xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*	$NetBSD: clock.c,v 1.30 2002/10/02 05:04:25 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51 
52 #include <dev/clock_subr.h>
53 
54 #include <machine/psl.h>
55 #include <machine/cpu.h>
56 #include <machine/iomap.h>
57 #include <machine/mfp.h>
58 #include <atari/dev/clockreg.h>
59 #include <atari/atari/device.h>
60 
61 #if defined(GPROF) && defined(PROFTIMER)
62 #include <machine/profile.h>
63 #endif
64 
65 /*
66  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
67  * of 200. Therefore the timer runs at an effective rate of:
68  * 2457600/200 = 12288Hz.
69  */
70 #define CLOCK_HZ	12288
71 
72 /*
73  * Machine-dependent clock routines.
74  *
75  * Inittodr initializes the time of day hardware which provides
76  * date functions.
77  *
78  * Resettodr restores the time of day hardware after a time change.
79  */
80 
81 struct clock_softc {
82 	struct device	sc_dev;
83 	int		sc_flags;
84 };
85 
86 /*
87  *  'sc_flags' state info. Only used by the rtc-device functions.
88  */
89 #define	RTC_OPEN	1
90 
91 dev_type_open(rtcopen);
92 dev_type_close(rtcclose);
93 dev_type_read(rtcread);
94 dev_type_write(rtcwrite);
95 
96 static void	clockattach __P((struct device *, struct device *, void *));
97 static int	clockmatch __P((struct device *, struct cfdata *, void *));
98 
99 CFATTACH_DECL(clock, sizeof(struct clock_softc),
100     clockmatch, clockattach, NULL, NULL);
101 
102 extern struct cfdriver clock_cd;
103 
104 const struct cdevsw rtc_cdevsw = {
105 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
106 	nostop, notty, nopoll, nommap,
107 };
108 
109 void statintr __P((struct clockframe));
110 
111 static u_long	gettod __P((void));
112 static int	twodigits __P((char *, int));
113 
114 static int	divisor;	/* Systemclock divisor	*/
115 
116 /*
117  * Statistics and profile clock intervals and variances. Variance must
118  * be a power of 2. Since this gives us an even number, not an odd number,
119  * we discard one case and compensate. That is, a variance of 64 would
120  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
121  * This is symmetric around the point 32, or statvar/2, and thus averages
122  * to that value (assuming uniform random numbers).
123  */
124 #ifdef STATCLOCK
125 static int	statvar = 32;	/* {stat,prof}clock variance		*/
126 static int	statmin;	/* statclock divisor - variance/2	*/
127 static int	profmin;	/* profclock divisor - variance/2	*/
128 static int	clk2min;	/* current, from above choices		*/
129 #endif
130 
131 int
132 clockmatch(pdp, cfp, auxp)
133 struct device	*pdp;
134 struct cfdata	*cfp;
135 void		*auxp;
136 {
137 	if (!atari_realconfig) {
138 	    /*
139 	     * Initialize Timer-B in the ST-MFP. This timer is used by
140 	     * the 'delay' function below. This timer is setup to be
141 	     * continueously counting from 255 back to zero at a
142 	     * frequency of 614400Hz. We do this *early* in the
143 	     * initialisation process.
144 	     */
145 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
146 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
147 	    MFP->mf_tbdr  = 0;
148 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
149 
150 	    /*
151 	     * Initialize the time structure
152 	     */
153 	    time.tv_sec  = 0;
154 	    time.tv_usec = 0;
155 
156 	    return 0;
157 	}
158 	if(!strcmp("clock", auxp))
159 		return(1);
160 	return(0);
161 }
162 
163 /*
164  * Start the real-time clock.
165  */
166 void clockattach(pdp, dp, auxp)
167 struct device	*pdp, *dp;
168 void		*auxp;
169 {
170 	struct clock_softc *sc = (void *)dp;
171 
172 	sc->sc_flags = 0;
173 
174 	/*
175 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
176 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
177 	 * at an effective rate of: 2457600/200 = 12288Hz. The
178 	 * following expression works for 48, 64 or 96 hz.
179 	 */
180 	divisor       = CLOCK_HZ/hz;
181 	MFP->mf_tacr  = 0;		/* Stop timer			*/
182 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
183 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
184 
185 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
186 		printf (": illegal value %d for systemclock, reset to %d\n\t",
187 								hz, 64);
188 		hz = 64;
189 	}
190 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
191 
192 #ifdef STATCLOCK
193 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
194 		stathz = hz;
195 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
196 		profhz = hz << 1;
197 
198 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
199 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
200 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
201 
202 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
203 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
204 	clk2min  = statmin;
205 #endif /* STATCLOCK */
206 
207 }
208 
209 void cpu_initclocks()
210 {
211 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
212 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
213 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
214 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
215 
216 #ifdef STATCLOCK
217 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
218 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
219 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
220 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
221 #endif /* STATCLOCK */
222 }
223 
224 void
225 setstatclockrate(newhz)
226 	int newhz;
227 {
228 #ifdef STATCLOCK
229 	if (newhz == stathz)
230 		clk2min = statmin;
231 	else clk2min = profmin;
232 #endif /* STATCLOCK */
233 }
234 
235 #ifdef STATCLOCK
236 void
237 statintr(frame)
238 	struct clockframe frame;
239 {
240 	register int	var, r;
241 
242 	var = statvar - 1;
243 	do {
244 		r = random() & var;
245 	} while(r == 0);
246 
247 	/*
248 	 * Note that we are always lagging behind as the new divisor
249 	 * value will not be loaded until the next interrupt. This
250 	 * shouldn't disturb the median frequency (I think ;-) ) as
251 	 * only the value used when switching frequencies is used
252 	 * twice. This shouldn't happen very often.
253 	 */
254 	MFP->mf_tcdr = clk2min + r;
255 
256 	statclock(&frame);
257 }
258 #endif /* STATCLOCK */
259 
260 /*
261  * Returns number of usec since last recorded clock "tick"
262  * (i.e. clock interrupt).
263  */
264 long
265 clkread()
266 {
267 	u_int	delta;
268 	u_char	ipra, tadr;
269 
270 	/*
271 	 * Note: Order is important!
272 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
273 	 * the situation that very low value in 'tadr' is read (== a big delta)
274 	 * while also acccounting for a full 'tick' because the counter went
275 	 * through zero during the calculations.
276 	 */
277 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
278 
279 	delta = ((divisor - tadr) * tick) / divisor;
280 	/*
281 	 * Account for pending clock interrupts
282 	 */
283 	if(ipra & IA_TIMA)
284 		return(delta + tick);
285 	return(delta);
286 }
287 
288 #define TIMB_FREQ	614400
289 #define TIMB_LIMIT	256
290 
291 /*
292  * Wait "n" microseconds.
293  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
294  * Note: timer had better have been programmed before this is first used!
295  */
296 void
297 delay(n)
298 int	n;
299 {
300 	int	tick, otick;
301 
302 	/*
303 	 * Read the counter first, so that the rest of the setup overhead is
304 	 * counted.
305 	 */
306 	otick = MFP->mf_tbdr;
307 
308 	/*
309 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
310 	 * we can take advantage of the intermediate 64-bit quantity to prevent
311 	 * loss of significance.
312 	 */
313 	n -= 5;
314 	if(n < 0)
315 		return;
316 	{
317 	    u_int	temp;
318 
319 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
320 					       : "d" (TIMB_FREQ), "d" (n));
321 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
322 					       : "d"(1000000),"d"(temp),"0"(n));
323 	}
324 
325 	while(n > 0) {
326 		tick = MFP->mf_tbdr;
327 		if(tick > otick)
328 			n -= TIMB_LIMIT - (tick - otick);
329 		else n -= otick - tick;
330 		otick = tick;
331 	}
332 }
333 
334 #ifdef GPROF
335 /*
336  * profclock() is expanded in line in lev6intr() unless profiling kernel.
337  * Assumes it is called with clock interrupts blocked.
338  */
339 profclock(pc, ps)
340 	caddr_t pc;
341 	int ps;
342 {
343 	/*
344 	 * Came from user mode.
345 	 * If this process is being profiled record the tick.
346 	 */
347 	if (USERMODE(ps)) {
348 		if (p->p_stats.p_prof.pr_scale)
349 			addupc(pc, &curproc->p_stats.p_prof, 1);
350 	}
351 	/*
352 	 * Came from kernel (supervisor) mode.
353 	 * If we are profiling the kernel, record the tick.
354 	 */
355 	else if (profiling < 2) {
356 		register int s = pc - s_lowpc;
357 
358 		if (s < s_textsize)
359 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
360 	}
361 	/*
362 	 * Kernel profiling was on but has been disabled.
363 	 * Mark as no longer profiling kernel and if all profiling done,
364 	 * disable the clock.
365 	 */
366 	if (profiling && (profon & PRF_KERNEL)) {
367 		profon &= ~PRF_KERNEL;
368 		if (profon == PRF_NONE)
369 			stopprofclock();
370 	}
371 }
372 #endif
373 
374 /***********************************************************************
375  *                   Real Time Clock support                           *
376  ***********************************************************************/
377 
378 u_int mc146818_read(rtc, regno)
379 void	*rtc;
380 u_int	regno;
381 {
382 	((struct rtc *)rtc)->rtc_regno = regno;
383 	return(((struct rtc *)rtc)->rtc_data & 0377);
384 }
385 
386 void mc146818_write(rtc, regno, value)
387 void	*rtc;
388 u_int	regno, value;
389 {
390 	((struct rtc *)rtc)->rtc_regno = regno;
391 	((struct rtc *)rtc)->rtc_data  = value;
392 }
393 
394 /*
395  * Initialize the time of day register, assuming the RTC runs in UTC.
396  * Since we've got the 'rtc' device, this functionality should be removed
397  * from the kernel. The only problem to be solved before that can happen
398  * is the possibility of init(1) providing a way (rc.boot?) to set
399  * the RTC before single-user mode is entered.
400  */
401 void
402 inittodr(base)
403 time_t base;
404 {
405 	/* Battery clock does not store usec's, so forget about it. */
406 	time.tv_sec  = gettod();
407 	time.tv_usec = 0;
408 }
409 
410 /*
411  * Function turned into a No-op. Use /dev/rtc to update the RTC.
412  */
413 void
414 resettodr()
415 {
416 	return;
417 }
418 
419 static u_long
420 gettod()
421 {
422 	int			sps;
423 	mc_todregs		clkregs;
424 	u_int			regb;
425 	struct clock_ymdhms	dt;
426 
427 	sps = splhigh();
428 	regb = mc146818_read(RTC, MC_REGB);
429 	MC146818_GETTOD(RTC, &clkregs);
430 	splx(sps);
431 
432 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
433 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
434 		printf("Error: Nonstandard RealTimeClock Configuration -"
435 			" value ignored\n"
436 			"       A write to /dev/rtc will correct this.\n");
437 			return(0);
438 	}
439 	if(clkregs[MC_SEC] > 59)
440 		return(0);
441 	if(clkregs[MC_MIN] > 59)
442 		return(0);
443 	if(clkregs[MC_HOUR] > 23)
444 		return(0);
445 	if(range_test(clkregs[MC_DOM], 1, 31))
446 		return(0);
447 	if (range_test(clkregs[MC_MONTH], 1, 12))
448 		return(0);
449 	if(clkregs[MC_YEAR] > 99)
450 		return(0);
451 
452 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
453 	dt.dt_mon  = clkregs[MC_MONTH];
454 	dt.dt_day  = clkregs[MC_DOM];
455 	dt.dt_hour = clkregs[MC_HOUR];
456 	dt.dt_min  = clkregs[MC_MIN];
457 	dt.dt_sec  = clkregs[MC_SEC];
458 
459 	return(clock_ymdhms_to_secs(&dt));
460 }
461 /***********************************************************************
462  *                   RTC-device support				       *
463  ***********************************************************************/
464 int
465 rtcopen(dev, flag, mode, p)
466 	dev_t		dev;
467 	int		flag, mode;
468 	struct proc	*p;
469 {
470 	int			unit = minor(dev);
471 	struct clock_softc	*sc;
472 
473 	if (unit >= clock_cd.cd_ndevs)
474 		return ENXIO;
475 	sc = clock_cd.cd_devs[unit];
476 	if (!sc)
477 		return ENXIO;
478 	if (sc->sc_flags & RTC_OPEN)
479 		return EBUSY;
480 
481 	sc->sc_flags = RTC_OPEN;
482 	return 0;
483 }
484 
485 int
486 rtcclose(dev, flag, mode, p)
487 	dev_t		dev;
488 	int		flag;
489 	int		mode;
490 	struct proc	*p;
491 {
492 	int			unit = minor(dev);
493 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
494 
495 	sc->sc_flags = 0;
496 	return 0;
497 }
498 
499 int
500 rtcread(dev, uio, flags)
501 	dev_t		dev;
502 	struct uio	*uio;
503 	int		flags;
504 {
505 	struct clock_softc	*sc;
506 	mc_todregs		clkregs;
507 	int			s, length;
508 	char			buffer[16];
509 
510 	sc = clock_cd.cd_devs[minor(dev)];
511 
512 	s = splhigh();
513 	MC146818_GETTOD(RTC, &clkregs);
514 	splx(s);
515 
516 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
517 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
518 	    clkregs[MC_MONTH], clkregs[MC_DOM],
519 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
520 
521 	if (uio->uio_offset > strlen(buffer))
522 		return 0;
523 
524 	length = strlen(buffer) - uio->uio_offset;
525 	if (length > uio->uio_resid)
526 		length = uio->uio_resid;
527 
528 	return(uiomove((caddr_t)buffer, length, uio));
529 }
530 
531 static int
532 twodigits(buffer, pos)
533 	char *buffer;
534 	int pos;
535 {
536 	int result = 0;
537 
538 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
539 		result = (buffer[pos] - '0') * 10;
540 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
541 		result += (buffer[pos+1] - '0');
542 	return(result);
543 }
544 
545 int
546 rtcwrite(dev, uio, flags)
547 	dev_t		dev;
548 	struct uio	*uio;
549 	int		flags;
550 {
551 	mc_todregs		clkregs;
552 	int			s, length, error;
553 	char			buffer[16];
554 
555 	/*
556 	 * We require atomic updates!
557 	 */
558 	length = uio->uio_resid;
559 	if (uio->uio_offset || (length != sizeof(buffer)
560 	  && length != sizeof(buffer - 1)))
561 		return(EINVAL);
562 
563 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
564 		return(error);
565 
566 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
567 		return(EINVAL);
568 
569 	s = splclock();
570 	mc146818_write(RTC, MC_REGB,
571 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
572 	MC146818_GETTOD(RTC, &clkregs);
573 	splx(s);
574 
575 	clkregs[MC_SEC]   = twodigits(buffer, 13);
576 	clkregs[MC_MIN]   = twodigits(buffer, 10);
577 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
578 	clkregs[MC_DOM]   = twodigits(buffer, 6);
579 	clkregs[MC_MONTH] = twodigits(buffer, 4);
580 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
581 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
582 
583 	s = splclock();
584 	MC146818_PUTTOD(RTC, &clkregs);
585 	splx(s);
586 
587 	return(0);
588 }
589