xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 1f2744e6e4915c9da2a3f980279398c4cf7d5e6d)
1 /*	$NetBSD: clock.c,v 1.1.1.1 1995/03/26 07:12:13 leo Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/device.h>
48 #include <machine/psl.h>
49 #include <machine/cpu.h>
50 #include <machine/iomap.h>
51 #include <machine/mfp.h>
52 #include <atari/dev/clockreg.h>
53 
54 #if defined(PROF) && defined(PROFTIMER)
55 #include <sys/PROF.h>
56 #endif
57 
58 
59 /*
60  * Machine-dependent clock routines.
61  *
62  * Startrtclock restarts the real-time clock, which provides
63  * hardclock interrupts to kern_clock.c.
64  *
65  * Inittodr initializes the time of day hardware which provides
66  * date functions.
67  *
68  * Resettodr restores the time of day hardware after a time change.
69  *
70  * A note on the real-time clock:
71  * We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
72  * This is because the counter decrements to zero after N+1 enabled clock
73  * periods where N is the value loaded into the counter.
74  */
75 
76 int	clockmatch __P((struct device *, struct cfdata *, void *));
77 void	clockattach __P((struct device *, struct device *, void *));
78 
79 struct cfdriver clockcd = {
80 	NULL, "clock", (cfmatch_t)clockmatch, clockattach,
81 	DV_DULL, sizeof(struct device), NULL, 0
82 };
83 
84 static u_long	gettod __P((void));
85 static int	settod __P((u_long));
86 
87 static int	divisor;
88 
89 int
90 clockmatch(pdp, cfp, auxp)
91 struct device *pdp;
92 struct cfdata *cfp;
93 void *auxp;
94 {
95 	if(!strcmp("clock", auxp))
96 		return(1);
97 	return(0);
98 }
99 
100 /*
101  * Start the real-time clock.
102  */
103 void clockattach(pdp, dp, auxp)
104 struct device	*pdp, *dp;
105 void			*auxp;
106 {
107 	/*
108 	 * Initialize Timer-A in the TT-MFP. An exact reduce to HZ is not
109 	 * possible by hardware. We use a divisor of 64 and reduce by software
110 	 * with a factor of 4. The MFP clock runs at 2457600Hz. Therefore the
111 	 * timer runs at an effective rate of: 2457600/(64*4) = 9600Hz. The
112 	 * following expression works for all 'normal' values of hz.
113 	 */
114 	divisor        = 9600/hz;
115 	MFP2->mf_tacr  = 0;		/* Stop timer			*/
116 	MFP2->mf_iera &= ~IA_TIMA2;	/* Disable timer interrupts	*/
117 	MFP2->mf_tadr  = divisor;	/* Set divisor			*/
118 
119 	printf(": system hz %d timer-A divisor %d\n", hz, divisor);
120 
121 	/*
122 	 * Initialize Timer-B in the TT-MFP. This timer is used by the 'delay'
123 	 * function below. This time is setup to be continueously counting from
124 	 * 255 back to zero at a frequency of 614400Hz.
125 	 */
126 	MFP2->mf_tbcr  = 0;		/* Stop timer			*/
127 	MFP2->mf_iera &= ~IA_TIMB2;	/* Disable timer interrupts	*/
128 	MFP2->mf_tbdr  = 0;
129 	MFP2->mf_tbcr  = T_Q004;	/* Start timer			*/
130 
131 }
132 
133 void cpu_initclocks()
134 {
135 	MFP2->mf_tacr  = T_Q064;	/* Start timer			*/
136 	MFP2->mf_ipra &= ~IA_TIMA2;	/* Clear pending interrupts	*/
137 	MFP2->mf_iera |= IA_TIMA2;	/* Enable timer interrupts	*/
138 	MFP2->mf_imra |= IA_TIMA2;	/*    .....			*/
139 }
140 
141 setstatclockrate(hz)
142 	int hz;
143 {
144 }
145 
146 /*
147  * Returns number of usec since last recorded clock "tick"
148  * (i.e. clock interrupt).
149  */
150 clkread()
151 {
152 	extern	short	clk_div;
153 			u_int	delta, elapsed;
154 
155 	elapsed = (divisor - MFP2->mf_tadr) + ((4 - clk_div) * divisor);
156 	delta   = (elapsed * tick) / (divisor << 2);
157 
158 	/*
159 	 * Account for pending clock interrupts
160 	 */
161 	if(MFP2->mf_iera & IA_TIMA2)
162 		return(delta + tick);
163 	return(delta);
164 }
165 
166 #define TIMB2_FREQ	614400
167 #define TIMB2_LIMIT	256
168 
169 /*
170  * Wait "n" microseconds.
171  * Relies on MFP2-Timer B counting down from TIMB2_LIMIT at TIMB2_FREQ Hz.
172  * Note: timer had better have been programmed before this is first used!
173  */
174 void delay(n)
175 int	n;
176 {
177 	int	tick, otick;
178 
179 	/*
180 	 * Read the counter first, so that the rest of the setup overhead is
181 	 * counted.
182 	 */
183 	otick = MFP2->mf_tbdr;
184 
185 	/*
186 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
187 	 * we can take advantage of the intermediate 64-bit quantity to prevent
188 	 * loss of significance.
189 	 */
190 	n -= 5;
191 	if(n < 0)
192 		return;
193 	{
194 	    u_int	temp;
195 
196 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
197 					       : "d" (TIMB2_FREQ));
198 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
199 					       : "d"(1000000),"d"(temp),"0"(n));
200 	}
201 
202 	while(n > 0) {
203 		tick = MFP2->mf_tbdr;
204 		if(tick > otick)
205 			n -= TIMB2_LIMIT - (tick - otick);
206 		else n -= otick - tick;
207 		otick = tick;
208 	}
209 }
210 
211 #ifdef notyet
212 /*
213  * Needs to be calibrated for use, its way off most of the time
214  */
215 void
216 DELAY(mic)
217 	int mic;
218 {
219 	u_long	n;
220 	short	hpos;
221 
222 	/*
223 	 * this function uses HSync pulses as base units. The custom chips
224 	 * display only deals with 31.6kHz/2 refresh, this gives us a
225 	 * resolution of 1/15800 s, which is ~63us (add some fuzz so we really
226 	 * wait awhile, even if using small timeouts)
227 	 */
228 	n = mic/63 + 2;
229 	do {
230 		hpos = custom.vhposr & 0xff00;
231 		while (hpos == (custom.vhposr & 0xff00))
232 			;
233 	} while (n--);
234 }
235 #endif /* notyet */
236 
237 #if notyet
238 
239 /* implement this later. I'd suggest using both timers in CIA-A, they're
240    not yet used. */
241 
242 #include "clock.h"
243 #if NCLOCK > 0
244 /*
245  * /dev/clock: mappable high resolution timer.
246  *
247  * This code implements a 32-bit recycling counter (with a 4 usec period)
248  * using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
249  * RO into a user's address space to achieve low overhead (no system calls),
250  * high-precision timing.
251  *
252  * Note that timer 3 is also used for the high precision profiling timer
253  * (PROFTIMER code above).  Care should be taken when both uses are
254  * configured as only a token effort is made to avoid conflicting use.
255  */
256 #include <sys/proc.h>
257 #include <sys/resourcevar.h>
258 #include <sys/ioctl.h>
259 #include <sys/malloc.h>
260 #include <vm/vm.h>
261 #include <amiga/amiga/clockioctl.h>
262 #include <sys/specdev.h>
263 #include <sys/vnode.h>
264 #include <sys/mman.h>
265 
266 int clockon = 0;		/* non-zero if high-res timer enabled */
267 #ifdef PROFTIMER
268 int  profprocs = 0;		/* # of procs using profiling timer */
269 #endif
270 #ifdef DEBUG
271 int clockdebug = 0;
272 #endif
273 
274 /*ARGSUSED*/
275 clockopen(dev, flags)
276 	dev_t dev;
277 {
278 #ifdef PROFTIMER
279 #ifdef PROF
280 	/*
281 	 * Kernel profiling enabled, give up.
282 	 */
283 	if (profiling)
284 		return(EBUSY);
285 #endif
286 	/*
287 	 * If any user processes are profiling, give up.
288 	 */
289 	if (profprocs)
290 		return(EBUSY);
291 #endif
292 	if (!clockon) {
293 		startclock();
294 		clockon++;
295 	}
296 	return(0);
297 }
298 
299 /*ARGSUSED*/
300 clockclose(dev, flags)
301 	dev_t dev;
302 {
303 	(void) clockunmmap(dev, (caddr_t)0, curproc);	/* XXX */
304 	stopclock();
305 	clockon = 0;
306 	return(0);
307 }
308 
309 /*ARGSUSED*/
310 clockioctl(dev, cmd, data, flag, p)
311 	dev_t		dev;
312 	u_long		cmd;
313 	caddr_t		data;
314 	struct proc	*p;
315 {
316 	int error = 0;
317 
318 	switch (cmd) {
319 
320 	case CLOCKMAP:
321 		error = clockmmap(dev, (caddr_t *)data, p);
322 		break;
323 
324 	case CLOCKUNMAP:
325 		error = clockunmmap(dev, *(caddr_t *)data, p);
326 		break;
327 
328 	case CLOCKGETRES:
329 		*(int *)data = CLK_RESOLUTION;
330 		break;
331 
332 	default:
333 		error = EINVAL;
334 		break;
335 	}
336 	return(error);
337 }
338 
339 /*ARGSUSED*/
340 clockmap(dev, off, prot)
341 	dev_t dev;
342 {
343 	return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
344 }
345 
346 clockmmap(dev, addrp, p)
347 	dev_t dev;
348 	caddr_t *addrp;
349 	struct proc *p;
350 {
351 	int error;
352 	struct vnode vn;
353 	struct specinfo si;
354 	int flags;
355 
356 	flags = MAP_FILE|MAP_SHARED;
357 	if (*addrp)
358 		flags |= MAP_FIXED;
359 	else
360 		*addrp = (caddr_t)0x1000000;	/* XXX */
361 	vn.v_type = VCHR;			/* XXX */
362 	vn.v_specinfo = &si;			/* XXX */
363 	vn.v_rdev = dev;			/* XXX */
364 	error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
365 			PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
366 	return(error);
367 }
368 
369 clockunmmap(dev, addr, p)
370 	dev_t dev;
371 	caddr_t addr;
372 	struct proc *p;
373 {
374 	int rv;
375 
376 	if (addr == 0)
377 		return(EINVAL);		/* XXX: how do we deal with this? */
378 	rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
379 	return(rv == KERN_SUCCESS ? 0 : EINVAL);
380 }
381 
382 startclock()
383 {
384 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
385 
386 	clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
387 	clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
388 
389 	clk->clk_cr2 = CLK_CR3;
390 	clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
391 	clk->clk_cr2 = CLK_CR1;
392 	clk->clk_cr1 = CLK_IENAB;
393 }
394 
395 stopclock()
396 {
397 	register struct clkreg *clk = (struct clkreg *)clkstd[0];
398 
399 	clk->clk_cr2 = CLK_CR3;
400 	clk->clk_cr3 = 0;
401 	clk->clk_cr2 = CLK_CR1;
402 	clk->clk_cr1 = CLK_IENAB;
403 }
404 #endif
405 
406 #endif
407 
408 
409 #ifdef PROFTIMER
410 /*
411  * This code allows the amiga kernel to use one of the extra timers on
412  * the clock chip for profiling, instead of the regular system timer.
413  * The advantage of this is that the profiling timer can be turned up to
414  * a higher interrupt rate, giving finer resolution timing. The profclock
415  * routine is called from the lev6intr in locore, and is a specialized
416  * routine that calls addupc. The overhead then is far less than if
417  * hardclock/softclock was called. Further, the context switch code in
418  * locore has been changed to turn the profile clock on/off when switching
419  * into/out of a process that is profiling (startprofclock/stopprofclock).
420  * This reduces the impact of the profiling clock on other users, and might
421  * possibly increase the accuracy of the profiling.
422  */
423 int  profint   = PRF_INTERVAL;	/* Clock ticks between interrupts */
424 int  profscale = 0;		/* Scale factor from sys clock to prof clock */
425 char profon    = 0;		/* Is profiling clock on? */
426 
427 /* profon values - do not change, locore.s assumes these values */
428 #define PRF_NONE	0x00
429 #define	PRF_USER	0x01
430 #define	PRF_KERNEL	0x80
431 
432 initprofclock()
433 {
434 #if NCLOCK > 0
435 	struct proc *p = curproc;		/* XXX */
436 
437 	/*
438 	 * If the high-res timer is running, force profiling off.
439 	 * Unfortunately, this gets reflected back to the user not as
440 	 * an error but as a lack of results.
441 	 */
442 	if (clockon) {
443 		p->p_stats->p_prof.pr_scale = 0;
444 		return;
445 	}
446 	/*
447 	 * Keep track of the number of user processes that are profiling
448 	 * by checking the scale value.
449 	 *
450 	 * XXX: this all assumes that the profiling code is well behaved;
451 	 * i.e. profil() is called once per process with pcscale non-zero
452 	 * to turn it on, and once with pcscale zero to turn it off.
453 	 * Also assumes you don't do any forks or execs.  Oh well, there
454 	 * is always adb...
455 	 */
456 	if (p->p_stats->p_prof.pr_scale)
457 		profprocs++;
458 	else
459 		profprocs--;
460 #endif
461 	/*
462 	 * The profile interrupt interval must be an even divisor
463 	 * of the CLK_INTERVAL so that scaling from a system clock
464 	 * tick to a profile clock tick is possible using integer math.
465 	 */
466 	if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
467 		profint = CLK_INTERVAL;
468 	profscale = CLK_INTERVAL / profint;
469 }
470 
471 startprofclock()
472 {
473   unsigned short interval;
474 
475   /* stop timer B */
476   ciab.crb = ciab.crb & 0xc0;
477 
478   /* load interval into registers.
479      the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
480 
481   interval = profint - 1;
482 
483   /* order of setting is important ! */
484   ciab.tblo = interval & 0xff;
485   ciab.tbhi = interval >> 8;
486 
487   /* enable interrupts for timer B */
488   ciab.icr = (1<<7) | (1<<1);
489 
490   /* start timer B in continuous shot mode */
491   ciab.crb = (ciab.crb & 0xc0) | 1;
492 }
493 
494 stopprofclock()
495 {
496   /* stop timer B */
497   ciab.crb = ciab.crb & 0xc0;
498 }
499 
500 #ifdef PROF
501 /*
502  * profclock() is expanded in line in lev6intr() unless profiling kernel.
503  * Assumes it is called with clock interrupts blocked.
504  */
505 profclock(pc, ps)
506 	caddr_t pc;
507 	int ps;
508 {
509 	/*
510 	 * Came from user mode.
511 	 * If this process is being profiled record the tick.
512 	 */
513 	if (USERMODE(ps)) {
514 		if (p->p_stats.p_prof.pr_scale)
515 			addupc(pc, &curproc->p_stats.p_prof, 1);
516 	}
517 	/*
518 	 * Came from kernel (supervisor) mode.
519 	 * If we are profiling the kernel, record the tick.
520 	 */
521 	else if (profiling < 2) {
522 		register int s = pc - s_lowpc;
523 
524 		if (s < s_textsize)
525 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
526 	}
527 	/*
528 	 * Kernel profiling was on but has been disabled.
529 	 * Mark as no longer profiling kernel and if all profiling done,
530 	 * disable the clock.
531 	 */
532 	if (profiling && (profon & PRF_KERNEL)) {
533 		profon &= ~PRF_KERNEL;
534 		if (profon == PRF_NONE)
535 			stopprofclock();
536 	}
537 }
538 #endif
539 #endif
540 
541 /*
542  * Initialize the time of day register, based on the time base which is, e.g.
543  * from a filesystem.
544  */
545 inittodr(base)
546 time_t base;
547 {
548 	u_long timbuf = base;	/* assume no battery clock exists */
549 
550 	timbuf = gettod();
551 
552 	if(timbuf < base) {
553 		printf("WARNING: bad date in battery clock\n");
554 		timbuf = base;
555 	}
556 
557 	/* Battery clock does not store usec's, so forget about it. */
558 	time.tv_sec = timbuf;
559 }
560 
561 resettodr()
562 {
563 	if(settod(time.tv_sec) == 1)
564 		return;
565 	printf("Cannot set battery backed clock\n");
566 }
567 
568 static	char	dmsize[12] =
569 {
570 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
571 };
572 
573 static	char	ldmsize[12] =
574 {
575 	31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
576 };
577 
578 static __inline__ int rtc_getclkreg(regno)
579 int	regno;
580 {
581 	RTC->rtc_regno = RTC_REGA;
582 	RTC->rtc_regno = regno;
583 	return(RTC->rtc_data & 0377);
584 }
585 
586 static __inline__ void rtc_setclkreg(regno, value)
587 int	regno, value;
588 {
589 	RTC->rtc_regno = regno;
590 	RTC->rtc_data  = value;
591 }
592 
593 static u_long
594 gettod()
595 {
596 	int		i, year, mon, day, hour, min, sec;
597 	u_long	new_time = 0;
598 	char	*msize;
599 
600 	/*
601 	 * Hold clock
602 	 */
603 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) | RTC_B_SET);
604 
605 	/*
606 	 * Read clock
607 	 */
608 	sec  = rtc_getclkreg(RTC_SEC);
609 	min  = rtc_getclkreg(RTC_MIN);
610 	hour = rtc_getclkreg(RTC_HOUR);
611 	day  = rtc_getclkreg(RTC_DAY) - 1;
612 	mon  = rtc_getclkreg(RTC_MONTH) - 1;
613 	year = rtc_getclkreg(RTC_YEAR) + STARTOFTIME;
614 
615 	/*
616 	 * Let it run again..
617 	 */
618 	rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) & ~RTC_B_SET);
619 
620 	if(range_test(hour, 0, 23))
621 		return(0);
622 	if(range_test(day, 0, 30))
623 		return(0);
624 	if (range_test(mon, 0, 11))
625 		return(0);
626 	if(range_test(year, STARTOFTIME, 2000))
627 		return(0);
628 
629 	for(i = STARTOFTIME; i < year; i++) {
630 		if(is_leap(i))
631 			new_time += 366;
632 		else new_time += 365;
633 	}
634 
635 	msize = is_leap(year) ? ldmsize : dmsize;
636 	for(i = 0; i < mon; i++)
637 		new_time += msize[i];
638 	new_time += day;
639 	return((new_time * SECS_DAY) + (hour * 3600) + (min * 60) + sec);
640 }
641 
642 static int
643 settod(newtime)
644 u_long	newtime;
645 {
646 	register long	days, rem, year;
647 	register char	*ml;
648 			 int	sec, min, hour, month;
649 
650 	/* Number of days since Jan. 1 1970	*/
651 	days = newtime / SECS_DAY;
652 	rem  = newtime % SECS_DAY;
653 
654 	/*
655 	 * Calculate sec, min, hour
656 	 */
657 	hour = rem / SECS_HOUR;
658 	rem %= SECS_HOUR;
659 	min  = rem / 60;
660 	sec  = rem % 60;
661 
662 	/*
663 	 * Figure out the year. Day in year is left in 'days'.
664 	 */
665 	year = STARTOFTIME;
666 	while(days >= (rem = is_leap(year) ? 366 : 365)) {
667 	  ++year;
668 	  days -= rem;
669 	}
670 	while(days < 0) {
671 	  --year;
672 	  days += is_leap(year) ? 366 : 365;
673 	}
674 
675 	/*
676 	 * Determine the month
677 	 */
678 	ml = is_leap(year) ? ldmsize : dmsize;
679 	for(month = 0; days >= ml[month]; ++month)
680 		days -= ml[month];
681 
682 	/*
683 	 * Now that everything is calculated, program the RTC
684 	 */
685 	rtc_setclkreg(RTC_REGB, RTC_B_SET);
686 	rtc_setclkreg(RTC_REGA, RTC_A_DV1|RTC_A_RS2|RTC_A_RS3);
687 	rtc_setclkreg(RTC_REGB, RTC_B_SET|RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
688 	rtc_setclkreg(RTC_SEC, sec);
689 	rtc_setclkreg(RTC_MIN, min);
690 	rtc_setclkreg(RTC_HOUR, hour);
691 	rtc_setclkreg(RTC_DAY, days+1);
692 	rtc_setclkreg(RTC_MONTH, month+1);
693 	rtc_setclkreg(RTC_YEAR, year-1970);
694 	rtc_setclkreg(RTC_REGB, RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
695 
696 	return(1);
697 }
698