xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: clock.c,v 1.34 2003/08/07 16:26:58 agc Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1990 The Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  * from: Utah $Hdr: clock.c 1.18 91/01/21$
36  *
37  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
38  */
39 /*
40  * Copyright (c) 1988 University of Utah.
41  *
42  * This code is derived from software contributed to Berkeley by
43  * the Systems Programming Group of the University of Utah Computer
44  * Science Department.
45  *
46  * Redistribution and use in source and binary forms, with or without
47  * modification, are permitted provided that the following conditions
48  * are met:
49  * 1. Redistributions of source code must retain the above copyright
50  *    notice, this list of conditions and the following disclaimer.
51  * 2. Redistributions in binary form must reproduce the above copyright
52  *    notice, this list of conditions and the following disclaimer in the
53  *    documentation and/or other materials provided with the distribution.
54  * 3. All advertising materials mentioning features or use of this software
55  *    must display the following acknowledgement:
56  *	This product includes software developed by the University of
57  *	California, Berkeley and its contributors.
58  * 4. Neither the name of the University nor the names of its contributors
59  *    may be used to endorse or promote products derived from this software
60  *    without specific prior written permission.
61  *
62  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
63  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
64  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
65  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
66  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
67  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
68  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
69  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
70  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
71  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
72  * SUCH DAMAGE.
73  *
74  * from: Utah $Hdr: clock.c 1.18 91/01/21$
75  *
76  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
77  */
78 
79 #include <sys/cdefs.h>
80 __KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.34 2003/08/07 16:26:58 agc Exp $");
81 
82 #include <sys/param.h>
83 #include <sys/kernel.h>
84 #include <sys/systm.h>
85 #include <sys/device.h>
86 #include <sys/uio.h>
87 #include <sys/conf.h>
88 #include <sys/proc.h>
89 #include <sys/event.h>
90 
91 #include <dev/clock_subr.h>
92 
93 #include <machine/psl.h>
94 #include <machine/cpu.h>
95 #include <machine/iomap.h>
96 #include <machine/mfp.h>
97 #include <atari/dev/clockreg.h>
98 #include <atari/atari/device.h>
99 
100 #if defined(GPROF) && defined(PROFTIMER)
101 #include <machine/profile.h>
102 #endif
103 
104 /*
105  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
106  * of 200. Therefore the timer runs at an effective rate of:
107  * 2457600/200 = 12288Hz.
108  */
109 #define CLOCK_HZ	12288
110 
111 /*
112  * Machine-dependent clock routines.
113  *
114  * Inittodr initializes the time of day hardware which provides
115  * date functions.
116  *
117  * Resettodr restores the time of day hardware after a time change.
118  */
119 
120 struct clock_softc {
121 	struct device	sc_dev;
122 	int		sc_flags;
123 };
124 
125 /*
126  *  'sc_flags' state info. Only used by the rtc-device functions.
127  */
128 #define	RTC_OPEN	1
129 
130 dev_type_open(rtcopen);
131 dev_type_close(rtcclose);
132 dev_type_read(rtcread);
133 dev_type_write(rtcwrite);
134 
135 static void	clockattach __P((struct device *, struct device *, void *));
136 static int	clockmatch __P((struct device *, struct cfdata *, void *));
137 
138 CFATTACH_DECL(clock, sizeof(struct clock_softc),
139     clockmatch, clockattach, NULL, NULL);
140 
141 extern struct cfdriver clock_cd;
142 
143 const struct cdevsw rtc_cdevsw = {
144 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
145 	nostop, notty, nopoll, nommap, nokqfilter,
146 };
147 
148 void statintr __P((struct clockframe));
149 
150 static u_long	gettod __P((void));
151 static int	twodigits __P((char *, int));
152 
153 static int	divisor;	/* Systemclock divisor	*/
154 
155 /*
156  * Statistics and profile clock intervals and variances. Variance must
157  * be a power of 2. Since this gives us an even number, not an odd number,
158  * we discard one case and compensate. That is, a variance of 64 would
159  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
160  * This is symmetric around the point 32, or statvar/2, and thus averages
161  * to that value (assuming uniform random numbers).
162  */
163 #ifdef STATCLOCK
164 static int	statvar = 32;	/* {stat,prof}clock variance		*/
165 static int	statmin;	/* statclock divisor - variance/2	*/
166 static int	profmin;	/* profclock divisor - variance/2	*/
167 static int	clk2min;	/* current, from above choices		*/
168 #endif
169 
170 int
171 clockmatch(pdp, cfp, auxp)
172 struct device	*pdp;
173 struct cfdata	*cfp;
174 void		*auxp;
175 {
176 	if (!atari_realconfig) {
177 	    /*
178 	     * Initialize Timer-B in the ST-MFP. This timer is used by
179 	     * the 'delay' function below. This timer is setup to be
180 	     * continueously counting from 255 back to zero at a
181 	     * frequency of 614400Hz. We do this *early* in the
182 	     * initialisation process.
183 	     */
184 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
185 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
186 	    MFP->mf_tbdr  = 0;
187 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
188 
189 	    /*
190 	     * Initialize the time structure
191 	     */
192 	    time.tv_sec  = 0;
193 	    time.tv_usec = 0;
194 
195 	    return 0;
196 	}
197 	if(!strcmp("clock", auxp))
198 		return(1);
199 	return(0);
200 }
201 
202 /*
203  * Start the real-time clock.
204  */
205 void clockattach(pdp, dp, auxp)
206 struct device	*pdp, *dp;
207 void		*auxp;
208 {
209 	struct clock_softc *sc = (void *)dp;
210 
211 	sc->sc_flags = 0;
212 
213 	/*
214 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
215 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
216 	 * at an effective rate of: 2457600/200 = 12288Hz. The
217 	 * following expression works for 48, 64 or 96 hz.
218 	 */
219 	divisor       = CLOCK_HZ/hz;
220 	MFP->mf_tacr  = 0;		/* Stop timer			*/
221 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
222 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
223 
224 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
225 		printf (": illegal value %d for systemclock, reset to %d\n\t",
226 								hz, 64);
227 		hz = 64;
228 	}
229 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
230 
231 #ifdef STATCLOCK
232 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
233 		stathz = hz;
234 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
235 		profhz = hz << 1;
236 
237 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
238 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
239 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
240 
241 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
242 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
243 	clk2min  = statmin;
244 #endif /* STATCLOCK */
245 
246 }
247 
248 void cpu_initclocks()
249 {
250 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
251 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
252 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
253 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
254 
255 #ifdef STATCLOCK
256 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
257 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
258 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
259 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
260 #endif /* STATCLOCK */
261 }
262 
263 void
264 setstatclockrate(newhz)
265 	int newhz;
266 {
267 #ifdef STATCLOCK
268 	if (newhz == stathz)
269 		clk2min = statmin;
270 	else clk2min = profmin;
271 #endif /* STATCLOCK */
272 }
273 
274 #ifdef STATCLOCK
275 void
276 statintr(frame)
277 	struct clockframe frame;
278 {
279 	register int	var, r;
280 
281 	var = statvar - 1;
282 	do {
283 		r = random() & var;
284 	} while(r == 0);
285 
286 	/*
287 	 * Note that we are always lagging behind as the new divisor
288 	 * value will not be loaded until the next interrupt. This
289 	 * shouldn't disturb the median frequency (I think ;-) ) as
290 	 * only the value used when switching frequencies is used
291 	 * twice. This shouldn't happen very often.
292 	 */
293 	MFP->mf_tcdr = clk2min + r;
294 
295 	statclock(&frame);
296 }
297 #endif /* STATCLOCK */
298 
299 /*
300  * Returns number of usec since last recorded clock "tick"
301  * (i.e. clock interrupt).
302  */
303 long
304 clkread()
305 {
306 	u_int	delta;
307 	u_char	ipra, tadr;
308 
309 	/*
310 	 * Note: Order is important!
311 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
312 	 * the situation that very low value in 'tadr' is read (== a big delta)
313 	 * while also acccounting for a full 'tick' because the counter went
314 	 * through zero during the calculations.
315 	 */
316 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
317 
318 	delta = ((divisor - tadr) * tick) / divisor;
319 	/*
320 	 * Account for pending clock interrupts
321 	 */
322 	if(ipra & IA_TIMA)
323 		return(delta + tick);
324 	return(delta);
325 }
326 
327 #define TIMB_FREQ	614400
328 #define TIMB_LIMIT	256
329 
330 /*
331  * Wait "n" microseconds.
332  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
333  * Note: timer had better have been programmed before this is first used!
334  */
335 void
336 delay(n)
337 int	n;
338 {
339 	int	tick, otick;
340 
341 	/*
342 	 * Read the counter first, so that the rest of the setup overhead is
343 	 * counted.
344 	 */
345 	otick = MFP->mf_tbdr;
346 
347 	/*
348 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
349 	 * we can take advantage of the intermediate 64-bit quantity to prevent
350 	 * loss of significance.
351 	 */
352 	n -= 5;
353 	if(n < 0)
354 		return;
355 	{
356 	    u_int	temp;
357 
358 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
359 					       : "d" (TIMB_FREQ), "d" (n));
360 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
361 					       : "d"(1000000),"d"(temp),"0"(n));
362 	}
363 
364 	while(n > 0) {
365 		tick = MFP->mf_tbdr;
366 		if(tick > otick)
367 			n -= TIMB_LIMIT - (tick - otick);
368 		else n -= otick - tick;
369 		otick = tick;
370 	}
371 }
372 
373 #ifdef GPROF
374 /*
375  * profclock() is expanded in line in lev6intr() unless profiling kernel.
376  * Assumes it is called with clock interrupts blocked.
377  */
378 profclock(pc, ps)
379 	caddr_t pc;
380 	int ps;
381 {
382 	/*
383 	 * Came from user mode.
384 	 * If this process is being profiled record the tick.
385 	 */
386 	if (USERMODE(ps)) {
387 		if (p->p_stats.p_prof.pr_scale)
388 			addupc(pc, &curproc->p_stats.p_prof, 1);
389 	}
390 	/*
391 	 * Came from kernel (supervisor) mode.
392 	 * If we are profiling the kernel, record the tick.
393 	 */
394 	else if (profiling < 2) {
395 		register int s = pc - s_lowpc;
396 
397 		if (s < s_textsize)
398 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
399 	}
400 	/*
401 	 * Kernel profiling was on but has been disabled.
402 	 * Mark as no longer profiling kernel and if all profiling done,
403 	 * disable the clock.
404 	 */
405 	if (profiling && (profon & PRF_KERNEL)) {
406 		profon &= ~PRF_KERNEL;
407 		if (profon == PRF_NONE)
408 			stopprofclock();
409 	}
410 }
411 #endif
412 
413 /***********************************************************************
414  *                   Real Time Clock support                           *
415  ***********************************************************************/
416 
417 u_int mc146818_read(rtc, regno)
418 void	*rtc;
419 u_int	regno;
420 {
421 	((struct rtc *)rtc)->rtc_regno = regno;
422 	return(((struct rtc *)rtc)->rtc_data & 0377);
423 }
424 
425 void mc146818_write(rtc, regno, value)
426 void	*rtc;
427 u_int	regno, value;
428 {
429 	((struct rtc *)rtc)->rtc_regno = regno;
430 	((struct rtc *)rtc)->rtc_data  = value;
431 }
432 
433 /*
434  * Initialize the time of day register, assuming the RTC runs in UTC.
435  * Since we've got the 'rtc' device, this functionality should be removed
436  * from the kernel. The only problem to be solved before that can happen
437  * is the possibility of init(1) providing a way (rc.boot?) to set
438  * the RTC before single-user mode is entered.
439  */
440 void
441 inittodr(base)
442 time_t base;
443 {
444 	/* Battery clock does not store usec's, so forget about it. */
445 	time.tv_sec  = gettod();
446 	time.tv_usec = 0;
447 }
448 
449 /*
450  * Function turned into a No-op. Use /dev/rtc to update the RTC.
451  */
452 void
453 resettodr()
454 {
455 	return;
456 }
457 
458 static u_long
459 gettod()
460 {
461 	int			sps;
462 	mc_todregs		clkregs;
463 	u_int			regb;
464 	struct clock_ymdhms	dt;
465 
466 	sps = splhigh();
467 	regb = mc146818_read(RTC, MC_REGB);
468 	MC146818_GETTOD(RTC, &clkregs);
469 	splx(sps);
470 
471 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
472 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
473 		printf("Error: Nonstandard RealTimeClock Configuration -"
474 			" value ignored\n"
475 			"       A write to /dev/rtc will correct this.\n");
476 			return(0);
477 	}
478 	if(clkregs[MC_SEC] > 59)
479 		return(0);
480 	if(clkregs[MC_MIN] > 59)
481 		return(0);
482 	if(clkregs[MC_HOUR] > 23)
483 		return(0);
484 	if(range_test(clkregs[MC_DOM], 1, 31))
485 		return(0);
486 	if (range_test(clkregs[MC_MONTH], 1, 12))
487 		return(0);
488 	if(clkregs[MC_YEAR] > 99)
489 		return(0);
490 
491 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
492 	dt.dt_mon  = clkregs[MC_MONTH];
493 	dt.dt_day  = clkregs[MC_DOM];
494 	dt.dt_hour = clkregs[MC_HOUR];
495 	dt.dt_min  = clkregs[MC_MIN];
496 	dt.dt_sec  = clkregs[MC_SEC];
497 
498 	return(clock_ymdhms_to_secs(&dt));
499 }
500 /***********************************************************************
501  *                   RTC-device support				       *
502  ***********************************************************************/
503 int
504 rtcopen(dev, flag, mode, p)
505 	dev_t		dev;
506 	int		flag, mode;
507 	struct proc	*p;
508 {
509 	int			unit = minor(dev);
510 	struct clock_softc	*sc;
511 
512 	if (unit >= clock_cd.cd_ndevs)
513 		return ENXIO;
514 	sc = clock_cd.cd_devs[unit];
515 	if (!sc)
516 		return ENXIO;
517 	if (sc->sc_flags & RTC_OPEN)
518 		return EBUSY;
519 
520 	sc->sc_flags = RTC_OPEN;
521 	return 0;
522 }
523 
524 int
525 rtcclose(dev, flag, mode, p)
526 	dev_t		dev;
527 	int		flag;
528 	int		mode;
529 	struct proc	*p;
530 {
531 	int			unit = minor(dev);
532 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
533 
534 	sc->sc_flags = 0;
535 	return 0;
536 }
537 
538 int
539 rtcread(dev, uio, flags)
540 	dev_t		dev;
541 	struct uio	*uio;
542 	int		flags;
543 {
544 	struct clock_softc	*sc;
545 	mc_todregs		clkregs;
546 	int			s, length;
547 	char			buffer[16];
548 
549 	sc = clock_cd.cd_devs[minor(dev)];
550 
551 	s = splhigh();
552 	MC146818_GETTOD(RTC, &clkregs);
553 	splx(s);
554 
555 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
556 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
557 	    clkregs[MC_MONTH], clkregs[MC_DOM],
558 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
559 
560 	if (uio->uio_offset > strlen(buffer))
561 		return 0;
562 
563 	length = strlen(buffer) - uio->uio_offset;
564 	if (length > uio->uio_resid)
565 		length = uio->uio_resid;
566 
567 	return(uiomove((caddr_t)buffer, length, uio));
568 }
569 
570 static int
571 twodigits(buffer, pos)
572 	char *buffer;
573 	int pos;
574 {
575 	int result = 0;
576 
577 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
578 		result = (buffer[pos] - '0') * 10;
579 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
580 		result += (buffer[pos+1] - '0');
581 	return(result);
582 }
583 
584 int
585 rtcwrite(dev, uio, flags)
586 	dev_t		dev;
587 	struct uio	*uio;
588 	int		flags;
589 {
590 	mc_todregs		clkregs;
591 	int			s, length, error;
592 	char			buffer[16];
593 
594 	/*
595 	 * We require atomic updates!
596 	 */
597 	length = uio->uio_resid;
598 	if (uio->uio_offset || (length != sizeof(buffer)
599 	  && length != sizeof(buffer - 1)))
600 		return(EINVAL);
601 
602 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
603 		return(error);
604 
605 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
606 		return(EINVAL);
607 
608 	s = splclock();
609 	mc146818_write(RTC, MC_REGB,
610 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
611 	MC146818_GETTOD(RTC, &clkregs);
612 	splx(s);
613 
614 	clkregs[MC_SEC]   = twodigits(buffer, 13);
615 	clkregs[MC_MIN]   = twodigits(buffer, 10);
616 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
617 	clkregs[MC_DOM]   = twodigits(buffer, 6);
618 	clkregs[MC_MONTH] = twodigits(buffer, 4);
619 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
620 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
621 
622 	s = splclock();
623 	MC146818_PUTTOD(RTC, &clkregs);
624 	splx(s);
625 
626 	return(0);
627 }
628