xref: /netbsd-src/sys/arch/atari/dev/zs.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: zs.c,v 1.27 1997/03/10 14:41:43 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 L. Weppelman (Atari modifications)
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  *
13  * All advertising materials mentioning features or use of this software
14  * must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Lawrence Berkeley Laboratory.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions
20  * are met:
21  * 1. Redistributions of source code must retain the above copyright
22  *    notice, this list of conditions and the following disclaimer.
23  * 2. Redistributions in binary form must reproduce the above copyright
24  *    notice, this list of conditions and the following disclaimer in the
25  *    documentation and/or other materials provided with the distribution.
26  * 3. All advertising materials mentioning features or use of this software
27  *    must display the following acknowledgement:
28  *	This product includes software developed by the University of
29  *	California, Berkeley and its contributors.
30  * 4. Neither the name of the University nor the names of its contributors
31  *    may be used to endorse or promote products derived from this software
32  *    without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
35  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
36  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
37  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
38  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
39  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
40  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
41  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
42  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
43  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
44  * SUCH DAMAGE.
45  *
46  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
47  */
48 
49 /*
50  * Zilog Z8530 (ZSCC) driver.
51  *
52  * Runs two tty ports (modem2 and serial2) on zs0.
53  *
54  * This driver knows far too much about chip to usage mappings.
55  */
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/device.h>
60 #include <sys/conf.h>
61 #include <sys/file.h>
62 #include <sys/ioctl.h>
63 #include <sys/malloc.h>
64 #include <sys/tty.h>
65 #include <sys/time.h>
66 #include <sys/kernel.h>
67 #include <sys/syslog.h>
68 
69 #include <machine/cpu.h>
70 #include <machine/iomap.h>
71 #include <machine/scu.h>
72 #include <machine/mfp.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include <dev/ic/z8530reg.h>
76 #include <atari/dev/zsvar.h>
77 #include "zs.h"
78 #if NZS > 1
79 #error "This driver supports only 1 85C30!"
80 #endif
81 
82 #if NZS > 0
83 
84 #define PCLK	(8053976)	/* PCLK pin input clock rate */
85 #define PCLK_HD	(14745600)	/* PCLK on Hades pin input clock rate */
86 
87 #define splzs	spl5
88 
89 /*
90  * Software state per found chip.
91  */
92 struct zs_softc {
93     struct	device		zi_dev;    /* base device		  */
94     volatile struct zsdevice	*zi_zs;    /* chip registers		  */
95     struct	zs_chanstate	zi_cs[2];  /* chan A and B software state */
96 };
97 
98 static u_char	cb_scheduled = 0;	/* Already asked for callback? */
99 /*
100  * Define the registers for a closed port
101  */
102 static u_char zs_init_regs[16] = {
103 /*  0 */	0,
104 /*  1 */	0,
105 /*  2 */	0x60,
106 /*  3 */	0,
107 /*  4 */	0,
108 /*  5 */	0,
109 /*  6 */	0,
110 /*  7 */	0,
111 /*  8 */	0,
112 /*  9 */	ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT,
113 /* 10 */	ZSWR10_NRZ,
114 /* 11 */	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
115 /* 12 */	0,
116 /* 13 */	0,
117 /* 14 */	ZSWR14_BAUD_FROM_PCLK | ZSWR14_BAUD_ENA,
118 /* 15 */	0
119 };
120 
121 /*
122  * Define the machine dependant clock frequencies
123  * If BRgen feeds sender/receiver we always use a
124  * divisor 16, therefor the division by 16 can as
125  * well be done here.
126  */
127 static u_long zs_freqs_tt[] = {
128 	/*
129 	 * Atari TT, RTxCB is generated by TT-MFP timer C,
130 	 * which is set to 307.2KHz during initialisation
131 	 * and never changed afterwards.
132 	 */
133 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
134 	 229500,	/* BRgen, RTxCA, divisor 16	*/
135 	3672000,	/* RTxCA, from PCLK4		*/
136 	      0,	/* TRxCA, external		*/
137 
138 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
139 	  19200,	/* BRgen, RTxCB, divisor 16	*/
140 	 307200,	/* RTxCB, from TT-MFP TCO	*/
141 	2457600		/* TRxCB, from BCLK		*/
142 };
143 
144 static u_long zs_freqs_falcon[] = {
145 	/*
146 	 * Atari Falcon, XXX no specs available, this might be wrong
147 	 */
148 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
149 	 229500,	/* BRgen, RTxCA, divisor 16	*/
150 	3672000,	/* RTxCA, ???			*/
151 	      0,	/* TRxCA, external		*/
152 
153 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
154 	 229500,	/* BRgen, RTxCB, divisor 16	*/
155 	3672000,	/* RTxCB, ???			*/
156 	2457600		/* TRxCB, ???			*/
157 };
158 
159 static u_long zs_freqs_hades[] = {
160 	/*
161 	 * XXX: Channel-A unchecked!!!!!
162 	 */
163      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
164 	 229500,	/* BRgen, RTxCA, divisor 16	*/
165 	3672000,	/* RTxCA, from PCLK4		*/
166 	      0,	/* TRxCA, external		*/
167 
168      PCLK_HD/16,	/* BRgen, PCLK,  divisor 16	*/
169 	 235550,	/* BRgen, RTxCB, divisor 16	*/
170 	3768800,	/* RTxCB, 3.7688MHz		*/
171 	3768800		/* TRxCB, 3.7688MHz		*/
172 };
173 
174 static u_long zs_freqs_generic[] = {
175 	/*
176 	 * other machines, assume only PCLK is available
177 	 */
178 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
179 	      0,	/* BRgen, RTxCA, divisor 16	*/
180 	      0,	/* RTxCA, unknown		*/
181 	      0,	/* TRxCA, unknown		*/
182 
183 	PCLK/16,	/* BRgen, PCLK,  divisor 16	*/
184 	      0,	/* BRgen, RTxCB, divisor 16	*/
185 	      0,	/* RTxCB, unknown		*/
186 	      0		/* TRxCB, unknown		*/
187 };
188 static u_long *zs_frequencies;
189 
190 /* Definition of the driver for autoconfig. */
191 static int	zsmatch __P((struct device *, struct cfdata *, void *));
192 static void	zsattach __P((struct device *, struct device *, void *));
193 
194 struct cfattach zs_ca = {
195 	sizeof(struct zs_softc), zsmatch, zsattach
196 };
197 
198 struct cfdriver zs_cd = {
199 	NULL, "zs", DV_TTY, NULL, 0
200 };
201 
202 /* {b,c}devsw[] function prototypes */
203 dev_type_open(zsopen);
204 dev_type_close(zsclose);
205 dev_type_read(zsread);
206 dev_type_write(zswrite);
207 dev_type_ioctl(zsioctl);
208 dev_type_tty(zstty);
209 
210 /* Interrupt handlers. */
211 int		zshard __P((long));
212 static int	zssoft __P((long));
213 static int	zsrint __P((struct zs_chanstate *, volatile struct zschan *));
214 static int	zsxint __P((struct zs_chanstate *, volatile struct zschan *));
215 static int	zssint __P((struct zs_chanstate *, volatile struct zschan *));
216 
217 static struct zs_chanstate *zslist;
218 
219 /* Routines called from other code. */
220 static void	zsstart __P((struct tty *));
221 void		zsstop __P((struct tty *, int));
222 
223 /* Routines purely local to this driver. */
224 static void	zsoverrun __P((int, long *, char *));
225 static int	zsparam __P((struct tty *, struct termios *));
226 static int	zsbaudrate __P((int, int, int *, int *, int *, int *));
227 static int	zs_modem __P((struct zs_chanstate *, int, int));
228 static void	zs_loadchannelregs __P((volatile struct zschan *, u_char *));
229 
230 static int zsshortcuts;	/* number of "shortcut" software interrupts */
231 
232 static int
233 zsmatch(pdp, cfp, auxp)
234 struct device	*pdp;
235 struct cfdata	*cfp;
236 void		*auxp;
237 {
238 	if(strcmp("zs", auxp) || cfp->cf_unit != 0)
239 		return(0);
240 	return(1);
241 }
242 
243 /*
244  * Attach a found zs.
245  */
246 static void
247 zsattach(parent, dev, aux)
248 struct device	*parent;
249 struct device	*dev;
250 void		*aux;
251 {
252 	register struct zs_softc		*zi;
253 	register struct zs_chanstate		*cs;
254 	register volatile struct zsdevice	*addr;
255 		 char				tmp;
256 
257 	addr      = (struct zsdevice *)AD_SCC;
258 	zi        = (struct zs_softc *)dev;
259 	zi->zi_zs = addr;
260 	cs        = zi->zi_cs;
261 
262 	/*
263 	 * Get the command register into a known state.
264 	 */
265 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
266 	tmp = addr->zs_chan[ZS_CHAN_A].zc_csr;
267 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
268 	tmp = addr->zs_chan[ZS_CHAN_B].zc_csr;
269 
270 	/*
271 	 * Do a hardware reset.
272 	 */
273 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, ZSWR9_HARD_RESET);
274 	delay(50000);	/*enough ? */
275 	ZS_WRITE(&addr->zs_chan[ZS_CHAN_A], 9, 0);
276 
277 	/*
278 	 * Initialize both channels
279 	 */
280 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_A], zs_init_regs);
281 	zs_loadchannelregs(&addr->zs_chan[ZS_CHAN_B], zs_init_regs);
282 
283 	if(machineid & ATARI_TT) {
284 		/*
285 		 * ininitialise TT-MFP timer C: 307200Hz
286 		 * timer C and D share one control register:
287 		 *	bits 0-2 control timer D
288 		 *	bits 4-6 control timer C
289 		 */
290 		int cr = MFP2->mf_tcdcr & 7;
291 		MFP2->mf_tcdcr = cr;		/* stop timer C  */
292 		MFP2->mf_tcdr  = 1;		/* counter 1     */
293 		cr |= T_Q004 << 4;		/* divisor 4     */
294 		MFP2->mf_tcdcr = cr;		/* start timer C */
295 		/*
296 		 * enable scc related interrupts
297 		 */
298 		SCU->vme_mask |= SCU_SCC;
299 
300 		zs_frequencies = zs_freqs_tt;
301 	} else if (machineid & ATARI_FALCON) {
302 		zs_frequencies = zs_freqs_falcon;
303 	} else if (machineid & ATARI_HADES) {
304 		zs_frequencies = zs_freqs_hades;
305 	} else {
306 		zs_frequencies = zs_freqs_generic;
307 	}
308 
309 	/* link into interrupt list with order (A,B) (B=A+1) */
310 	cs[0].cs_next = &cs[1];
311 	cs[1].cs_next = zslist;
312 	zslist        = cs;
313 
314 	cs->cs_unit  = 0;
315 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_A];
316 	cs++;
317 	cs->cs_unit  = 1;
318 	cs->cs_zc    = &addr->zs_chan[ZS_CHAN_B];
319 
320 	printf(": serial2 on channel a and modem2 on channel b\n");
321 }
322 
323 /*
324  * Open a zs serial port.
325  */
326 int
327 zsopen(dev, flags, mode, p)
328 dev_t		dev;
329 int		flags;
330 int		mode;
331 struct proc	*p;
332 {
333 	register struct tty		*tp;
334 	register struct zs_chanstate	*cs;
335 		 struct zs_softc	*zi;
336 		 int			unit = ZS_UNIT(dev);
337 		 int			zs = unit >> 1;
338 		 int			error, s;
339 
340 	if(zs >= zs_cd.cd_ndevs || (zi = zs_cd.cd_devs[zs]) == NULL)
341 		return (ENXIO);
342 	cs = &zi->zi_cs[unit & 1];
343 
344 	/*
345 	 * When port A (ser02) is selected on the TT, make sure
346 	 * the port is enabled.
347 	 */
348 	if((machineid & ATARI_TT) && !(unit & 1))
349 		ym2149_ser2(1);
350 
351 	if (cs->cs_rbuf == NULL) {
352 		cs->cs_rbuf = malloc(ZLRB_RING_SIZE * sizeof(int), M_DEVBUF,
353 								   M_WAITOK);
354 	}
355 
356 	tp = cs->cs_ttyp;
357 	if(tp == NULL) {
358 		cs->cs_ttyp = tp = ttymalloc();
359 		tty_attach(tp);
360 		tp->t_dev   = dev;
361 		tp->t_oproc = zsstart;
362 		tp->t_param = zsparam;
363 	}
364 
365 	s  = spltty();
366 	if((tp->t_state & TS_ISOPEN) == 0) {
367 		ttychars(tp);
368 		if(tp->t_ispeed == 0) {
369 			tp->t_iflag = TTYDEF_IFLAG;
370 			tp->t_oflag = TTYDEF_OFLAG;
371 			tp->t_cflag = TTYDEF_CFLAG;
372 			tp->t_lflag = TTYDEF_LFLAG;
373 			tp->t_ispeed = tp->t_ospeed = TTYDEF_SPEED;
374 		}
375 		(void)zsparam(tp, &tp->t_termios);
376 		ttsetwater(tp);
377 	}
378 	else if(tp->t_state & TS_XCLUDE && p->p_ucred->cr_uid != 0) {
379 			splx(s);
380 			return (EBUSY);
381 	}
382 	error = 0;
383 	for(;;) {
384 		/* loop, turning on the device, until carrier present */
385 		zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR, DMSET);
386 
387 		/* May never get a status intr. if DCD already on. -gwr */
388 		if((cs->cs_rr0 = cs->cs_zc->zc_csr) & ZSRR0_DCD)
389 			tp->t_state |= TS_CARR_ON;
390 		if(cs->cs_softcar)
391 			tp->t_state |= TS_CARR_ON;
392 		if(flags & O_NONBLOCK || tp->t_cflag & CLOCAL ||
393 		    tp->t_state & TS_CARR_ON)
394 			break;
395 		tp->t_state |= TS_WOPEN;
396 		if((error = ttysleep(tp, (caddr_t)&tp->t_rawq, TTIPRI | PCATCH,
397 		    ttopen, 0)) != 0) {
398 			if(!(tp->t_state & TS_ISOPEN)) {
399 				zs_modem(cs, 0, DMSET);
400 				tp->t_state &= ~TS_WOPEN;
401 				ttwakeup(tp);
402 			}
403 			splx(s);
404 			return error;
405 		}
406 	}
407 	splx(s);
408 	if(error == 0)
409 		error = linesw[tp->t_line].l_open(dev, tp);
410 	if(error)
411 		zs_modem(cs, 0, DMSET);
412 	return(error);
413 }
414 
415 /*
416  * Close a zs serial port.
417  */
418 int
419 zsclose(dev, flags, mode, p)
420 dev_t		dev;
421 int		flags;
422 int		mode;
423 struct proc	*p;
424 {
425 	register struct zs_chanstate	*cs;
426 	register struct tty		*tp;
427 		 struct zs_softc	*zi;
428 		 int			unit = ZS_UNIT(dev);
429 		 int			s;
430 
431 	zi = zs_cd.cd_devs[unit >> 1];
432 	cs = &zi->zi_cs[unit & 1];
433 	tp = cs->cs_ttyp;
434 	linesw[tp->t_line].l_close(tp, flags);
435 	if(tp->t_cflag & HUPCL || tp->t_state & TS_WOPEN ||
436 	    (tp->t_state & TS_ISOPEN) == 0) {
437 		zs_modem(cs, 0, DMSET);
438 		/* hold low for 1 second */
439 		(void)tsleep((caddr_t)cs, TTIPRI, ttclos, hz);
440 	}
441 	if(cs->cs_creg[5] & ZSWR5_BREAK) {
442 		s = splzs();
443 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
444 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
445 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
446 		splx(s);
447 	}
448 	ttyclose(tp);
449 
450 	/*
451 	 * Drop all lines and cancel interrupts
452 	 */
453 	s = splzs();
454 	zs_loadchannelregs(cs->cs_zc, zs_init_regs);
455 	splx(s);
456 	return (0);
457 }
458 
459 /*
460  * Read/write zs serial port.
461  */
462 int
463 zsread(dev, uio, flags)
464 dev_t		dev;
465 struct uio	*uio;
466 int		flags;
467 {
468 	register struct zs_chanstate	*cs;
469 	register struct zs_softc	*zi;
470 	register struct tty		*tp;
471 		 int			unit;
472 
473 	unit = ZS_UNIT(dev);
474 	zi   = zs_cd.cd_devs[unit >> 1];
475 	cs   = &zi->zi_cs[unit & 1];
476 	tp   = cs->cs_ttyp;
477 
478 	return(linesw[tp->t_line].l_read(tp, uio, flags));
479 }
480 
481 int
482 zswrite(dev, uio, flags)
483 dev_t		dev;
484 struct uio	*uio;
485 int		flags;
486 {
487 	register struct zs_chanstate	*cs;
488 	register struct zs_softc	*zi;
489 	register struct tty		*tp;
490 		 int			unit;
491 
492 	unit = ZS_UNIT(dev);
493 	zi   = zs_cd.cd_devs[unit >> 1];
494 	cs   = &zi->zi_cs[unit & 1];
495 	tp   = cs->cs_ttyp;
496 
497 	return(linesw[tp->t_line].l_write(tp, uio, flags));
498 }
499 
500 struct tty *
501 zstty(dev)
502 dev_t	dev;
503 {
504 	register struct zs_chanstate	*cs;
505 	register struct zs_softc	*zi;
506 		 int			unit;
507 
508 	unit = ZS_UNIT(dev);
509 	zi   = zs_cd.cd_devs[unit >> 1];
510 	cs   = &zi->zi_cs[unit & 1];
511 	return(cs->cs_ttyp);
512 }
513 
514 /*
515  * ZS hardware interrupt.  Scan all ZS channels.  NB: we know here that
516  * channels are kept in (A,B) pairs.
517  *
518  * Do just a little, then get out; set a software interrupt if more
519  * work is needed.
520  *
521  * We deliberately ignore the vectoring Zilog gives us, and match up
522  * only the number of `reset interrupt under service' operations, not
523  * the order.
524  */
525 
526 int
527 zshard(sr)
528 long sr;
529 {
530 	register struct zs_chanstate	*a;
531 #define	b (a + 1)
532 	register volatile struct zschan *zc;
533 	register int			rr3, intflags = 0, v, i;
534 
535 	do {
536 	    intflags &= ~4;
537 	    for(a = zslist; a != NULL; a = b->cs_next) {
538 		rr3 = ZS_READ(a->cs_zc, 3);
539 		if(rr3 & (ZSRR3_IP_A_RX|ZSRR3_IP_A_TX|ZSRR3_IP_A_STAT)) {
540 			intflags |= 4|2;
541 			zc = a->cs_zc;
542 			i  = a->cs_rbput;
543 			if(rr3 & ZSRR3_IP_A_RX && (v = zsrint(a, zc)) != 0) {
544 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
545 				intflags |= 1;
546 			}
547 			if(rr3 & ZSRR3_IP_A_TX && (v = zsxint(a, zc)) != 0) {
548 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
549 				intflags |= 1;
550 			}
551 			if(rr3 & ZSRR3_IP_A_STAT && (v = zssint(a, zc)) != 0) {
552 				a->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
553 				intflags |= 1;
554 			}
555 			a->cs_rbput = i;
556 		}
557 		if(rr3 & (ZSRR3_IP_B_RX|ZSRR3_IP_B_TX|ZSRR3_IP_B_STAT)) {
558 			intflags |= 4|2;
559 			zc = b->cs_zc;
560 			i  = b->cs_rbput;
561 			if(rr3 & ZSRR3_IP_B_RX && (v = zsrint(b, zc)) != 0) {
562 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
563 				intflags |= 1;
564 			}
565 			if(rr3 & ZSRR3_IP_B_TX && (v = zsxint(b, zc)) != 0) {
566 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
567 				intflags |= 1;
568 			}
569 			if(rr3 & ZSRR3_IP_B_STAT && (v = zssint(b, zc)) != 0) {
570 				b->cs_rbuf[i++ & ZLRB_RING_MASK] = v;
571 				intflags |= 1;
572 			}
573 			b->cs_rbput = i;
574 		}
575 	    }
576 	} while(intflags & 4);
577 #undef b
578 
579 	if(intflags & 1) {
580 		if(BASEPRI(sr)) {
581 			spl1();
582 			zsshortcuts++;
583 			return(zssoft(sr));
584 		}
585 		else if(!cb_scheduled) {
586 			cb_scheduled++;
587 			add_sicallback((si_farg)zssoft, 0, 0);
588 		}
589 	}
590 	return(intflags & 2);
591 }
592 
593 static int
594 zsrint(cs, zc)
595 register struct zs_chanstate	*cs;
596 register volatile struct zschan	*zc;
597 {
598 	register int c;
599 
600 	/*
601 	 * First read the status, because read of the received char
602 	 * destroy the status of this char.
603 	 */
604 	c = ZS_READ(zc, 1);
605 	c |= (zc->zc_data << 8);
606 
607 	/* clear receive error & interrupt condition */
608 	zc->zc_csr = ZSWR0_RESET_ERRORS;
609 	zc->zc_csr = ZSWR0_CLR_INTR;
610 
611 	return(ZRING_MAKE(ZRING_RINT, c));
612 }
613 
614 static int
615 zsxint(cs, zc)
616 register struct zs_chanstate	*cs;
617 register volatile struct zschan	*zc;
618 {
619 	register int i = cs->cs_tbc;
620 
621 	if(i == 0) {
622 		zc->zc_csr = ZSWR0_RESET_TXINT;
623 		zc->zc_csr = ZSWR0_CLR_INTR;
624 		return(ZRING_MAKE(ZRING_XINT, 0));
625 	}
626 	cs->cs_tbc = i - 1;
627 	zc->zc_data = *cs->cs_tba++;
628 	zc->zc_csr = ZSWR0_CLR_INTR;
629 	return (0);
630 }
631 
632 static int
633 zssint(cs, zc)
634 register struct zs_chanstate	*cs;
635 register volatile struct zschan	*zc;
636 {
637 	register int rr0;
638 
639 	rr0 = zc->zc_csr;
640 	zc->zc_csr = ZSWR0_RESET_STATUS;
641 	zc->zc_csr = ZSWR0_CLR_INTR;
642 	/*
643 	 * The chip's hardware flow control is, as noted in zsreg.h,
644 	 * busted---if the DCD line goes low the chip shuts off the
645 	 * receiver (!).  If we want hardware CTS flow control but do
646 	 * not have it, and carrier is now on, turn HFC on; if we have
647 	 * HFC now but carrier has gone low, turn it off.
648 	 */
649 	if(rr0 & ZSRR0_DCD) {
650 		if(cs->cs_ttyp->t_cflag & CCTS_OFLOW &&
651 		    (cs->cs_creg[3] & ZSWR3_HFC) == 0) {
652 			cs->cs_creg[3] |= ZSWR3_HFC;
653 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
654 		}
655 	}
656 	else {
657 		if (cs->cs_creg[3] & ZSWR3_HFC) {
658 			cs->cs_creg[3] &= ~ZSWR3_HFC;
659 			ZS_WRITE(zc, 3, cs->cs_creg[3]);
660 		}
661 	}
662 	return(ZRING_MAKE(ZRING_SINT, rr0));
663 }
664 
665 /*
666  * Print out a ring or fifo overrun error message.
667  */
668 static void
669 zsoverrun(unit, ptime, what)
670 int	unit;
671 long	*ptime;
672 char	*what;
673 {
674 
675 	if(*ptime != time.tv_sec) {
676 		*ptime = time.tv_sec;
677 		log(LOG_WARNING, "zs%d%c: %s overrun\n", unit >> 1,
678 		    (unit & 1) + 'a', what);
679 	}
680 }
681 
682 /*
683  * ZS software interrupt.  Scan all channels for deferred interrupts.
684  */
685 int
686 zssoft(sr)
687 long sr;
688 {
689     register struct zs_chanstate	*cs;
690     register volatile struct zschan	*zc;
691     register struct linesw		*line;
692     register struct tty			*tp;
693     register int			get, n, c, cc, unit, s;
694  	     int			retval = 0;
695 
696     cb_scheduled = 0;
697     s = spltty();
698     for(cs = zslist; cs != NULL; cs = cs->cs_next) {
699 	get = cs->cs_rbget;
700 again:
701 	n = cs->cs_rbput;	/* atomic			*/
702 	if(get == n)		/* nothing more on this line	*/
703 		continue;
704 	retval = 1;
705 	unit   = cs->cs_unit;	/* set up to handle interrupts	*/
706 	zc     = cs->cs_zc;
707 	tp     = cs->cs_ttyp;
708 	line   = &linesw[tp->t_line];
709 	/*
710 	 * Compute the number of interrupts in the receive ring.
711 	 * If the count is overlarge, we lost some events, and
712 	 * must advance to the first valid one.  It may get
713 	 * overwritten if more data are arriving, but this is
714 	 * too expensive to check and gains nothing (we already
715 	 * lost out; all we can do at this point is trade one
716 	 * kind of loss for another).
717 	 */
718 	n -= get;
719 	if(n > ZLRB_RING_SIZE) {
720 		zsoverrun(unit, &cs->cs_rotime, "ring");
721 		get += n - ZLRB_RING_SIZE;
722 		n    = ZLRB_RING_SIZE;
723 	}
724 	while(--n >= 0) {
725 		/* race to keep ahead of incoming interrupts */
726 		c = cs->cs_rbuf[get++ & ZLRB_RING_MASK];
727 		switch (ZRING_TYPE(c)) {
728 
729 		case ZRING_RINT:
730 			c = ZRING_VALUE(c);
731 			if(c & ZSRR1_DO)
732 				zsoverrun(unit, &cs->cs_fotime, "fifo");
733 			cc = c >> 8;
734 			if(c & ZSRR1_FE)
735 				cc |= TTY_FE;
736 			if(c & ZSRR1_PE)
737 				cc |= TTY_PE;
738 			line->l_rint(cc, tp);
739 			break;
740 
741 		case ZRING_XINT:
742 			/*
743 			 * Transmit done: change registers and resume,
744 			 * or clear BUSY.
745 			 */
746 			if(cs->cs_heldchange) {
747 				int sps;
748 
749 				sps = splzs();
750 				c = zc->zc_csr;
751 				if((c & ZSRR0_DCD) == 0)
752 					cs->cs_preg[3] &= ~ZSWR3_HFC;
753 				bcopy((caddr_t)cs->cs_preg,
754 				    (caddr_t)cs->cs_creg, 16);
755 				zs_loadchannelregs(zc, cs->cs_creg);
756 				splx(sps);
757 				cs->cs_heldchange = 0;
758 				if(cs->cs_heldtbc
759 					&& (tp->t_state & TS_TTSTOP) == 0) {
760 					cs->cs_tbc = cs->cs_heldtbc - 1;
761 					zc->zc_data = *cs->cs_tba++;
762 					goto again;
763 				}
764 			}
765 			tp->t_state &= ~TS_BUSY;
766 			if(tp->t_state & TS_FLUSH)
767 				tp->t_state &= ~TS_FLUSH;
768 			else ndflush(&tp->t_outq,cs->cs_tba
769 						- (caddr_t)tp->t_outq.c_cf);
770 			line->l_start(tp);
771 			break;
772 
773 		case ZRING_SINT:
774 			/*
775 			 * Status line change.  HFC bit is run in
776 			 * hardware interrupt, to avoid locking
777 			 * at splzs here.
778 			 */
779 			c = ZRING_VALUE(c);
780 			if((c ^ cs->cs_rr0) & ZSRR0_DCD) {
781 				cc = (c & ZSRR0_DCD) != 0;
782 				if(line->l_modem(tp, cc) == 0)
783 					zs_modem(cs, ZSWR5_RTS|ZSWR5_DTR,
784 							cc ? DMBIS : DMBIC);
785 			}
786 			cs->cs_rr0 = c;
787 			break;
788 
789 		default:
790 			log(LOG_ERR, "zs%d%c: bad ZRING_TYPE (%x)\n",
791 			    unit >> 1, (unit & 1) + 'a', c);
792 			break;
793 		}
794 	}
795 	cs->cs_rbget = get;
796 	goto again;
797     }
798     splx(s);
799     return (retval);
800 }
801 
802 int
803 zsioctl(dev, cmd, data, flag, p)
804 dev_t		dev;
805 u_long		cmd;
806 caddr_t		data;
807 int		flag;
808 struct proc	*p;
809 {
810 		 int			unit = ZS_UNIT(dev);
811 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
812 	register struct tty		*tp = zi->zi_cs[unit & 1].cs_ttyp;
813 	register int			error, s;
814 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
815 
816 	error = linesw[tp->t_line].l_ioctl(tp, cmd, data, flag, p);
817 	if(error >= 0)
818 		return(error);
819 	error = ttioctl(tp, cmd, data, flag, p);
820 	if(error >= 0)
821 		return (error);
822 
823 	switch (cmd) {
824 	case TIOCSBRK:
825 		s = splzs();
826 		cs->cs_preg[5] |= ZSWR5_BREAK;
827 		cs->cs_creg[5] |= ZSWR5_BREAK;
828 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
829 		splx(s);
830 		break;
831 	case TIOCCBRK:
832 		s = splzs();
833 		cs->cs_preg[5] &= ~ZSWR5_BREAK;
834 		cs->cs_creg[5] &= ~ZSWR5_BREAK;
835 		ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
836 		splx(s);
837 		break;
838 	case TIOCGFLAGS: {
839 		int bits = 0;
840 
841 		if(cs->cs_softcar)
842 			bits |= TIOCFLAG_SOFTCAR;
843 		if(cs->cs_creg[15] & ZSWR15_DCD_IE)
844 			bits |= TIOCFLAG_CLOCAL;
845 		if(cs->cs_creg[3] & ZSWR3_HFC)
846 			bits |= TIOCFLAG_CRTSCTS;
847 		*(int *)data = bits;
848 		break;
849 	}
850 	case TIOCSFLAGS: {
851 		int userbits = 0;
852 
853 		error = suser(p->p_ucred, &p->p_acflag);
854 		if(error != 0)
855 			return (EPERM);
856 
857 		userbits = *(int *)data;
858 
859 		/*
860 		 * can have `local' or `softcar', and `rtscts' or `mdmbuf'
861 		 # defaulting to software flow control.
862 		 */
863 		if(userbits & TIOCFLAG_SOFTCAR && userbits & TIOCFLAG_CLOCAL)
864 			return(EINVAL);
865 		if(userbits & TIOCFLAG_MDMBUF)	/* don't support this (yet?) */
866 			return(ENODEV);
867 
868 		s = splzs();
869 		if((userbits & TIOCFLAG_SOFTCAR)) {
870 			cs->cs_softcar = 1;	/* turn on softcar */
871 			cs->cs_preg[15] &= ~ZSWR15_DCD_IE; /* turn off dcd */
872 			cs->cs_creg[15] &= ~ZSWR15_DCD_IE;
873 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
874 		}
875 		else if(userbits & TIOCFLAG_CLOCAL) {
876 			cs->cs_softcar = 0; 	/* turn off softcar */
877 			cs->cs_preg[15] |= ZSWR15_DCD_IE; /* turn on dcd */
878 			cs->cs_creg[15] |= ZSWR15_DCD_IE;
879 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
880 			tp->t_termios.c_cflag |= CLOCAL;
881 		}
882 		if(userbits & TIOCFLAG_CRTSCTS) {
883 			cs->cs_preg[15] |= ZSWR15_CTS_IE;
884 			cs->cs_creg[15] |= ZSWR15_CTS_IE;
885 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
886 			cs->cs_preg[3] |= ZSWR3_HFC;
887 			cs->cs_creg[3] |= ZSWR3_HFC;
888 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
889 			tp->t_termios.c_cflag |= CRTSCTS;
890 		}
891 		else {
892 			/* no mdmbuf, so we must want software flow control */
893 			cs->cs_preg[15] &= ~ZSWR15_CTS_IE;
894 			cs->cs_creg[15] &= ~ZSWR15_CTS_IE;
895 			ZS_WRITE(cs->cs_zc, 15, cs->cs_creg[15]);
896 			cs->cs_preg[3] &= ~ZSWR3_HFC;
897 			cs->cs_creg[3] &= ~ZSWR3_HFC;
898 			ZS_WRITE(cs->cs_zc, 3, cs->cs_creg[3]);
899 			tp->t_termios.c_cflag &= ~CRTSCTS;
900 		}
901 		splx(s);
902 		break;
903 	}
904 	case TIOCSDTR:
905 		zs_modem(cs, ZSWR5_DTR, DMBIS);
906 		break;
907 	case TIOCCDTR:
908 		zs_modem(cs, ZSWR5_DTR, DMBIC);
909 		break;
910 	case TIOCMGET:
911 		zs_modem(cs, 0, DMGET);
912 		break;
913 	case TIOCMSET:
914 	case TIOCMBIS:
915 	case TIOCMBIC:
916 	default:
917 		return (ENOTTY);
918 	}
919 	return (0);
920 }
921 
922 /*
923  * Start or restart transmission.
924  */
925 static void
926 zsstart(tp)
927 register struct tty *tp;
928 {
929 	register struct zs_chanstate	*cs;
930 	register int			s, nch;
931 		 int			unit = ZS_UNIT(tp->t_dev);
932 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
933 
934 	cs = &zi->zi_cs[unit & 1];
935 	s  = spltty();
936 
937 	/*
938 	 * If currently active or delaying, no need to do anything.
939 	 */
940 	if(tp->t_state & (TS_TIMEOUT | TS_BUSY | TS_TTSTOP))
941 		goto out;
942 
943 	/*
944 	 * If there are sleepers, and output has drained below low
945 	 * water mark, awaken.
946 	 */
947 	if(tp->t_outq.c_cc <= tp->t_lowat) {
948 		if(tp->t_state & TS_ASLEEP) {
949 			tp->t_state &= ~TS_ASLEEP;
950 			wakeup((caddr_t)&tp->t_outq);
951 		}
952 		selwakeup(&tp->t_wsel);
953 	}
954 
955 	nch = ndqb(&tp->t_outq, 0);	/* XXX */
956 	if(nch) {
957 		register char *p = tp->t_outq.c_cf;
958 
959 		/* mark busy, enable tx done interrupts, & send first byte */
960 		tp->t_state |= TS_BUSY;
961 		(void) splzs();
962 		cs->cs_preg[1] |= ZSWR1_TIE;
963 		cs->cs_creg[1] |= ZSWR1_TIE;
964 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
965 		cs->cs_zc->zc_data = *p;
966 		cs->cs_tba = p + 1;
967 		cs->cs_tbc = nch - 1;
968 	} else {
969 		/*
970 		 * Nothing to send, turn off transmit done interrupts.
971 		 * This is useful if something is doing polled output.
972 		 */
973 		(void) splzs();
974 		cs->cs_preg[1] &= ~ZSWR1_TIE;
975 		cs->cs_creg[1] &= ~ZSWR1_TIE;
976 		ZS_WRITE(cs->cs_zc, 1, cs->cs_creg[1]);
977 	}
978 out:
979 	splx(s);
980 }
981 
982 /*
983  * Stop output, e.g., for ^S or output flush.
984  */
985 void
986 zsstop(tp, flag)
987 register struct tty	*tp;
988 	 int		flag;
989 {
990 	register struct zs_chanstate	*cs;
991 	register int			s, unit = ZS_UNIT(tp->t_dev);
992 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
993 
994 	cs = &zi->zi_cs[unit & 1];
995 	s  = splzs();
996 	if(tp->t_state & TS_BUSY) {
997 		/*
998 		 * Device is transmitting; must stop it.
999 		 */
1000 		cs->cs_tbc = 0;
1001 		if ((tp->t_state & TS_TTSTOP) == 0)
1002 			tp->t_state |= TS_FLUSH;
1003 	}
1004 	splx(s);
1005 }
1006 
1007 /*
1008  * Set ZS tty parameters from termios.
1009  *
1010  * This routine makes use of the fact that only registers
1011  * 1, 3, 4, 5, 9, 10, 11, 12, 13, 14, and 15 are written.
1012  */
1013 static int
1014 zsparam(tp, t)
1015 register struct tty	*tp;
1016 register struct termios	*t;
1017 {
1018 		 int			unit = ZS_UNIT(tp->t_dev);
1019 		 struct zs_softc	*zi = zs_cd.cd_devs[unit >> 1];
1020 	register struct zs_chanstate	*cs = &zi->zi_cs[unit & 1];
1021 		 int			cdiv, clkm, brgm, tcon;
1022 	register int			tmp, tmp5, cflag, s;
1023 
1024 	tmp  = t->c_ospeed;
1025 	tmp5 = t->c_ispeed;
1026 	if(tmp < 0 || (tmp5 && tmp5 != tmp))
1027 		return(EINVAL);
1028 	if(tmp == 0) {
1029 		/* stty 0 => drop DTR and RTS */
1030 		zs_modem(cs, 0, DMSET);
1031 		return(0);
1032 	}
1033 	tmp = zsbaudrate(unit, tmp, &cdiv, &clkm, &brgm, &tcon);
1034 	if (tmp < 0)
1035 		return(EINVAL);
1036 	tp->t_ispeed = tp->t_ospeed = tmp;
1037 
1038 	cflag = tp->t_cflag = t->c_cflag;
1039 	if (cflag & CSTOPB)
1040 		cdiv |= ZSWR4_TWOSB;
1041 	else
1042 		cdiv |= ZSWR4_ONESB;
1043 	if (!(cflag & PARODD))
1044 		cdiv |= ZSWR4_EVENP;
1045 	if (cflag & PARENB)
1046 		cdiv |= ZSWR4_PARENB;
1047 
1048 	switch(cflag & CSIZE) {
1049 	case CS5:
1050 		tmp  = ZSWR3_RX_5;
1051 		tmp5 = ZSWR5_TX_5;
1052 		break;
1053 	case CS6:
1054 		tmp  = ZSWR3_RX_6;
1055 		tmp5 = ZSWR5_TX_6;
1056 		break;
1057 	case CS7:
1058 		tmp  = ZSWR3_RX_7;
1059 		tmp5 = ZSWR5_TX_7;
1060 		break;
1061 	case CS8:
1062 	default:
1063 		tmp  = ZSWR3_RX_8;
1064 		tmp5 = ZSWR5_TX_8;
1065 		break;
1066 	}
1067 	tmp  |= ZSWR3_RX_ENABLE;
1068 	tmp5 |= ZSWR5_TX_ENABLE | ZSWR5_DTR | ZSWR5_RTS;
1069 
1070 	/*
1071 	 * Block interrupts so that state will not
1072 	 * be altered until we are done setting it up.
1073 	 */
1074 	s = splzs();
1075 	cs->cs_preg[4]  = cdiv;
1076 	cs->cs_preg[11] = clkm;
1077 	cs->cs_preg[12] = tcon;
1078 	cs->cs_preg[13] = tcon >> 8;
1079 	cs->cs_preg[14] = brgm;
1080 	cs->cs_preg[1]  = ZSWR1_RIE | ZSWR1_TIE | ZSWR1_SIE;
1081 	cs->cs_preg[9]  = ZSWR9_MASTER_IE | ZSWR9_VECTOR_INCL_STAT;
1082 	cs->cs_preg[10] = ZSWR10_NRZ;
1083 	cs->cs_preg[15] = ZSWR15_BREAK_IE | ZSWR15_DCD_IE;
1084 
1085 	/*
1086 	 * Output hardware flow control on the chip is horrendous: if
1087 	 * carrier detect drops, the receiver is disabled.  Hence we
1088 	 * can only do this when the carrier is on.
1089 	 */
1090 	if(cflag & CCTS_OFLOW && cs->cs_zc->zc_csr & ZSRR0_DCD)
1091 		tmp |= ZSWR3_HFC;
1092 	cs->cs_preg[3] = tmp;
1093 	cs->cs_preg[5] = tmp5;
1094 
1095 	/*
1096 	 * If nothing is being transmitted, set up new current values,
1097 	 * else mark them as pending.
1098 	 */
1099 	if(cs->cs_heldchange == 0) {
1100 		if (cs->cs_ttyp->t_state & TS_BUSY) {
1101 			cs->cs_heldtbc = cs->cs_tbc;
1102 			cs->cs_tbc = 0;
1103 			cs->cs_heldchange = 1;
1104 		} else {
1105 			bcopy((caddr_t)cs->cs_preg, (caddr_t)cs->cs_creg, 16);
1106 			zs_loadchannelregs(cs->cs_zc, cs->cs_creg);
1107 		}
1108 	}
1109 	splx(s);
1110 	return (0);
1111 }
1112 
1113 /*
1114  * search for the best matching baudrate
1115  */
1116 static int
1117 zsbaudrate(unit, wanted, divisor, clockmode, brgenmode, timeconst)
1118 int	unit, wanted, *divisor, *clockmode, *brgenmode, *timeconst;
1119 {
1120 	int	bestdiff, bestbps, source;
1121 
1122 	bestdiff = bestbps = 0;
1123 	unit = (unit & 1) << 2;
1124 	for (source = 0; source < 4; ++source) {
1125 		long	freq = zs_frequencies[unit + source];
1126 		int	diff, bps, div, clkm, brgm, tcon;
1127 
1128 		bps = div = clkm = brgm = tcon = 0;
1129 		switch (source) {
1130 			case 0:	/* BRgen, PCLK */
1131 				brgm = ZSWR14_BAUD_ENA|ZSWR14_BAUD_FROM_PCLK;
1132 				break;
1133 			case 1:	/* BRgen, RTxC */
1134 				brgm = ZSWR14_BAUD_ENA;
1135 				break;
1136 			case 2: /* RTxC */
1137 				clkm = ZSWR11_RXCLK_RTXC|ZSWR11_TXCLK_RTXC;
1138 				break;
1139 			case 3: /* TRxC */
1140 				clkm = ZSWR11_RXCLK_TRXC|ZSWR11_TXCLK_TRXC;
1141 				break;
1142 		}
1143 		switch (source) {
1144 			case 0:
1145 			case 1:
1146 				div  = ZSWR4_CLK_X16;
1147 				clkm = ZSWR11_RXCLK_BAUD|ZSWR11_TXCLK_BAUD;
1148 				tcon = BPS_TO_TCONST(freq, wanted);
1149 				if (tcon < 0)
1150 					tcon = 0;
1151 				bps  = TCONST_TO_BPS(freq, tcon);
1152 				break;
1153 			case 2:
1154 			case 3:
1155 			{	int	b1 = freq / 16, d1 = abs(b1 - wanted);
1156 				int	b2 = freq / 32, d2 = abs(b2 - wanted);
1157 				int	b3 = freq / 64, d3 = abs(b3 - wanted);
1158 
1159 				if (d1 < d2 && d1 < d3) {
1160 					div = ZSWR4_CLK_X16;
1161 					bps = b1;
1162 				} else if (d2 < d3 && d2 < d1) {
1163 					div = ZSWR4_CLK_X32;
1164 					bps = b2;
1165 				} else {
1166 					div = ZSWR4_CLK_X64;
1167 					bps = b3;
1168 				}
1169 				brgm = tcon = 0;
1170 				break;
1171 			}
1172 		}
1173 		diff = abs(bps - wanted);
1174 		if (!source || diff < bestdiff) {
1175 			*divisor   = div;
1176 			*clockmode = clkm;
1177 			*brgenmode = brgm;
1178 			*timeconst = tcon;
1179 			bestbps    = bps;
1180 			bestdiff   = diff;
1181 			if (diff == 0)
1182 				break;
1183 		}
1184 	}
1185 	/* Allow deviations upto 5% */
1186 	if (20 * bestdiff > wanted)
1187 		return -1;
1188 	return bestbps;
1189 }
1190 
1191 /*
1192  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1193  * in transmission, the change is deferred.
1194  */
1195 static int
1196 zs_modem(cs, bits, how)
1197 struct zs_chanstate	*cs;
1198 int			bits, how;
1199 {
1200 	int s, mbits;
1201 
1202 	bits  &= ZSWR5_DTR | ZSWR5_RTS;
1203 
1204 	s = splzs();
1205 	mbits  = cs->cs_preg[5] &  (ZSWR5_DTR | ZSWR5_RTS);
1206 
1207 	switch(how) {
1208 		case DMSET:
1209 				mbits  = bits;
1210 				break;
1211 		case DMBIS:
1212 				mbits |= bits;
1213 				break;
1214 		case DMBIC:
1215 				mbits &= ~bits;
1216 				break;
1217 		case DMGET:
1218 				splx(s);
1219 				return(mbits);
1220 	}
1221 
1222 	cs->cs_preg[5] = (cs->cs_preg[5] & ~(ZSWR5_DTR | ZSWR5_RTS)) | mbits;
1223 	if(cs->cs_heldchange == 0) {
1224 		if(cs->cs_ttyp->t_state & TS_BUSY) {
1225 			cs->cs_heldtbc = cs->cs_tbc;
1226 			cs->cs_tbc = 0;
1227 			cs->cs_heldchange = 1;
1228 		}
1229 		else {
1230 			ZS_WRITE(cs->cs_zc, 5, cs->cs_creg[5]);
1231 		}
1232 	}
1233 	splx(s);
1234 	return(0);
1235 }
1236 
1237 /*
1238  * Write the given register set to the given zs channel in the proper order.
1239  * The channel must not be transmitting at the time.  The receiver will
1240  * be disabled for the time it takes to write all the registers.
1241  */
1242 static void
1243 zs_loadchannelregs(zc, reg)
1244 volatile struct zschan	*zc;
1245 u_char			*reg;
1246 {
1247 	int i;
1248 
1249 	zc->zc_csr = ZSM_RESET_ERR;	/* reset error condition */
1250 	i = zc->zc_data;		/* drain fifo */
1251 	i = zc->zc_data;
1252 	i = zc->zc_data;
1253 	ZS_WRITE(zc,  4, reg[4]);
1254 	ZS_WRITE(zc, 10, reg[10]);
1255 	ZS_WRITE(zc,  3, reg[3] & ~ZSWR3_RX_ENABLE);
1256 	ZS_WRITE(zc,  5, reg[5] & ~ZSWR5_TX_ENABLE);
1257 	ZS_WRITE(zc,  1, reg[1]);
1258 	ZS_WRITE(zc,  9, reg[9]);
1259 	ZS_WRITE(zc, 11, reg[11]);
1260 	ZS_WRITE(zc, 12, reg[12]);
1261 	ZS_WRITE(zc, 13, reg[13]);
1262 	ZS_WRITE(zc, 14, reg[14]);
1263 	ZS_WRITE(zc, 15, reg[15]);
1264 	ZS_WRITE(zc,  3, reg[3]);
1265 	ZS_WRITE(zc,  5, reg[5]);
1266 }
1267 #endif /* NZS > 1 */
1268