xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: clock.c,v 1.54 2012/06/30 12:42:37 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * from: Utah $Hdr: clock.c 1.18 91/01/21$
37  *
38  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.54 2012/06/30 12:42:37 tsutsui Exp $");
43 
44 #include <sys/param.h>
45 #include <sys/kernel.h>
46 #include <sys/systm.h>
47 #include <sys/device.h>
48 #include <sys/uio.h>
49 #include <sys/conf.h>
50 #include <sys/proc.h>
51 #include <sys/event.h>
52 #include <sys/timetc.h>
53 
54 #include <dev/clock_subr.h>
55 
56 #include <machine/psl.h>
57 #include <machine/cpu.h>
58 #include <machine/iomap.h>
59 #include <machine/mfp.h>
60 #include <atari/dev/clockreg.h>
61 #include <atari/dev/clockvar.h>
62 #include <atari/atari/device.h>
63 
64 #if defined(GPROF) && defined(PROFTIMER)
65 #include <machine/profile.h>
66 #endif
67 
68 #include "ioconf.h"
69 
70 static int	atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
71 static int	atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);
72 
73 /*
74  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
75  * of 200. Therefore the timer runs at an effective rate of:
76  * 2457600/200 = 12288Hz.
77  */
78 #define CLOCK_HZ	12288
79 
80 static u_int clk_getcounter(struct timecounter *);
81 
82 static struct timecounter clk_timecounter = {
83 	clk_getcounter,	/* get_timecount */
84 	0,		/* no poll_pps */
85 	~0u,		/* counter_mask */
86 	CLOCK_HZ,	/* frequency */
87 	"clock",	/* name, overriden later */
88 	100,		/* quality */
89 	NULL,		/* prev */
90 	NULL,		/* next */
91 };
92 
93 /*
94  * Machine-dependent clock routines.
95  *
96  * Inittodr initializes the time of day hardware which provides
97  * date functions.
98  *
99  * Resettodr restores the time of day hardware after a time change.
100  */
101 
102 struct clock_softc {
103 	device_t	sc_dev;
104 	int		sc_flags;
105 	struct todr_chip_handle	sc_handle;
106 };
107 
108 /*
109  *  'sc_flags' state info. Only used by the rtc-device functions.
110  */
111 #define	RTC_OPEN	1
112 
113 dev_type_open(rtcopen);
114 dev_type_close(rtcclose);
115 dev_type_read(rtcread);
116 dev_type_write(rtcwrite);
117 
118 static void	clockattach(device_t, device_t, void *);
119 static int	clockmatch(device_t, cfdata_t, void *);
120 
121 CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
122     clockmatch, clockattach, NULL, NULL);
123 
124 const struct cdevsw rtc_cdevsw = {
125 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
126 	nostop, notty, nopoll, nommap, nokqfilter,
127 };
128 
129 void statintr(struct clockframe);
130 
131 static int	twodigits(char *, int);
132 
133 static int	divisor;	/* Systemclock divisor	*/
134 
135 /*
136  * Statistics and profile clock intervals and variances. Variance must
137  * be a power of 2. Since this gives us an even number, not an odd number,
138  * we discard one case and compensate. That is, a variance of 64 would
139  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
140  * This is symmetric around the point 32, or statvar/2, and thus averages
141  * to that value (assuming uniform random numbers).
142  */
143 #ifdef STATCLOCK
144 static int	statvar = 32;	/* {stat,prof}clock variance		*/
145 static int	statmin;	/* statclock divisor - variance/2	*/
146 static int	profmin;	/* profclock divisor - variance/2	*/
147 static int	clk2min;	/* current, from above choices		*/
148 #endif
149 
150 int
151 clockmatch(device_t parent, cfdata_t cf, void *aux)
152 {
153 
154 	if (!strcmp("clock", aux))
155 		return 1;
156 	return 0;
157 }
158 
159 /*
160  * Start the real-time clock.
161  */
162 void clockattach(device_t parent, device_t self, void *aux)
163 {
164 	struct clock_softc *sc = device_private(self);
165 	struct todr_chip_handle	*tch;
166 
167 	sc->sc_dev = self;
168 	tch = &sc->sc_handle;
169 	tch->todr_gettime_ymdhms = atari_rtc_get;
170 	tch->todr_settime_ymdhms = atari_rtc_set;
171 	tch->todr_setwen = NULL;
172 
173 	todr_attach(tch);
174 
175 	sc->sc_flags = 0;
176 
177 	/*
178 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
179 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
180 	 * at an effective rate of: 2457600/200 = 12288Hz. The
181 	 * following expression works for 48, 64 or 96 hz.
182 	 */
183 	divisor       = CLOCK_HZ/hz;
184 	MFP->mf_tacr  = 0;		/* Stop timer			*/
185 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
186 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
187 
188 	clk_timecounter.tc_frequency = CLOCK_HZ;
189 
190 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
191 		printf (": illegal value %d for systemclock, reset to %d\n\t",
192 								hz, 64);
193 		hz = 64;
194 	}
195 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
196 	tc_init(&clk_timecounter);
197 
198 #ifdef STATCLOCK
199 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
200 		stathz = hz;
201 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
202 		profhz = hz << 1;
203 
204 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
205 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
206 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
207 
208 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
209 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
210 	clk2min  = statmin;
211 #endif /* STATCLOCK */
212 }
213 
214 void cpu_initclocks(void)
215 {
216 
217 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
218 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
219 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
220 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
221 
222 #ifdef STATCLOCK
223 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
224 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
225 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
226 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
227 #endif /* STATCLOCK */
228 }
229 
230 void
231 setstatclockrate(int newhz)
232 {
233 
234 #ifdef STATCLOCK
235 	if (newhz == stathz)
236 		clk2min = statmin;
237 	else clk2min = profmin;
238 #endif /* STATCLOCK */
239 }
240 
241 #ifdef STATCLOCK
242 void
243 statintr(struct clockframe frame)
244 {
245 	register int	var, r;
246 
247 	var = statvar - 1;
248 	do {
249 		r = random() & var;
250 	} while (r == 0);
251 
252 	/*
253 	 * Note that we are always lagging behind as the new divisor
254 	 * value will not be loaded until the next interrupt. This
255 	 * shouldn't disturb the median frequency (I think ;-) ) as
256 	 * only the value used when switching frequencies is used
257 	 * twice. This shouldn't happen very often.
258 	 */
259 	MFP->mf_tcdr = clk2min + r;
260 
261 	statclock(&frame);
262 }
263 #endif /* STATCLOCK */
264 
265 static u_int
266 clk_getcounter(struct timecounter *tc)
267 {
268 	uint32_t delta, count, cur_hardclock;
269 	uint8_t ipra, tadr;
270 	int s;
271 	static uint32_t lastcount;
272 
273 	s = splhigh();
274 	cur_hardclock = hardclock_ticks;
275 	ipra = MFP->mf_ipra;
276 	tadr = MFP->mf_tadr;
277 	delta = divisor - tadr;
278 
279 	if (ipra & IA_TIMA)
280 		delta += divisor;
281 	splx(s);
282 
283 	count = (divisor * cur_hardclock) + delta;
284 	if ((int32_t)(count - lastcount) < 0) {
285 		/* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
286 		count = lastcount + 1;
287 	}
288 	lastcount = count;
289 
290 	return count;
291 }
292 
293 #define TIMB_FREQ	614400
294 #define TIMB_LIMIT	256
295 
296 void
297 init_delay(void)
298 {
299 
300 	/*
301 	 * Initialize Timer-B in the ST-MFP. This timer is used by
302 	 * the 'delay' function below. This timer is setup to be
303 	 * continueously counting from 255 back to zero at a
304 	 * frequency of 614400Hz. We do this *early* in the
305 	 * initialisation process.
306 	 */
307 	MFP->mf_tbcr  = 0;		/* Stop timer			*/
308 	MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
309 	MFP->mf_tbdr  = 0;
310 	MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
311 }
312 
313 /*
314  * Wait "n" microseconds.
315  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
316  * Note: timer had better have been programmed before this is first used!
317  */
318 void
319 delay(unsigned int n)
320 {
321 	int	ticks, otick, remaining;
322 
323 	/*
324 	 * Read the counter first, so that the rest of the setup overhead is
325 	 * counted.
326 	 */
327 	otick = MFP->mf_tbdr;
328 
329 	if (n <= UINT_MAX / TIMB_FREQ) {
330 		/*
331 		 * For unsigned arithmetic, division can be replaced with
332 		 * multiplication with the inverse and a shift.
333 		 */
334 		remaining = n * TIMB_FREQ / 1000000;
335 	} else {
336 		/* This is a very long delay.
337 		 * Being slow here doesn't matter.
338 		 */
339 		remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
340 	}
341 
342 	while (remaining > 0) {
343 		ticks = MFP->mf_tbdr;
344 		if (ticks > otick)
345 			remaining -= TIMB_LIMIT - (ticks - otick);
346 		else
347 			remaining -= otick - ticks;
348 		otick = ticks;
349 	}
350 }
351 
352 #ifdef GPROF
353 /*
354  * profclock() is expanded in line in lev6intr() unless profiling kernel.
355  * Assumes it is called with clock interrupts blocked.
356  */
357 profclock(void *pc, int ps)
358 {
359 
360 	/*
361 	 * Came from user mode.
362 	 * If this process is being profiled record the tick.
363 	 */
364 	if (USERMODE(ps)) {
365 		if (p->p_stats.p_prof.pr_scale)
366 			addupc(pc, &curproc->p_stats.p_prof, 1);
367 	}
368 	/*
369 	 * Came from kernel (supervisor) mode.
370 	 * If we are profiling the kernel, record the tick.
371 	 */
372 	else if (profiling < 2) {
373 		register int s = pc - s_lowpc;
374 
375 		if (s < s_textsize)
376 			kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
377 	}
378 	/*
379 	 * Kernel profiling was on but has been disabled.
380 	 * Mark as no longer profiling kernel and if all profiling done,
381 	 * disable the clock.
382 	 */
383 	if (profiling && (profon & PRF_KERNEL)) {
384 		profon &= ~PRF_KERNEL;
385 		if (profon == PRF_NONE)
386 			stopprofclock();
387 	}
388 }
389 #endif
390 
391 /***********************************************************************
392  *                   Real Time Clock support                           *
393  ***********************************************************************/
394 
395 u_int mc146818_read(void *cookie, u_int regno)
396 {
397 	struct rtc *rtc = cookie;
398 
399 	rtc->rtc_regno = regno;
400 	return rtc->rtc_data & 0xff;
401 }
402 
403 void mc146818_write(void *cookie, u_int regno, u_int value)
404 {
405 	struct rtc *rtc = cookie;
406 
407 	rtc->rtc_regno = regno;
408 	rtc->rtc_data  = value;
409 }
410 
411 static int
412 atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
413 {
414 	int			sps;
415 	mc_todregs		clkregs;
416 	u_int			regb;
417 
418 	sps = splhigh();
419 	regb = mc146818_read(RTC, MC_REGB);
420 	MC146818_GETTOD(RTC, &clkregs);
421 	splx(sps);
422 
423 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
424 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
425 		printf("Error: Nonstandard RealTimeClock Configuration -"
426 			" value ignored\n"
427 			"       A write to /dev/rtc will correct this.\n");
428 			return 0;
429 	}
430 	if (clkregs[MC_SEC] > 59)
431 		return -1;
432 	if (clkregs[MC_MIN] > 59)
433 		return -1;
434 	if (clkregs[MC_HOUR] > 23)
435 		return -1;
436 	if (range_test(clkregs[MC_DOM], 1, 31))
437 		return -1;
438 	if (range_test(clkregs[MC_MONTH], 1, 12))
439 		return -1;
440 	if (clkregs[MC_YEAR] > 99)
441 		return -1;
442 
443 	dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
444 	dtp->dt_mon  = clkregs[MC_MONTH];
445 	dtp->dt_day  = clkregs[MC_DOM];
446 	dtp->dt_hour = clkregs[MC_HOUR];
447 	dtp->dt_min  = clkregs[MC_MIN];
448 	dtp->dt_sec  = clkregs[MC_SEC];
449 
450 	return 0;
451 }
452 
453 static int
454 atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
455 {
456 	int s;
457 	mc_todregs clkregs;
458 
459 	clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
460 	clkregs[MC_MONTH] = dtp->dt_mon;
461 	clkregs[MC_DOM] = dtp->dt_day;
462 	clkregs[MC_HOUR] = dtp->dt_hour;
463 	clkregs[MC_MIN] = dtp->dt_min;
464 	clkregs[MC_SEC] = dtp->dt_sec;
465 
466 	s = splclock();
467 	MC146818_PUTTOD(RTC, &clkregs);
468 	splx(s);
469 
470 	return 0;
471 }
472 
473 /***********************************************************************
474  *                   RTC-device support				       *
475  ***********************************************************************/
476 int
477 rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
478 {
479 	int			unit = minor(dev);
480 	struct clock_softc	*sc;
481 
482 	sc = device_lookup_private(&clock_cd, unit);
483 	if (sc == NULL)
484 		return ENXIO;
485 	if (sc->sc_flags & RTC_OPEN)
486 		return EBUSY;
487 
488 	sc->sc_flags = RTC_OPEN;
489 	return 0;
490 }
491 
492 int
493 rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
494 {
495 	int			unit = minor(dev);
496 	struct clock_softc	*sc = device_lookup_private(&clock_cd, unit);
497 
498 	sc->sc_flags = 0;
499 	return 0;
500 }
501 
502 int
503 rtcread(dev_t dev, struct uio *uio, int flags)
504 {
505 	struct clock_softc	*sc;
506 	mc_todregs		clkregs;
507 	int			s, length;
508 	char			buffer[16 + 1];
509 
510 	sc = device_lookup_private(&clock_cd, minor(dev));
511 
512 	s = splhigh();
513 	MC146818_GETTOD(RTC, &clkregs);
514 	splx(s);
515 
516 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
517 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
518 	    clkregs[MC_MONTH], clkregs[MC_DOM],
519 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
520 
521 	if (uio->uio_offset > strlen(buffer))
522 		return 0;
523 
524 	length = strlen(buffer) - uio->uio_offset;
525 	if (length > uio->uio_resid)
526 		length = uio->uio_resid;
527 
528 	return uiomove((void *)buffer, length, uio);
529 }
530 
531 static int
532 twodigits(char *buffer, int pos)
533 {
534 	int result = 0;
535 
536 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
537 		result = (buffer[pos] - '0') * 10;
538 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
539 		result += (buffer[pos+1] - '0');
540 	return result;
541 }
542 
543 int
544 rtcwrite(dev_t dev, struct uio *uio, int flags)
545 {
546 	mc_todregs		clkregs;
547 	int			s, length, error;
548 	char			buffer[16];
549 
550 	/*
551 	 * We require atomic updates!
552 	 */
553 	length = uio->uio_resid;
554 	if (uio->uio_offset || (length != sizeof(buffer)
555 	  && length != sizeof(buffer - 1)))
556 		return EINVAL;
557 
558 	if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
559 		return error;
560 
561 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
562 		return EINVAL;
563 
564 	s = splclock();
565 	mc146818_write(RTC, MC_REGB,
566 	    mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
567 	MC146818_GETTOD(RTC, &clkregs);
568 	splx(s);
569 
570 	clkregs[MC_SEC]   = twodigits(buffer, 13);
571 	clkregs[MC_MIN]   = twodigits(buffer, 10);
572 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
573 	clkregs[MC_DOM]   = twodigits(buffer, 6);
574 	clkregs[MC_MONTH] = twodigits(buffer, 4);
575 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
576 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
577 
578 	s = splclock();
579 	MC146818_PUTTOD(RTC, &clkregs);
580 	splx(s);
581 
582 	return 0;
583 }
584