xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 8e6ab8837d8d6b9198e67c1c445300b483e2f304)
1 /*	$NetBSD: clock.c,v 1.33 2003/07/15 01:19:48 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.33 2003/07/15 01:19:48 lukem Exp $");
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/device.h>
52 #include <sys/uio.h>
53 #include <sys/conf.h>
54 #include <sys/proc.h>
55 #include <sys/event.h>
56 
57 #include <dev/clock_subr.h>
58 
59 #include <machine/psl.h>
60 #include <machine/cpu.h>
61 #include <machine/iomap.h>
62 #include <machine/mfp.h>
63 #include <atari/dev/clockreg.h>
64 #include <atari/atari/device.h>
65 
66 #if defined(GPROF) && defined(PROFTIMER)
67 #include <machine/profile.h>
68 #endif
69 
70 /*
71  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
72  * of 200. Therefore the timer runs at an effective rate of:
73  * 2457600/200 = 12288Hz.
74  */
75 #define CLOCK_HZ	12288
76 
77 /*
78  * Machine-dependent clock routines.
79  *
80  * Inittodr initializes the time of day hardware which provides
81  * date functions.
82  *
83  * Resettodr restores the time of day hardware after a time change.
84  */
85 
86 struct clock_softc {
87 	struct device	sc_dev;
88 	int		sc_flags;
89 };
90 
91 /*
92  *  'sc_flags' state info. Only used by the rtc-device functions.
93  */
94 #define	RTC_OPEN	1
95 
96 dev_type_open(rtcopen);
97 dev_type_close(rtcclose);
98 dev_type_read(rtcread);
99 dev_type_write(rtcwrite);
100 
101 static void	clockattach __P((struct device *, struct device *, void *));
102 static int	clockmatch __P((struct device *, struct cfdata *, void *));
103 
104 CFATTACH_DECL(clock, sizeof(struct clock_softc),
105     clockmatch, clockattach, NULL, NULL);
106 
107 extern struct cfdriver clock_cd;
108 
109 const struct cdevsw rtc_cdevsw = {
110 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
111 	nostop, notty, nopoll, nommap, nokqfilter,
112 };
113 
114 void statintr __P((struct clockframe));
115 
116 static u_long	gettod __P((void));
117 static int	twodigits __P((char *, int));
118 
119 static int	divisor;	/* Systemclock divisor	*/
120 
121 /*
122  * Statistics and profile clock intervals and variances. Variance must
123  * be a power of 2. Since this gives us an even number, not an odd number,
124  * we discard one case and compensate. That is, a variance of 64 would
125  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
126  * This is symmetric around the point 32, or statvar/2, and thus averages
127  * to that value (assuming uniform random numbers).
128  */
129 #ifdef STATCLOCK
130 static int	statvar = 32;	/* {stat,prof}clock variance		*/
131 static int	statmin;	/* statclock divisor - variance/2	*/
132 static int	profmin;	/* profclock divisor - variance/2	*/
133 static int	clk2min;	/* current, from above choices		*/
134 #endif
135 
136 int
137 clockmatch(pdp, cfp, auxp)
138 struct device	*pdp;
139 struct cfdata	*cfp;
140 void		*auxp;
141 {
142 	if (!atari_realconfig) {
143 	    /*
144 	     * Initialize Timer-B in the ST-MFP. This timer is used by
145 	     * the 'delay' function below. This timer is setup to be
146 	     * continueously counting from 255 back to zero at a
147 	     * frequency of 614400Hz. We do this *early* in the
148 	     * initialisation process.
149 	     */
150 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
151 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
152 	    MFP->mf_tbdr  = 0;
153 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
154 
155 	    /*
156 	     * Initialize the time structure
157 	     */
158 	    time.tv_sec  = 0;
159 	    time.tv_usec = 0;
160 
161 	    return 0;
162 	}
163 	if(!strcmp("clock", auxp))
164 		return(1);
165 	return(0);
166 }
167 
168 /*
169  * Start the real-time clock.
170  */
171 void clockattach(pdp, dp, auxp)
172 struct device	*pdp, *dp;
173 void		*auxp;
174 {
175 	struct clock_softc *sc = (void *)dp;
176 
177 	sc->sc_flags = 0;
178 
179 	/*
180 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
181 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
182 	 * at an effective rate of: 2457600/200 = 12288Hz. The
183 	 * following expression works for 48, 64 or 96 hz.
184 	 */
185 	divisor       = CLOCK_HZ/hz;
186 	MFP->mf_tacr  = 0;		/* Stop timer			*/
187 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
188 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
189 
190 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
191 		printf (": illegal value %d for systemclock, reset to %d\n\t",
192 								hz, 64);
193 		hz = 64;
194 	}
195 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
196 
197 #ifdef STATCLOCK
198 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
199 		stathz = hz;
200 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
201 		profhz = hz << 1;
202 
203 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
204 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
205 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
206 
207 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
208 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
209 	clk2min  = statmin;
210 #endif /* STATCLOCK */
211 
212 }
213 
214 void cpu_initclocks()
215 {
216 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
217 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
218 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
219 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
220 
221 #ifdef STATCLOCK
222 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
223 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
224 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
225 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
226 #endif /* STATCLOCK */
227 }
228 
229 void
230 setstatclockrate(newhz)
231 	int newhz;
232 {
233 #ifdef STATCLOCK
234 	if (newhz == stathz)
235 		clk2min = statmin;
236 	else clk2min = profmin;
237 #endif /* STATCLOCK */
238 }
239 
240 #ifdef STATCLOCK
241 void
242 statintr(frame)
243 	struct clockframe frame;
244 {
245 	register int	var, r;
246 
247 	var = statvar - 1;
248 	do {
249 		r = random() & var;
250 	} while(r == 0);
251 
252 	/*
253 	 * Note that we are always lagging behind as the new divisor
254 	 * value will not be loaded until the next interrupt. This
255 	 * shouldn't disturb the median frequency (I think ;-) ) as
256 	 * only the value used when switching frequencies is used
257 	 * twice. This shouldn't happen very often.
258 	 */
259 	MFP->mf_tcdr = clk2min + r;
260 
261 	statclock(&frame);
262 }
263 #endif /* STATCLOCK */
264 
265 /*
266  * Returns number of usec since last recorded clock "tick"
267  * (i.e. clock interrupt).
268  */
269 long
270 clkread()
271 {
272 	u_int	delta;
273 	u_char	ipra, tadr;
274 
275 	/*
276 	 * Note: Order is important!
277 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
278 	 * the situation that very low value in 'tadr' is read (== a big delta)
279 	 * while also acccounting for a full 'tick' because the counter went
280 	 * through zero during the calculations.
281 	 */
282 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
283 
284 	delta = ((divisor - tadr) * tick) / divisor;
285 	/*
286 	 * Account for pending clock interrupts
287 	 */
288 	if(ipra & IA_TIMA)
289 		return(delta + tick);
290 	return(delta);
291 }
292 
293 #define TIMB_FREQ	614400
294 #define TIMB_LIMIT	256
295 
296 /*
297  * Wait "n" microseconds.
298  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
299  * Note: timer had better have been programmed before this is first used!
300  */
301 void
302 delay(n)
303 int	n;
304 {
305 	int	tick, otick;
306 
307 	/*
308 	 * Read the counter first, so that the rest of the setup overhead is
309 	 * counted.
310 	 */
311 	otick = MFP->mf_tbdr;
312 
313 	/*
314 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
315 	 * we can take advantage of the intermediate 64-bit quantity to prevent
316 	 * loss of significance.
317 	 */
318 	n -= 5;
319 	if(n < 0)
320 		return;
321 	{
322 	    u_int	temp;
323 
324 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
325 					       : "d" (TIMB_FREQ), "d" (n));
326 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
327 					       : "d"(1000000),"d"(temp),"0"(n));
328 	}
329 
330 	while(n > 0) {
331 		tick = MFP->mf_tbdr;
332 		if(tick > otick)
333 			n -= TIMB_LIMIT - (tick - otick);
334 		else n -= otick - tick;
335 		otick = tick;
336 	}
337 }
338 
339 #ifdef GPROF
340 /*
341  * profclock() is expanded in line in lev6intr() unless profiling kernel.
342  * Assumes it is called with clock interrupts blocked.
343  */
344 profclock(pc, ps)
345 	caddr_t pc;
346 	int ps;
347 {
348 	/*
349 	 * Came from user mode.
350 	 * If this process is being profiled record the tick.
351 	 */
352 	if (USERMODE(ps)) {
353 		if (p->p_stats.p_prof.pr_scale)
354 			addupc(pc, &curproc->p_stats.p_prof, 1);
355 	}
356 	/*
357 	 * Came from kernel (supervisor) mode.
358 	 * If we are profiling the kernel, record the tick.
359 	 */
360 	else if (profiling < 2) {
361 		register int s = pc - s_lowpc;
362 
363 		if (s < s_textsize)
364 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
365 	}
366 	/*
367 	 * Kernel profiling was on but has been disabled.
368 	 * Mark as no longer profiling kernel and if all profiling done,
369 	 * disable the clock.
370 	 */
371 	if (profiling && (profon & PRF_KERNEL)) {
372 		profon &= ~PRF_KERNEL;
373 		if (profon == PRF_NONE)
374 			stopprofclock();
375 	}
376 }
377 #endif
378 
379 /***********************************************************************
380  *                   Real Time Clock support                           *
381  ***********************************************************************/
382 
383 u_int mc146818_read(rtc, regno)
384 void	*rtc;
385 u_int	regno;
386 {
387 	((struct rtc *)rtc)->rtc_regno = regno;
388 	return(((struct rtc *)rtc)->rtc_data & 0377);
389 }
390 
391 void mc146818_write(rtc, regno, value)
392 void	*rtc;
393 u_int	regno, value;
394 {
395 	((struct rtc *)rtc)->rtc_regno = regno;
396 	((struct rtc *)rtc)->rtc_data  = value;
397 }
398 
399 /*
400  * Initialize the time of day register, assuming the RTC runs in UTC.
401  * Since we've got the 'rtc' device, this functionality should be removed
402  * from the kernel. The only problem to be solved before that can happen
403  * is the possibility of init(1) providing a way (rc.boot?) to set
404  * the RTC before single-user mode is entered.
405  */
406 void
407 inittodr(base)
408 time_t base;
409 {
410 	/* Battery clock does not store usec's, so forget about it. */
411 	time.tv_sec  = gettod();
412 	time.tv_usec = 0;
413 }
414 
415 /*
416  * Function turned into a No-op. Use /dev/rtc to update the RTC.
417  */
418 void
419 resettodr()
420 {
421 	return;
422 }
423 
424 static u_long
425 gettod()
426 {
427 	int			sps;
428 	mc_todregs		clkregs;
429 	u_int			regb;
430 	struct clock_ymdhms	dt;
431 
432 	sps = splhigh();
433 	regb = mc146818_read(RTC, MC_REGB);
434 	MC146818_GETTOD(RTC, &clkregs);
435 	splx(sps);
436 
437 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
438 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
439 		printf("Error: Nonstandard RealTimeClock Configuration -"
440 			" value ignored\n"
441 			"       A write to /dev/rtc will correct this.\n");
442 			return(0);
443 	}
444 	if(clkregs[MC_SEC] > 59)
445 		return(0);
446 	if(clkregs[MC_MIN] > 59)
447 		return(0);
448 	if(clkregs[MC_HOUR] > 23)
449 		return(0);
450 	if(range_test(clkregs[MC_DOM], 1, 31))
451 		return(0);
452 	if (range_test(clkregs[MC_MONTH], 1, 12))
453 		return(0);
454 	if(clkregs[MC_YEAR] > 99)
455 		return(0);
456 
457 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
458 	dt.dt_mon  = clkregs[MC_MONTH];
459 	dt.dt_day  = clkregs[MC_DOM];
460 	dt.dt_hour = clkregs[MC_HOUR];
461 	dt.dt_min  = clkregs[MC_MIN];
462 	dt.dt_sec  = clkregs[MC_SEC];
463 
464 	return(clock_ymdhms_to_secs(&dt));
465 }
466 /***********************************************************************
467  *                   RTC-device support				       *
468  ***********************************************************************/
469 int
470 rtcopen(dev, flag, mode, p)
471 	dev_t		dev;
472 	int		flag, mode;
473 	struct proc	*p;
474 {
475 	int			unit = minor(dev);
476 	struct clock_softc	*sc;
477 
478 	if (unit >= clock_cd.cd_ndevs)
479 		return ENXIO;
480 	sc = clock_cd.cd_devs[unit];
481 	if (!sc)
482 		return ENXIO;
483 	if (sc->sc_flags & RTC_OPEN)
484 		return EBUSY;
485 
486 	sc->sc_flags = RTC_OPEN;
487 	return 0;
488 }
489 
490 int
491 rtcclose(dev, flag, mode, p)
492 	dev_t		dev;
493 	int		flag;
494 	int		mode;
495 	struct proc	*p;
496 {
497 	int			unit = minor(dev);
498 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
499 
500 	sc->sc_flags = 0;
501 	return 0;
502 }
503 
504 int
505 rtcread(dev, uio, flags)
506 	dev_t		dev;
507 	struct uio	*uio;
508 	int		flags;
509 {
510 	struct clock_softc	*sc;
511 	mc_todregs		clkregs;
512 	int			s, length;
513 	char			buffer[16];
514 
515 	sc = clock_cd.cd_devs[minor(dev)];
516 
517 	s = splhigh();
518 	MC146818_GETTOD(RTC, &clkregs);
519 	splx(s);
520 
521 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
522 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
523 	    clkregs[MC_MONTH], clkregs[MC_DOM],
524 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
525 
526 	if (uio->uio_offset > strlen(buffer))
527 		return 0;
528 
529 	length = strlen(buffer) - uio->uio_offset;
530 	if (length > uio->uio_resid)
531 		length = uio->uio_resid;
532 
533 	return(uiomove((caddr_t)buffer, length, uio));
534 }
535 
536 static int
537 twodigits(buffer, pos)
538 	char *buffer;
539 	int pos;
540 {
541 	int result = 0;
542 
543 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
544 		result = (buffer[pos] - '0') * 10;
545 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
546 		result += (buffer[pos+1] - '0');
547 	return(result);
548 }
549 
550 int
551 rtcwrite(dev, uio, flags)
552 	dev_t		dev;
553 	struct uio	*uio;
554 	int		flags;
555 {
556 	mc_todregs		clkregs;
557 	int			s, length, error;
558 	char			buffer[16];
559 
560 	/*
561 	 * We require atomic updates!
562 	 */
563 	length = uio->uio_resid;
564 	if (uio->uio_offset || (length != sizeof(buffer)
565 	  && length != sizeof(buffer - 1)))
566 		return(EINVAL);
567 
568 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
569 		return(error);
570 
571 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
572 		return(EINVAL);
573 
574 	s = splclock();
575 	mc146818_write(RTC, MC_REGB,
576 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
577 	MC146818_GETTOD(RTC, &clkregs);
578 	splx(s);
579 
580 	clkregs[MC_SEC]   = twodigits(buffer, 13);
581 	clkregs[MC_MIN]   = twodigits(buffer, 10);
582 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
583 	clkregs[MC_DOM]   = twodigits(buffer, 6);
584 	clkregs[MC_MONTH] = twodigits(buffer, 4);
585 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
586 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
587 
588 	s = splclock();
589 	MC146818_PUTTOD(RTC, &clkregs);
590 	splx(s);
591 
592 	return(0);
593 }
594