs->cs_creg[5] |= ZSWR5_BREAK; 849 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 850 splx(s); 851 break; 852 case TIOCCBRK: 853 s = splzs(); 854 cs->cs_preg[5] &= ~ZSWR5_BREAK; 855 cs->cs_creg[5] &= ~ZSWR5_BREAK; 856 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 857 splx(s); 858 break; 859 case TIOCGFLAGS: { 860 int bits = 0; 861 862 if(cs->cs_softcar) 863 bits |= TIOCFLAG_SOFTCAR; 864 if(cs->cs_creg[15] & ZSWR15_DCD_IE) 865 bits |= TIOCFLAG_CLOCAL; 866 if(cs->cs_creg[3] & ZSWR3_HFC) 867 bits |= TIOCFLAG_CRTSCTS; 868 *(int *)data = bits; 869 break; 870 } 871 case TIOCSFLAGS: { 872 int userbits = 0; 873 874 error = suser(p->p_ucred, &p->p_acflag); 875 if(error != 0) 876 return (EPERM); 877 878 userbits = *(int *)data; 879 880 /* 881 * can have `local' or `softcar', and `rtscts' or `mdmbuf' 882 # defaulting to software flow control. 883 */ 884 if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL) 885 return(EINVAL); 886 if(userbits & TIOCFLAG_MDMBUF) /* don't support this (yet?) */ 887 return(ENODEV); 888 889 s = splzs(); 890 if((userbits & TIOCFLAG_SOFTCAR)) { 891 cs->cs_softcar = 1; /* turn on softcar */ 892 cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */ 893 cs->cs_creg[15] &= ~ZSWR15_DCD_IE; 894 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 895 } 896 else if(userbits & TIOCFLAG_CLOCAL) { 897 cs->cs_softcar = 0; /* turn off softcar */ 898 cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */ 899 cs->cs_creg[15] |= ZSWR15_DCD_IE; 900 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 901 tp->t_termios.c_cflag |= CLOCAL; 902 } 903 if(userbits & TIOCFLAG_CRTSCTS) { 904 cs->cs_preg[15] |= ZSWR15_CTS_IE; 905 cs->cs_creg[15] |= ZSWR15_CTS_IE; 906 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 907 cs->cs_preg[3] |= ZSWR3_HFC; 908 cs->cs_creg[3] |= ZSWR3_HFC; 909 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 910 tp->t_termios.c_cflag |= CRTSCTS; 911 } 912 else { 913 /* no mdmbuf, so we must want software flow control */ 914 cs->cs_preg[15] &= ~ZSWR15_CTS_IE; 915 cs->cs_creg[15] &= ~ZSWR15_CTS_IE; 916 ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]); 917 cs->cs_preg[3] &= ~ZSWR3_HFC; 918 cs->cs_creg[3] &= ~ZSWR3_HFC; 919 ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]); 920 tp->t_termios.c_cflag &= ~CRTSCTS; 921 } 922 splx(s); 923 break; 924 } 925 case TIOCSDTR: 926 zs_modem(cs, ZSWR5_DTR, DMBIS); 927 break; 928 case TIOCCDTR: 929 zs_modem(cs, ZSWR5_DTR, DMBIC); 930 break; 931 case TIOCMGET: 932 zs_modem(cs, 0, DMGET); 933 break; 934 case TIOCMSET: 935 case TIOCMBIS: 936 case TIOCMBIC: 937 default: 938 return (ENOTTY); 939 } 940 return (0); 941 } 942 943 /* 944 * Start or restart transmission. 945 */ 946 static void 947 zsstart(tp) 948 register struct tty *tp; 949 { 950 register struct zs_chanstate *cs; 951 register int s, nch; 952 int unit = ZS_UNIT(tp->t_dev); 953 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1]; 954 955 cs = &zi->zi_cs[unit & 1]; 956 s = spltty(); 957 958 /* 959 * If currently active or delaying, no need to do anything. 960 */ 961 if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP)) 962 goto out; 963 964 /* 965 * If there are sleepers, and output has drained below low 966 * water mark, awaken. 967 */ 968 if(tp->t_outq.c_cc <= tp->t_lowat) { 969 if(tp->t_state & TS_ASLEEP) { 970 tp->t_state &= ~TS_ASLEEP; 971 wakeup((caddr_t)&tp->t_outq); 972 } 973 selwakeup(&tp->t_wsel); 974 } 975 976 nch = ndqb(&tp->t_outq, 0); /* XXX */ 977 if(nch) { 978 register char *p = tp->t_outq.c_cf; 979 980 /* mark busy, enable tx done interrupts, & send first byte */ 981 tp->t_state |= TS_BUSY; 982 (void) splzs(); 983 cs->cs_preg[1] |= ZSWR1_TIE; 984 cs->cs_creg[1] |= ZSWR1_TIE; 985 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 986 cs->cs_zc->zc_data = *p; 987 cs->cs_tba = p + 1; 988 cs->cs_tbc = nch - 1; 989 } else { 990 /* 991 * Nothing to send, turn off transmit done interrupts. 992 * This is useful if something is doing polled output. 993 */ 994 (void) splzs(); 995 cs->cs_preg[1] &= ~ZSWR1_TIE; 996 cs->cs_creg[1] &= ~ZSWR1_TIE; 997 ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]); 998 } 999 out: 1000 splx(s); 1001 } 1002 1003 /* 1004 * Stop output, e.g., for ^S or output flush. 1005 */ 1006 void 1007 zsstop(tp, flag) 1008 register struct tty *tp; 1009 int flag; 1010 { 1011 register struct zs_chanstate *cs; 1012 register int s, unit = ZS_UNIT(tp->t_dev); 1013 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1]; 1014 1015 cs = &zi->zi_cs[unit & 1]; 1016 s = splzs(); 1017 if(tp->t_state & TS_BUSY) { 1018 /* 1019 * Device is transmitting; must stop it. 1020 */ 1021 cs->cs_tbc = 0; 1022 if ((tp->t_state & TS_TTSTOP) == 0) 1023 tp->t_state |= TS_FLUSH; 1024 } 1025 splx(s); 1026 } 1027 1028 static void 1029 zs_shutdown(cs) 1030 struct zs_chanstate *cs; 1031 { 1032 struct tty *tp = cs->cs_ttyp; 1033 int s; 1034 1035 s = splzs(); 1036 1037 /* 1038 * Hang up if necessary. Wait a bit, so the other side has time to 1039 * notice even if we immediately open the port again. 1040 */ 1041 if(tp->t_cflag & HUPCL) { 1042 zs_modem(cs, 0, DMSET); 1043 (void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz); 1044 } 1045 1046 /* Clear any break condition set with TIOCSBRK. */ 1047 if(cs->cs_creg[5] & ZSWR5_BREAK) { 1048 cs->cs_preg[5] &= ~ZSWR5_BREAK; 1049 cs->cs_creg[5] &= ~ZSWR5_BREAK; 1050 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1051 } 1052 1053 /* 1054 * Drop all lines and cancel interrupts 1055 */ 1056 zs_loadchannelregs(cs->cs_zc, zs_init_regs); 1057 splx(s); 1058 } 1059 1060 /* 1061 * Set ZS tty parameters from termios. 1062 * 1063 * This routine makes use of the fact that only registers 1064 * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written. 1065 */ 1066 static int 1067 zsparam(tp, t) 1068 register struct tty *tp; 1069 register struct termios *t; 1070 { 1071 int unit = ZS_UNIT(tp->t_dev); 1072 struct zs_softc *zi = zs_cd.cd_devs[unit >> 1]; 1073 register struct zs_chanstate *cs = &zi->zi_cs[unit & 1]; 1074 int cdiv, clkm, brgm, tcon; 1075 register int tmp, tmp5, cflag, s; 1076 1077 tmp = t->c_ospeed; 1078 tmp5 = t->c_ispeed; 1079 if(tmp < 0 || (tmp5 && tmp5 != tmp)) 1080 return(EINVAL); 1081 if(tmp == 0) { 1082 /* stty 0 => drop DTR and RTS */ 1083 zs_modem(cs, 0, DMSET); 1084 return(0); 1085 } 1086 tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon); 1087 if (tmp < 0) 1088 return(EINVAL); 1089 tp->t_ispeed = tp->t_ospeed = tmp; 1090 1091 cflag = tp->t_cflag = t->c_cflag; 1092 if (cflag & CSTOPB) 1093 cdiv |= ZSWR4_TWOSB; 1094 else 1095 cdiv |= ZSWR4_ONESB; 1096 if (!(cflag & PARODD)) 1097 cdiv |= ZSWR4_EVENP; 1098 if (cflag & PARENB) 1099 cdiv |= ZSWR4_PARENB; 1100 1101 switch(cflag & CSIZE) { 1102 case CS5: 1103 tmp = ZSWR3_RX_5; 1104 tmp5 = ZSWR5_TX_5; 1105 break; 1106 case CS6: 1107 tmp = ZSWR3_RX_6; 1108 tmp5 = ZSWR5_TX_6; 1109 break; 1110 case CS7: 1111 tmp = ZSWR3_RX_7; 1112 tmp5 = ZSWR5_TX_7; 1113 break; 1114 case CS8: 1115 default: 1116 tmp = ZSWR3_RX_8; 1117 tmp5 = ZSWR5_TX_8; 1118 break; 1119 } 1120 tmp |= ZSWR3_RX_ENABLE; 1121 tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS; 1122 1123 /* 1124 * Block interrupts so that state will not 1125 * be altered until we are done setting it up. 1126 */ 1127 s = splzs(); 1128 cs->cs_preg[4] = cdiv; 1129 cs->cs_preg[11] = clkm; 1130 cs->cs_preg[12] = tcon; 1131 cs->cs_preg[13] = tcon >> 8; 1132 cs->cs_preg[14] = brgm; 1133 cs->cs_preg[1] = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE; 1134 cs->cs_preg[9] = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT; 1135 cs->cs_preg[10] = ZSWR10_NRZ; 1136 cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE; 1137 1138 /* 1139 * Output hardware flow control on the chip is horrendous: if 1140 * carrier detect drops, the receiver is disabled. Hence we 1141 * can only do this when the carrier is on. 1142 */ 1143 if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD) 1144 tmp |= ZSWR3_HFC; 1145 cs->cs_preg[3] = tmp; 1146 cs->cs_preg[5] = tmp5; 1147 1148 /* 1149 * If nothing is being transmitted, set up new current values, 1150 * else mark them as pending. 1151 */ 1152 if(cs->cs_heldchange == 0) { 1153 if (cs->cs_ttyp->t_state & TS_BUSY) { 1154 cs->cs_heldtbc = cs->cs_tbc; 1155 cs->cs_tbc = 0; 1156 cs->cs_heldchange = 1; 1157 } else { 1158 bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16); 1159 zs_loadchannelregs(cs->cs_zc, cs->cs_creg); 1160 } 1161 } 1162 splx(s); 1163 return (0); 1164 } 1165 1166 /* 1167 * search for the best matching baudrate 1168 */ 1169 static int 1170 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst) 1171 int unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst; 1172 { 1173 int bestdiff, bestbps, source; 1174 1175 bestdiff = bestbps = 0; 1176 unit = (unit & 1) << 2; 1177 for (source = 0; source < 4; ++source) { 1178 long freq = zs_frequencies[unit + source]; 1179 int diff, bps, div, clkm, brgm, tcon; 1180 1181 bps = div = clkm = brgm = tcon = 0; 1182 switch (source) { 1183 case 0: /* BRgen, PCLK */ 1184 brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK; 1185 break; 1186 case 1: /* BRgen, RTxC */ 1187 brgm = ZSWR14_BAUD_ENA; 1188 break; 1189 case 2: /* RTxC */ 1190 clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC; 1191 break; 1192 case 3: /* TRxC */ 1193 clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC; 1194 break; 1195 } 1196 switch (source) { 1197 case 0: 1198 case 1: 1199 div = ZSWR4_CLK_X16; 1200 clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD; 1201 tcon = BPS_TO_TCONST(freq, wanted); 1202 if (tcon < 0) 1203 tcon = 0; 1204 bps = TCONST_TO_BPS(freq, tcon); 1205 break; 1206 case 2: 1207 case 3: 1208 { int b1 = freq / 16, d1 = abs(b1 - wanted); 1209 int b2 = freq / 32, d2 = abs(b2 - wanted); 1210 int b3 = freq / 64, d3 = abs(b3 - wanted); 1211 1212 if (d1 < d2 && d1 < d3) { 1213 div = ZSWR4_CLK_X16; 1214 bps = b1; 1215 } else if (d2 < d3 && d2 < d1) { 1216 div = ZSWR4_CLK_X32; 1217 bps = b2; 1218 } else { 1219 div = ZSWR4_CLK_X64; 1220 bps = b3; 1221 } 1222 brgm = tcon = 0; 1223 break; 1224 } 1225 } 1226 diff = abs(bps - wanted); 1227 if (!source || diff < bestdiff) { 1228 *divisor = div; 1229 *clockmode = clkm; 1230 *brgenmode = brgm; 1231 *timeconst = tcon; 1232 bestbps = bps; 1233 bestdiff = diff; 1234 if (diff == 0) 1235 break; 1236 } 1237 } 1238 /* Allow deviations upto 5% */ 1239 if (20 * bestdiff > wanted) 1240 return -1; 1241 return bestbps; 1242 } 1243 1244 /* 1245 * Raise or lower modem control (DTR/RTS) signals. If a character is 1246 * in transmission, the change is deferred. 1247 */ 1248 static int 1249 zs_modem(cs, bits, how) 1250 struct zs_chanstate *cs; 1251 int bits, how; 1252 { 1253 int s, mbits; 1254 1255 bits &= ZSWR5_DTR | ZSWR5_RTS; 1256 1257 s = splzs(); 1258 mbits = cs->cs_preg[5] & (ZSWR5_DTR | ZSWR5_RTS); 1259 1260 switch(how) { 1261 case DMSET: 1262 mbits = bits; 1263 break; 1264 case DMBIS: 1265 mbits |= bits; 1266 break; 1267 case DMBIC: 1268 mbits &= ~bits; 1269 break; 1270 case DMGET: 1271 splx(s); 1272 return(mbits); 1273 } 1274 1275 cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits; 1276 if(cs->cs_heldchange == 0) { 1277 if(cs->cs_ttyp->t_state & TS_BUSY) { 1278 cs->cs_heldtbc = cs->cs_tbc; 1279 cs->cs_tbc = 0; 1280 cs->cs_heldchange = 1; 1281 } 1282 else { 1283 ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]); 1284 } 1285 } 1286 splx(s); 1287 return(0); 1288 } 1289 1290 /* 1291 * Write the given register set to the given zs channel in the proper order. 1292 * The channel must not be transmitting at the time. The receiver will 1293 * be disabled for the time it takes to write all the registers. 1294 */ 1295 static void 1296 zs_loadchannelregs(zc, reg) 1297 volatile struct zschan *zc; 1298 u_char *reg; 1299 { 1300 int i; 1301 1302 zc->zc_csr = ZSM_RESET_ERR; /* reset error condition */ 1303 i = zc->zc_data; /* drain fifo */ 1304 i = zc->zc_data; 1305 i = zc->zc_data; 1306 ZS_WRITE(zc, 4, reg[4]); 1307 ZS_WRITE(zc, 10, reg[10]); 1308 ZS_WRITE(zc, 3, reg[3] & ~ZSWR3_RX_ENABLE); 1309 ZS_WRITE(zc, 5, reg[5] & ~ZSWR5_TX_ENABLE); 1310 ZS_WRITE(zc, 1, reg[1]); 1311 ZS_WRITE(zc, 9, reg[9]); 1312 ZS_WRITE(zc, 11, reg[11]); 1313 ZS_WRITE(zc, 12, reg[12]); 1314 ZS_WRITE(zc, 13, reg[13]); 1315 ZS_WRITE(zc, 14, reg[14]); 1316 ZS_WRITE(zc, 15, reg[15]); 1317 ZS_WRITE(zc, 3, reg[3]); 1318 ZS_WRITE(zc, 5, reg[5]); 1319 } 1320 #endif /* NZS > 1 */ 1321