xref: /netbsd-src/sys/arch/atari/dev/clock.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: clock.c,v 1.32 2003/01/17 22:34:23 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1988 University of Utah.
5  * Copyright (c) 1982, 1990 The Regents of the University of California.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to Berkeley by
9  * the Systems Programming Group of the University of Utah Computer
10  * Science Department.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  * from: Utah $Hdr: clock.c 1.18 91/01/21$
41  *
42  *	@(#)clock.c	7.6 (Berkeley) 5/7/91
43  */
44 
45 #include <sys/param.h>
46 #include <sys/kernel.h>
47 #include <sys/systm.h>
48 #include <sys/device.h>
49 #include <sys/uio.h>
50 #include <sys/conf.h>
51 #include <sys/proc.h>
52 #include <sys/event.h>
53 
54 #include <dev/clock_subr.h>
55 
56 #include <machine/psl.h>
57 #include <machine/cpu.h>
58 #include <machine/iomap.h>
59 #include <machine/mfp.h>
60 #include <atari/dev/clockreg.h>
61 #include <atari/atari/device.h>
62 
63 #if defined(GPROF) && defined(PROFTIMER)
64 #include <machine/profile.h>
65 #endif
66 
67 /*
68  * The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
69  * of 200. Therefore the timer runs at an effective rate of:
70  * 2457600/200 = 12288Hz.
71  */
72 #define CLOCK_HZ	12288
73 
74 /*
75  * Machine-dependent clock routines.
76  *
77  * Inittodr initializes the time of day hardware which provides
78  * date functions.
79  *
80  * Resettodr restores the time of day hardware after a time change.
81  */
82 
83 struct clock_softc {
84 	struct device	sc_dev;
85 	int		sc_flags;
86 };
87 
88 /*
89  *  'sc_flags' state info. Only used by the rtc-device functions.
90  */
91 #define	RTC_OPEN	1
92 
93 dev_type_open(rtcopen);
94 dev_type_close(rtcclose);
95 dev_type_read(rtcread);
96 dev_type_write(rtcwrite);
97 
98 static void	clockattach __P((struct device *, struct device *, void *));
99 static int	clockmatch __P((struct device *, struct cfdata *, void *));
100 
101 CFATTACH_DECL(clock, sizeof(struct clock_softc),
102     clockmatch, clockattach, NULL, NULL);
103 
104 extern struct cfdriver clock_cd;
105 
106 const struct cdevsw rtc_cdevsw = {
107 	rtcopen, rtcclose, rtcread, rtcwrite, noioctl,
108 	nostop, notty, nopoll, nommap, nokqfilter,
109 };
110 
111 void statintr __P((struct clockframe));
112 
113 static u_long	gettod __P((void));
114 static int	twodigits __P((char *, int));
115 
116 static int	divisor;	/* Systemclock divisor	*/
117 
118 /*
119  * Statistics and profile clock intervals and variances. Variance must
120  * be a power of 2. Since this gives us an even number, not an odd number,
121  * we discard one case and compensate. That is, a variance of 64 would
122  * give us offsets in [0..63]. Instead, we take offsets in [1..63].
123  * This is symmetric around the point 32, or statvar/2, and thus averages
124  * to that value (assuming uniform random numbers).
125  */
126 #ifdef STATCLOCK
127 static int	statvar = 32;	/* {stat,prof}clock variance		*/
128 static int	statmin;	/* statclock divisor - variance/2	*/
129 static int	profmin;	/* profclock divisor - variance/2	*/
130 static int	clk2min;	/* current, from above choices		*/
131 #endif
132 
133 int
134 clockmatch(pdp, cfp, auxp)
135 struct device	*pdp;
136 struct cfdata	*cfp;
137 void		*auxp;
138 {
139 	if (!atari_realconfig) {
140 	    /*
141 	     * Initialize Timer-B in the ST-MFP. This timer is used by
142 	     * the 'delay' function below. This timer is setup to be
143 	     * continueously counting from 255 back to zero at a
144 	     * frequency of 614400Hz. We do this *early* in the
145 	     * initialisation process.
146 	     */
147 	    MFP->mf_tbcr  = 0;		/* Stop timer			*/
148 	    MFP->mf_iera &= ~IA_TIMB;	/* Disable timer interrupts	*/
149 	    MFP->mf_tbdr  = 0;
150 	    MFP->mf_tbcr  = T_Q004;	/* Start timer			*/
151 
152 	    /*
153 	     * Initialize the time structure
154 	     */
155 	    time.tv_sec  = 0;
156 	    time.tv_usec = 0;
157 
158 	    return 0;
159 	}
160 	if(!strcmp("clock", auxp))
161 		return(1);
162 	return(0);
163 }
164 
165 /*
166  * Start the real-time clock.
167  */
168 void clockattach(pdp, dp, auxp)
169 struct device	*pdp, *dp;
170 void		*auxp;
171 {
172 	struct clock_softc *sc = (void *)dp;
173 
174 	sc->sc_flags = 0;
175 
176 	/*
177 	 * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
178 	 * The MFP clock runs at 2457600Hz. Therefore the timer runs
179 	 * at an effective rate of: 2457600/200 = 12288Hz. The
180 	 * following expression works for 48, 64 or 96 hz.
181 	 */
182 	divisor       = CLOCK_HZ/hz;
183 	MFP->mf_tacr  = 0;		/* Stop timer			*/
184 	MFP->mf_iera &= ~IA_TIMA;	/* Disable timer interrupts	*/
185 	MFP->mf_tadr  = divisor;	/* Set divisor			*/
186 
187 	if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
188 		printf (": illegal value %d for systemclock, reset to %d\n\t",
189 								hz, 64);
190 		hz = 64;
191 	}
192 	printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
193 
194 #ifdef STATCLOCK
195 	if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
196 		stathz = hz;
197 	if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
198 		profhz = hz << 1;
199 
200 	MFP->mf_tcdcr &= 0x7;			/* Stop timer		*/
201 	MFP->mf_ierb  &= ~IB_TIMC;		/* Disable timer inter.	*/
202 	MFP->mf_tcdr   = CLOCK_HZ/stathz;	/* Set divisor		*/
203 
204 	statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
205 	profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
206 	clk2min  = statmin;
207 #endif /* STATCLOCK */
208 
209 }
210 
211 void cpu_initclocks()
212 {
213 	MFP->mf_tacr  = T_Q200;		/* Start timer			*/
214 	MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts	*/
215 	MFP->mf_iera |= IA_TIMA;	/* Enable timer interrupts	*/
216 	MFP->mf_imra |= IA_TIMA;	/*    .....			*/
217 
218 #ifdef STATCLOCK
219 	MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start	*/
220 	MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts	*/
221 	MFP->mf_ierb |= IB_TIMC;	/* Enable timer interrupts	*/
222 	MFP->mf_imrb |= IB_TIMC;	/*    .....			*/
223 #endif /* STATCLOCK */
224 }
225 
226 void
227 setstatclockrate(newhz)
228 	int newhz;
229 {
230 #ifdef STATCLOCK
231 	if (newhz == stathz)
232 		clk2min = statmin;
233 	else clk2min = profmin;
234 #endif /* STATCLOCK */
235 }
236 
237 #ifdef STATCLOCK
238 void
239 statintr(frame)
240 	struct clockframe frame;
241 {
242 	register int	var, r;
243 
244 	var = statvar - 1;
245 	do {
246 		r = random() & var;
247 	} while(r == 0);
248 
249 	/*
250 	 * Note that we are always lagging behind as the new divisor
251 	 * value will not be loaded until the next interrupt. This
252 	 * shouldn't disturb the median frequency (I think ;-) ) as
253 	 * only the value used when switching frequencies is used
254 	 * twice. This shouldn't happen very often.
255 	 */
256 	MFP->mf_tcdr = clk2min + r;
257 
258 	statclock(&frame);
259 }
260 #endif /* STATCLOCK */
261 
262 /*
263  * Returns number of usec since last recorded clock "tick"
264  * (i.e. clock interrupt).
265  */
266 long
267 clkread()
268 {
269 	u_int	delta;
270 	u_char	ipra, tadr;
271 
272 	/*
273 	 * Note: Order is important!
274 	 * By reading 'ipra' before 'tadr' and caching the data, I try to avoid
275 	 * the situation that very low value in 'tadr' is read (== a big delta)
276 	 * while also acccounting for a full 'tick' because the counter went
277 	 * through zero during the calculations.
278 	 */
279 	ipra = MFP->mf_ipra; tadr = MFP->mf_tadr;
280 
281 	delta = ((divisor - tadr) * tick) / divisor;
282 	/*
283 	 * Account for pending clock interrupts
284 	 */
285 	if(ipra & IA_TIMA)
286 		return(delta + tick);
287 	return(delta);
288 }
289 
290 #define TIMB_FREQ	614400
291 #define TIMB_LIMIT	256
292 
293 /*
294  * Wait "n" microseconds.
295  * Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
296  * Note: timer had better have been programmed before this is first used!
297  */
298 void
299 delay(n)
300 int	n;
301 {
302 	int	tick, otick;
303 
304 	/*
305 	 * Read the counter first, so that the rest of the setup overhead is
306 	 * counted.
307 	 */
308 	otick = MFP->mf_tbdr;
309 
310 	/*
311 	 * Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
312 	 * we can take advantage of the intermediate 64-bit quantity to prevent
313 	 * loss of significance.
314 	 */
315 	n -= 5;
316 	if(n < 0)
317 		return;
318 	{
319 	    u_int	temp;
320 
321 	    __asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
322 					       : "d" (TIMB_FREQ), "d" (n));
323 	    __asm __volatile ("divul %1,%2:%0" : "=d" (n)
324 					       : "d"(1000000),"d"(temp),"0"(n));
325 	}
326 
327 	while(n > 0) {
328 		tick = MFP->mf_tbdr;
329 		if(tick > otick)
330 			n -= TIMB_LIMIT - (tick - otick);
331 		else n -= otick - tick;
332 		otick = tick;
333 	}
334 }
335 
336 #ifdef GPROF
337 /*
338  * profclock() is expanded in line in lev6intr() unless profiling kernel.
339  * Assumes it is called with clock interrupts blocked.
340  */
341 profclock(pc, ps)
342 	caddr_t pc;
343 	int ps;
344 {
345 	/*
346 	 * Came from user mode.
347 	 * If this process is being profiled record the tick.
348 	 */
349 	if (USERMODE(ps)) {
350 		if (p->p_stats.p_prof.pr_scale)
351 			addupc(pc, &curproc->p_stats.p_prof, 1);
352 	}
353 	/*
354 	 * Came from kernel (supervisor) mode.
355 	 * If we are profiling the kernel, record the tick.
356 	 */
357 	else if (profiling < 2) {
358 		register int s = pc - s_lowpc;
359 
360 		if (s < s_textsize)
361 			kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
362 	}
363 	/*
364 	 * Kernel profiling was on but has been disabled.
365 	 * Mark as no longer profiling kernel and if all profiling done,
366 	 * disable the clock.
367 	 */
368 	if (profiling && (profon & PRF_KERNEL)) {
369 		profon &= ~PRF_KERNEL;
370 		if (profon == PRF_NONE)
371 			stopprofclock();
372 	}
373 }
374 #endif
375 
376 /***********************************************************************
377  *                   Real Time Clock support                           *
378  ***********************************************************************/
379 
380 u_int mc146818_read(rtc, regno)
381 void	*rtc;
382 u_int	regno;
383 {
384 	((struct rtc *)rtc)->rtc_regno = regno;
385 	return(((struct rtc *)rtc)->rtc_data & 0377);
386 }
387 
388 void mc146818_write(rtc, regno, value)
389 void	*rtc;
390 u_int	regno, value;
391 {
392 	((struct rtc *)rtc)->rtc_regno = regno;
393 	((struct rtc *)rtc)->rtc_data  = value;
394 }
395 
396 /*
397  * Initialize the time of day register, assuming the RTC runs in UTC.
398  * Since we've got the 'rtc' device, this functionality should be removed
399  * from the kernel. The only problem to be solved before that can happen
400  * is the possibility of init(1) providing a way (rc.boot?) to set
401  * the RTC before single-user mode is entered.
402  */
403 void
404 inittodr(base)
405 time_t base;
406 {
407 	/* Battery clock does not store usec's, so forget about it. */
408 	time.tv_sec  = gettod();
409 	time.tv_usec = 0;
410 }
411 
412 /*
413  * Function turned into a No-op. Use /dev/rtc to update the RTC.
414  */
415 void
416 resettodr()
417 {
418 	return;
419 }
420 
421 static u_long
422 gettod()
423 {
424 	int			sps;
425 	mc_todregs		clkregs;
426 	u_int			regb;
427 	struct clock_ymdhms	dt;
428 
429 	sps = splhigh();
430 	regb = mc146818_read(RTC, MC_REGB);
431 	MC146818_GETTOD(RTC, &clkregs);
432 	splx(sps);
433 
434 	regb &= MC_REGB_24HR|MC_REGB_BINARY;
435 	if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
436 		printf("Error: Nonstandard RealTimeClock Configuration -"
437 			" value ignored\n"
438 			"       A write to /dev/rtc will correct this.\n");
439 			return(0);
440 	}
441 	if(clkregs[MC_SEC] > 59)
442 		return(0);
443 	if(clkregs[MC_MIN] > 59)
444 		return(0);
445 	if(clkregs[MC_HOUR] > 23)
446 		return(0);
447 	if(range_test(clkregs[MC_DOM], 1, 31))
448 		return(0);
449 	if (range_test(clkregs[MC_MONTH], 1, 12))
450 		return(0);
451 	if(clkregs[MC_YEAR] > 99)
452 		return(0);
453 
454 	dt.dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
455 	dt.dt_mon  = clkregs[MC_MONTH];
456 	dt.dt_day  = clkregs[MC_DOM];
457 	dt.dt_hour = clkregs[MC_HOUR];
458 	dt.dt_min  = clkregs[MC_MIN];
459 	dt.dt_sec  = clkregs[MC_SEC];
460 
461 	return(clock_ymdhms_to_secs(&dt));
462 }
463 /***********************************************************************
464  *                   RTC-device support				       *
465  ***********************************************************************/
466 int
467 rtcopen(dev, flag, mode, p)
468 	dev_t		dev;
469 	int		flag, mode;
470 	struct proc	*p;
471 {
472 	int			unit = minor(dev);
473 	struct clock_softc	*sc;
474 
475 	if (unit >= clock_cd.cd_ndevs)
476 		return ENXIO;
477 	sc = clock_cd.cd_devs[unit];
478 	if (!sc)
479 		return ENXIO;
480 	if (sc->sc_flags & RTC_OPEN)
481 		return EBUSY;
482 
483 	sc->sc_flags = RTC_OPEN;
484 	return 0;
485 }
486 
487 int
488 rtcclose(dev, flag, mode, p)
489 	dev_t		dev;
490 	int		flag;
491 	int		mode;
492 	struct proc	*p;
493 {
494 	int			unit = minor(dev);
495 	struct clock_softc	*sc = clock_cd.cd_devs[unit];
496 
497 	sc->sc_flags = 0;
498 	return 0;
499 }
500 
501 int
502 rtcread(dev, uio, flags)
503 	dev_t		dev;
504 	struct uio	*uio;
505 	int		flags;
506 {
507 	struct clock_softc	*sc;
508 	mc_todregs		clkregs;
509 	int			s, length;
510 	char			buffer[16];
511 
512 	sc = clock_cd.cd_devs[minor(dev)];
513 
514 	s = splhigh();
515 	MC146818_GETTOD(RTC, &clkregs);
516 	splx(s);
517 
518 	sprintf(buffer, "%4d%02d%02d%02d%02d.%02d\n",
519 	    clkregs[MC_YEAR] + GEMSTARTOFTIME,
520 	    clkregs[MC_MONTH], clkregs[MC_DOM],
521 	    clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);
522 
523 	if (uio->uio_offset > strlen(buffer))
524 		return 0;
525 
526 	length = strlen(buffer) - uio->uio_offset;
527 	if (length > uio->uio_resid)
528 		length = uio->uio_resid;
529 
530 	return(uiomove((caddr_t)buffer, length, uio));
531 }
532 
533 static int
534 twodigits(buffer, pos)
535 	char *buffer;
536 	int pos;
537 {
538 	int result = 0;
539 
540 	if (buffer[pos] >= '0' && buffer[pos] <= '9')
541 		result = (buffer[pos] - '0') * 10;
542 	if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
543 		result += (buffer[pos+1] - '0');
544 	return(result);
545 }
546 
547 int
548 rtcwrite(dev, uio, flags)
549 	dev_t		dev;
550 	struct uio	*uio;
551 	int		flags;
552 {
553 	mc_todregs		clkregs;
554 	int			s, length, error;
555 	char			buffer[16];
556 
557 	/*
558 	 * We require atomic updates!
559 	 */
560 	length = uio->uio_resid;
561 	if (uio->uio_offset || (length != sizeof(buffer)
562 	  && length != sizeof(buffer - 1)))
563 		return(EINVAL);
564 
565 	if ((error = uiomove((caddr_t)buffer, sizeof(buffer), uio)))
566 		return(error);
567 
568 	if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
569 		return(EINVAL);
570 
571 	s = splclock();
572 	mc146818_write(RTC, MC_REGB,
573 		mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
574 	MC146818_GETTOD(RTC, &clkregs);
575 	splx(s);
576 
577 	clkregs[MC_SEC]   = twodigits(buffer, 13);
578 	clkregs[MC_MIN]   = twodigits(buffer, 10);
579 	clkregs[MC_HOUR]  = twodigits(buffer, 8);
580 	clkregs[MC_DOM]   = twodigits(buffer, 6);
581 	clkregs[MC_MONTH] = twodigits(buffer, 4);
582 	s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
583 	clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;
584 
585 	s = splclock();
586 	MC146818_PUTTOD(RTC, &clkregs);
587 	splx(s);
588 
589 	return(0);
590 }
591