xref: /netbsd-src/sys/arch/atari/atari/atari_init.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: atari_init.c,v 1.100 2012/08/10 17:43:32 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Leo Weppelman
5  * Copyright (c) 1994 Michael L. Hitch
6  * Copyright (c) 1993 Markus Wild
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Markus Wild.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: atari_init.c,v 1.100 2012/08/10 17:43:32 tsutsui Exp $");
37 
38 #include "opt_ddb.h"
39 #include "opt_mbtype.h"
40 #include "opt_m060sp.h"
41 #include "opt_m68k_arch.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/ioctl.h>
46 #include <sys/select.h>
47 #include <sys/tty.h>
48 #include <sys/buf.h>
49 #include <sys/msgbuf.h>
50 #include <sys/mbuf.h>
51 #include <sys/extent.h>
52 #include <sys/protosw.h>
53 #include <sys/domain.h>
54 #include <sys/dkbad.h>
55 #include <sys/reboot.h>
56 #include <sys/exec.h>
57 #include <sys/exec_aout.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <machine/vmparam.h>
64 #include <machine/pte.h>
65 #include <machine/cpu.h>
66 #include <machine/iomap.h>
67 #include <machine/mfp.h>
68 #include <machine/scu.h>
69 #include <machine/acia.h>
70 #include <machine/kcore.h>
71 #include <machine/intr.h>
72 
73 #include <m68k/cpu.h>
74 #include <m68k/cacheops.h>
75 
76 #include <atari/atari/stalloc.h>
77 #include <atari/dev/clockvar.h>
78 #include <atari/dev/ym2149reg.h>
79 
80 #include "pci.h"
81 
82 void start_c(int, u_int, u_int, u_int, char *);
83 static void atari_hwinit(void);
84 static void cpu_init_kcorehdr(paddr_t, paddr_t);
85 static void initcpu(void);
86 static void mmu030_setup(paddr_t, u_int, paddr_t, psize_t, paddr_t, paddr_t);
87 static void map_io_areas(paddr_t, psize_t, u_int);
88 static void set_machtype(void);
89 
90 #if defined(M68040) || defined(M68060)
91 static void mmu040_setup(paddr_t, u_int, paddr_t, psize_t, paddr_t, paddr_t);
92 #endif
93 
94 /*
95  * Extent maps to manage all memory space, including I/O ranges.  Allocate
96  * storage for 8 regions in each, initially.  Later, iomem_malloc_safe
97  * will indicate that it's safe to use malloc() to dynamically allocate
98  * region descriptors.
99  * This means that the fixed static storage is only used for registrating
100  * the found memory regions and the bus-mapping of the console.
101  *
102  * The extent maps are not static!  They are used for bus address space
103  * allocation.
104  */
105 static long iomem_ex_storage[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
106 struct extent *iomem_ex;
107 int iomem_malloc_safe;
108 
109 /*
110  * All info needed to generate a panic dump. All fields are setup by
111  * start_c().
112  * XXX: Should sheck usage of phys_segs. There is some unwanted overlap
113  *      here.... Also, the name is badly choosen. Phys_segs contains the
114  *      segment descriptions _after_ reservations are made.
115  * XXX: 'lowram' is obsoleted by the new panicdump format
116  */
117 static cpu_kcore_hdr_t cpu_kcore_hdr;
118 
119 extern u_int 	lowram;
120 int		machineid, mmutype, cputype, astpending;
121 
122 extern char		*esym;
123 extern struct pcb	*curpcb;
124 
125 /*
126  * This is the virtual address of physical page 0. Used by 'do_boot()'.
127  */
128 vaddr_t	page_zero;
129 
130 /*
131  * Crude support for allocation in ST-ram. Currently only used to allocate
132  * video ram.
133  * The physical address is also returned because the video init needs it to
134  * setup the controller at the time the vm-system is not yet operational so
135  * 'kvtop()' cannot be used.
136  */
137 #ifndef ST_POOL_SIZE
138 #define	ST_POOL_SIZE	40			/* XXX: enough? */
139 #endif
140 
141 u_long	st_pool_size = ST_POOL_SIZE * PAGE_SIZE; /* Patchable	*/
142 u_long	st_pool_virt, st_pool_phys;
143 
144 /* I/O address space variables */
145 vaddr_t	stio_addr;		/* Where the st io-area is mapped	*/
146 vaddr_t	pci_conf_addr;		/* KVA base of PCI config space		*/
147 vaddr_t	pci_io_addr;		/* KVA base of PCI io-space		*/
148 vaddr_t	pci_mem_addr;		/* KVA base of PCI mem-space		*/
149 vaddr_t	pci_mem_uncached;	/* KVA base of an uncached PCI mem-page	*/
150 
151 /*
152  * Are we relocating the kernel to TT-Ram if possible? It is faster, but
153  * it is also reported not to work on all TT's. So the default is NO.
154  */
155 #ifndef	RELOC_KERNEL
156 #define	RELOC_KERNEL	0
157 #endif
158 int	reloc_kernel = RELOC_KERNEL;		/* Patchable	*/
159 
160 #define	RELOC_PA(base, pa)	((base) + (pa))	/* used to set up PTE etc. */
161 
162 /*
163  * this is the C-level entry function, it's called from locore.s.
164  * Preconditions:
165  *	Interrupts are disabled
166  *	PA == VA, we don't have to relocate addresses before enabling
167  *		the MMU
168  * 	Exec is no longer available (because we're loaded all over
169  *		low memory, no ExecBase is available anymore)
170  *
171  * It's purpose is:
172  *	Do the things that are done in locore.s in the hp300 version,
173  *		this includes allocation of kernel maps and enabling the MMU.
174  *
175  * Some of the code in here is `stolen' from Amiga MACH, and was
176  * written by Bryan Ford and Niklas Hallqvist.
177  *
178  * Very crude 68040 support by Michael L. Hitch.
179  */
180 int kernel_copyback = 1;
181 
182 void
183 start_c(int id, u_int ttphystart, u_int ttphysize, u_int stphysize,
184     char *esym_addr)
185 	/* id:			 Machine id			*/
186 	/* ttphystart, ttphysize: Start address and size of TT-ram */
187 	/* stphysize:		 Size of ST-ram 		*/
188 	/* esym_addr:		 Address of kernel '_esym' symbol */
189 {
190 	extern char	end[];
191 	extern void	etext(void);
192 	extern u_long	protorp[2];
193 	paddr_t		pstart;		/* Next available physical address */
194 	vaddr_t		vstart;		/* Next available virtual address */
195 	vsize_t		avail;
196 	paddr_t		ptpa;
197 	psize_t		ptsize;
198 	u_int		ptextra;
199 	vaddr_t		kva;
200 	u_int		tc, i;
201 	pt_entry_t	*pg, *epg;
202 	pt_entry_t	pg_proto;
203 	vaddr_t		end_loaded;
204 	paddr_t		kbase;
205 	u_int		kstsize;
206 	paddr_t		Sysptmap_pa;
207 
208 #if defined(_MILANHW_)
209 	/* XXX
210 	 * XXX The right place todo this is probably the booter (Leo)
211 	 * XXX More than 16MB memory is not yet supported on the Milan!
212 	 * The Milan Lies about the presence of TT-RAM. If you insert
213 	 * 16MB it is split in 14MB ST starting at address 0 and 2MB TT RAM,
214 	 * starting at address 16MB.
215 	 */
216 	stphysize += ttphysize;
217 	ttphysize  = ttphystart = 0;
218 #endif
219 	boot_segs[0].start       = 0;
220 	boot_segs[0].end         = stphysize;
221 	boot_segs[1].start       = ttphystart;
222 	boot_segs[1].end         = ttphystart + ttphysize;
223 	boot_segs[2].start = boot_segs[2].end = 0; /* End of segments! */
224 
225 	/*
226 	 * The following is a hack. We do not know how much ST memory we
227 	 * really need until after configuration has finished. At this
228 	 * time I have no idea how to grab ST memory at that time.
229 	 * The round_page() call is ment to correct errors made by
230 	 * binpatching!
231 	 */
232 	st_pool_size   = m68k_round_page(st_pool_size);
233 	st_pool_phys   = stphysize - st_pool_size;
234 	stphysize      = st_pool_phys;
235 
236 	physmem        = btoc(stphysize) + btoc(ttphysize);
237 	machineid      = id;
238 	esym           = esym_addr;
239 
240 	/*
241 	 * the kernel ends at end() or esym.
242 	 */
243 	if (esym == NULL)
244 		end_loaded = (vaddr_t)&end;
245 	else
246 		end_loaded = (vaddr_t)esym;
247 
248 	/*
249 	 * If we have enough fast-memory to put the kernel in and the
250 	 * RELOC_KERNEL option is set, do it!
251 	 */
252 	if ((reloc_kernel != 0) && (ttphysize >= end_loaded))
253 		kbase = ttphystart;
254 	else
255 		kbase = 0;
256 
257 	/*
258 	 * Determine the type of machine we are running on. This needs
259 	 * to be done early (and before initcpu())!
260 	 */
261 	set_machtype();
262 
263 	/*
264 	 * Initialize CPU specific stuff
265 	 */
266 	initcpu();
267 
268 	/*
269 	 * We run the kernel from ST memory at the moment.
270 	 * The kernel segment table is put just behind the loaded image.
271 	 * pstart: start of usable ST memory
272 	 * avail : size of ST memory available.
273 	 */
274 	vstart = (vaddr_t)end_loaded;
275 	vstart = m68k_round_page(vstart);
276 	pstart = (paddr_t)vstart;	/* pre-reloc PA == kernel VA here */
277 	avail  = stphysize - pstart;
278 
279 	/*
280 	 * Save KVA of lwp0 uarea and allocate it.
281 	 */
282 	lwp0uarea  = vstart;
283 	pstart    += USPACE;
284 	vstart    += USPACE;
285 	avail     -= USPACE;
286 
287 	/*
288 	 * Calculate the number of pages needed for Sysseg.
289 	 * For the 68030, we need 256 descriptors (segment-table-entries).
290 	 * This easily fits into one page.
291 	 * For the 68040, both the level-1 and level-2 descriptors are
292 	 * stored into Sysseg. We currently handle a maximum sum of MAXKL2SIZE
293 	 * level-1 & level-2 tables.
294 	 */
295 #if defined(M68040) || defined(M68060)
296 	if (mmutype == MMU_68040)
297 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
298 	else
299 #endif
300 		kstsize = 1;
301 	/*
302 	 * allocate the kernel segment table
303 	 */
304 	Sysseg_pa  = pstart;			/* pre-reloc PA to init STEs */
305 	Sysseg     = (st_entry_t *)vstart;
306 	pstart    += kstsize * PAGE_SIZE;
307 	vstart    += kstsize * PAGE_SIZE;
308 	avail     -= kstsize * PAGE_SIZE;
309 
310 	/*
311 	 * allocate kernel page table map
312 	 */
313 	Sysptmap_pa = pstart;			/* pre-reloc PA to init PTEs */
314 	Sysptmap = (pt_entry_t *)vstart;
315 	pstart  += PAGE_SIZE;
316 	vstart  += PAGE_SIZE;
317 	avail   -= PAGE_SIZE;
318 
319 	/*
320 	 * Determine the number of pte's we need for extra's like
321 	 * ST I/O map's.
322 	 */
323 	ptextra = btoc(STIO_SIZE);
324 
325 	/*
326 	 * If present, add pci areas
327 	 */
328 	if (machineid & ATARI_HADES)
329 		ptextra += btoc(PCI_CONFIG_SIZE + PCI_IO_SIZE + PCI_MEM_SIZE);
330 	if (machineid & ATARI_MILAN)
331 		ptextra += btoc(PCI_IO_SIZE + PCI_MEM_SIZE);
332 	ptextra += btoc(BOOTM_VA_POOL);
333 	/*
334 	 * now need to account for the kmem area, which is allocated
335 	 * before pmap_init() is called.  It is roughly the size of physical
336 	 * memory.
337 	 */
338 	ptextra += physmem;
339 
340 	/*
341 	 * The 'pt' (the initial kernel pagetable) has to map the kernel and
342 	 * the I/O areas. The various I/O areas are mapped (virtually) at
343 	 * the top of the address space mapped by 'pt' (ie. just below Sysmap).
344 	 */
345 	ptpa	= pstart;			/* pre-reloc PA to init PTEs */
346 	ptsize  = (Sysptsize + howmany(ptextra, NPTEPG)) << PGSHIFT;
347 	pstart += ptsize;
348 	vstart += ptsize;
349 	avail  -= ptsize;
350 
351 	/*
352 	 * Sysmap is now placed at the end of Supervisor virtual address space.
353 	 */
354 	Sysmap = (pt_entry_t *)SYSMAP_VA;
355 
356 	/*
357 	 * Initialize segment tables
358 	 */
359 #if defined(M68040) || defined(M68060)
360 	if (mmutype == MMU_68040)
361 		mmu040_setup(Sysseg_pa, kstsize, ptpa, ptsize, Sysptmap_pa,
362 		    kbase);
363 	else
364 #endif /* defined(M68040) || defined(M68060) */
365 		mmu030_setup(Sysseg_pa, kstsize, ptpa, ptsize, Sysptmap_pa,
366 		    kbase);
367 
368 	/*
369 	 * initialize kernel page table page(s).
370 	 * Assume load at VA 0.
371 	 * - Text pages are RO
372 	 * - Page zero is invalid
373 	 */
374 	pg_proto = RELOC_PA(kbase, 0) | PG_RO | PG_V;
375 	pg       = (pt_entry_t *)ptpa;
376 	*pg++    = PG_NV;
377 
378 	pg_proto += PAGE_SIZE;
379 	for (kva = PAGE_SIZE; kva < (vaddr_t)etext; kva += PAGE_SIZE) {
380 		*pg++ = pg_proto;
381 		pg_proto += PAGE_SIZE;
382 	}
383 
384 	/*
385 	 * data, bss and dynamic tables are read/write
386 	 */
387 	pg_proto = (pg_proto & PG_FRAME) | PG_RW | PG_V;
388 
389 #if defined(M68040) || defined(M68060)
390 	/*
391 	 * Map the kernel segment table cache invalidated for 68040/68060.
392 	 * (for the 68040 not strictly necessary, but recommended by Motorola;
393 	 *  for the 68060 mandatory)
394 	 */
395 	if (mmutype == MMU_68040) {
396 
397 		if (kernel_copyback)
398 			pg_proto |= PG_CCB;
399 
400 		for (; kva < (vaddr_t)Sysseg; kva += PAGE_SIZE) {
401 			*pg++ = pg_proto;
402 			pg_proto += PAGE_SIZE;
403 		}
404 
405 		pg_proto = (pg_proto & ~PG_CCB) | PG_CI;
406 		for (; kva < (vaddr_t)Sysptmap; kva += PAGE_SIZE) {
407 			*pg++ = pg_proto;
408 			pg_proto += PAGE_SIZE;
409 		}
410 
411 		pg_proto = (pg_proto & ~PG_CI);
412 		if (kernel_copyback)
413 			pg_proto |= PG_CCB;
414 	}
415 #endif /* defined(M68040) || defined(M68060) */
416 
417 	/*
418 	 * go till end of data allocated so far
419 	 * plus lwp0 u-area (to be allocated)
420 	 */
421 	for (; kva < vstart; kva += PAGE_SIZE) {
422 		*pg++ = pg_proto;
423 		pg_proto += PAGE_SIZE;
424 	}
425 
426 	/*
427 	 * invalidate remainder of kernel PT
428 	 */
429 	epg = (pt_entry_t *)ptpa;
430 	epg = &epg[ptsize / sizeof(pt_entry_t)];
431 	while (pg < epg)
432 		*pg++ = PG_NV;
433 
434 	/*
435 	 * Map various I/O areas
436 	 */
437 	map_io_areas(ptpa, ptsize, ptextra);
438 
439 	/*
440 	 * Map the allocated space in ST-ram now. In the contig-case, there
441 	 * is no need to make a distinction between virtual and physical
442 	 * addresses. But I make it anyway to be prepared.
443 	 * Physcal space is already reserved!
444 	 */
445 	st_pool_virt = vstart;
446 	pg           = (pt_entry_t *)ptpa;
447 	pg           = &pg[vstart / PAGE_SIZE];
448 	pg_proto     = st_pool_phys | PG_RW | PG_CI | PG_V;
449 	vstart      += st_pool_size;
450 	while (pg_proto < (st_pool_phys + st_pool_size)) {
451 		*pg++     = pg_proto;
452 		pg_proto += PAGE_SIZE;
453 	}
454 
455 	/*
456 	 * Map physical page_zero and page-zero+1 (First ST-ram page). We need
457 	 * to reference it in the reboot code. Two pages are mapped, because
458 	 * we must make sure 'doboot()' is contained in it (see the tricky
459 	 * copying there....).
460 	 */
461 	page_zero  = vstart;
462 	pg         = (pt_entry_t *)ptpa;
463 	pg         = &pg[vstart / PAGE_SIZE];
464 	*pg++      = PG_RW | PG_CI | PG_V;
465 	vstart    += PAGE_SIZE;
466 	*pg        = PG_RW | PG_CI | PG_V | PAGE_SIZE;
467 	vstart    += PAGE_SIZE;
468 
469 	/*
470 	 * All necessary STEs and PTEs have been initialized.
471 	 * Update Sysseg_pa and Sysptmap_pa to point relocated PA.
472 	 */
473 	if (kbase) {
474 		Sysseg_pa   += kbase;
475 		Sysptmap_pa += kbase;
476 	}
477 
478 	lowram  = 0 >> PGSHIFT; /* XXX */
479 
480 	/*
481 	 * Fill in usable segments. The page indexes will be initialized
482 	 * later when all reservations are made.
483 	 */
484 	usable_segs[0].start = 0;
485 	usable_segs[0].end   = stphysize;
486 	usable_segs[0].free_list = VM_FREELIST_STRAM;
487 	usable_segs[1].start = ttphystart;
488 	usable_segs[1].end   = ttphystart + ttphysize;
489 	usable_segs[1].free_list = VM_FREELIST_TTRAM;
490 	usable_segs[2].start = usable_segs[2].end = 0; /* End of segments! */
491 
492 	if (kbase) {
493 		/*
494 		 * First page of ST-ram is unusable, reserve the space
495 		 * for the kernel in the TT-ram segment.
496 		 * Note: Because physical page-zero is partially mapped to ROM
497 		 *       by hardware, it is unusable.
498 		 */
499 		usable_segs[0].start  = PAGE_SIZE;
500 		usable_segs[1].start += pstart;
501 	} else
502 		usable_segs[0].start += pstart;
503 
504 	/*
505 	 * As all segment sizes are now valid, calculate page indexes and
506 	 * available physical memory.
507 	 */
508 	usable_segs[0].first_page = 0;
509 	for (i = 1; usable_segs[i].start; i++) {
510 		usable_segs[i].first_page  = usable_segs[i-1].first_page;
511 		usable_segs[i].first_page +=
512 		    (usable_segs[i-1].end - usable_segs[i-1].start) / PAGE_SIZE;
513 	}
514 	for (i = 0, physmem = 0; usable_segs[i].start; i++)
515 		physmem += usable_segs[i].end - usable_segs[i].start;
516 	physmem >>= PGSHIFT;
517 
518 	/*
519 	 * get the pmap module in sync with reality.
520 	 */
521 	pmap_bootstrap(vstart);
522 
523 	/*
524 	 * Prepare to enable the MMU.
525 	 * Setup and load SRP nolimit, share global, 4 byte PTE's
526 	 */
527 	protorp[0] = 0x80000202;
528 	protorp[1] = Sysseg_pa;			/* + segtable address */
529 
530 	cpu_init_kcorehdr(kbase, Sysseg_pa);
531 
532 	/*
533 	 * copy over the kernel (and all now initialized variables)
534 	 * to fastram.  DONT use bcopy(), this beast is much larger
535 	 * than 128k !
536 	 */
537 	if (kbase) {
538 		register paddr_t *lp, *le, *fp;
539 
540 		lp = (paddr_t *)0;
541 		le = (paddr_t *)pstart;
542 		fp = (paddr_t *)kbase;
543 		while (lp < le)
544 			*fp++ = *lp++;
545 	}
546 #if defined(M68040) || defined(M68060)
547 	if (mmutype == MMU_68040) {
548 		/*
549 		 * movel Sysseg_pa,a0;
550 		 * movec a0,SRP;
551 		 * pflusha;
552 		 * movel #$0xc000,d0;
553 		 * movec d0,TC
554 		 */
555 		if (cputype == CPU_68060) {
556 			/* XXX: Need the branch cache be cleared? */
557 			__asm volatile (".word 0x4e7a,0x0002;"
558 				      "orl #0x400000,%%d0;"
559 				      ".word 0x4e7b,0x0002" : : : "d0");
560 		}
561 		__asm volatile ("movel %0,%%a0;"
562 			      ".word 0x4e7b,0x8807" : : "a" (Sysseg_pa) : "a0");
563 		__asm volatile (".word 0xf518" : : );
564 		__asm volatile ("movel #0xc000,%%d0;"
565 			      ".word 0x4e7b,0x0003" : : : "d0" );
566 	} else
567 #endif
568 	{
569 		__asm volatile ("pmove %0@,%%srp" : : "a" (&protorp[0]));
570 		/*
571 		 * setup and load TC register.
572 		 * enable_cpr, enable_srp, pagesize=8k,
573 		 * A = 8 bits, B = 11 bits
574 		 */
575 		tc = 0x82d08b00;
576 		__asm volatile ("pflusha" : : );
577 		__asm volatile ("pmove %0@,%%tc" : : "a" (&tc));
578 	}
579 
580 	/*
581 	 * Initialize the "u-area" pages etc.
582 	 */
583 	pmap_bootstrap_finalize();
584 
585 	/*
586 	 * Get the hardware into a defined state
587 	 */
588 	atari_hwinit();
589 
590 	/*
591 	 * Initialize stmem allocator
592 	 */
593 	init_stmem();
594 
595 	/*
596 	 * Initialize the I/O mem extent map.
597 	 * Note: we don't have to check the return value since
598 	 * creation of a fixed extent map will never fail (since
599 	 * descriptor storage has already been allocated).
600 	 *
601 	 * N.B. The iomem extent manages _all_ physical addresses
602 	 * on the machine.  When the amount of RAM is found, all
603 	 * extents of RAM are allocated from the map.
604 	 */
605 	iomem_ex = extent_create("iomem", 0x0, 0xffffffff,
606 	    (void *)iomem_ex_storage, sizeof(iomem_ex_storage),
607 	    EX_NOCOALESCE|EX_NOWAIT);
608 
609 	/*
610 	 * Allocate the physical RAM from the extent map
611 	 */
612 	for (i = 0; boot_segs[i].end != 0; i++) {
613 		if (extent_alloc_region(iomem_ex, boot_segs[i].start,
614 		    boot_segs[i].end - boot_segs[i].start, EX_NOWAIT)) {
615 			/* XXX: Ahum, should not happen ;-) */
616 			printf("Warning: Cannot allocate boot memory from"
617 			    " extent map!?\n");
618 		}
619 	}
620 
621 	/*
622 	 * Initialize interrupt mapping.
623 	 */
624 	intr_init();
625 }
626 
627 /*
628  * Try to figure out on what type of machine we are running
629  * Note: This module runs *before* the io-mapping is setup!
630  */
631 static void
632 set_machtype(void)
633 {
634 
635 #ifdef _MILANHW_
636 	machineid |= ATARI_MILAN;
637 
638 #else
639 	stio_addr = 0xff8000;	/* XXX: For TT & Falcon only */
640 	if (badbaddr((void *)__UNVOLATILE(&MFP2->mf_gpip), sizeof(char))) {
641 		/*
642 		 * Watch out! We can also have a Hades with < 16Mb
643 		 * RAM here...
644 		 */
645 		if (!badbaddr((void *)__UNVOLATILE(&MFP->mf_gpip),
646 		    sizeof(char))) {
647 			machineid |= ATARI_FALCON;
648 			return;
649 		}
650 	}
651 	if (!badbaddr((void *)(PCI_CONFB_PHYS + PCI_CONFM_PHYS), sizeof(char)))
652 		machineid |= ATARI_HADES;
653 	else
654 		machineid |= ATARI_TT;
655 #endif /* _MILANHW_ */
656 }
657 
658 static void
659 atari_hwinit(void)
660 {
661 
662 #if defined(_ATARIHW_)
663 	/*
664 	 * Initialize the sound chip
665 	 */
666 	ym2149_init();
667 
668 	/*
669 	 * Make sure that the midi acia will not generate an interrupt
670 	 * unless something attaches to it. We cannot do this for the
671 	 * keyboard acia because this breaks the '-d' option of the
672 	 * booter...
673 	 */
674 	MDI->ac_cs = 0;
675 #endif /* defined(_ATARIHW_) */
676 
677 	/*
678 	 * Initialize both MFP chips (if both present!) to generate
679 	 * auto-vectored interrupts with EOI. The active-edge registers are
680 	 * set up. The interrupt enable registers are set to disable all
681 	 * interrupts.
682 	 */
683 	MFP->mf_iera  = MFP->mf_ierb = 0;
684 	MFP->mf_imra  = MFP->mf_imrb = 0;
685 	MFP->mf_aer   = MFP->mf_ddr  = 0;
686 	MFP->mf_vr    = 0x40;
687 
688 #if defined(_ATARIHW_)
689 	if (machineid & (ATARI_TT|ATARI_HADES)) {
690 		MFP2->mf_iera = MFP2->mf_ierb = 0;
691 		MFP2->mf_imra = MFP2->mf_imrb = 0;
692 		MFP2->mf_aer  = 0x80;
693 		MFP2->mf_vr   = 0x50;
694 	}
695 
696 	if (machineid & ATARI_TT) {
697 		/*
698 		 * Initialize the SCU, to enable interrupts on the SCC (ipl5),
699 		 * MFP (ipl6) and softints (ipl1).
700 		 */
701 		SCU->sys_mask = SCU_SYS_SOFT;
702 		SCU->vme_mask = SCU_MFP | SCU_SCC;
703 #ifdef DDB
704 		/*
705 		 * This allows people with the correct hardware modification
706 		 * to drop into the debugger from an NMI.
707 		 */
708 		SCU->sys_mask |= SCU_IRQ7;
709 #endif
710 	}
711 #endif /* defined(_ATARIHW_) */
712 
713 	/*
714 	 * Initialize a timer for delay(9).
715 	 */
716 	init_delay();
717 
718 #if NPCI > 0
719 	if (machineid & (ATARI_HADES|ATARI_MILAN)) {
720 		/*
721 		 * Configure PCI-bus
722 		 */
723 		init_pci_bus();
724 	}
725 #endif
726 
727 }
728 
729 /*
730  * Do the dull work of mapping the various I/O areas. They MUST be Cache
731  * inhibited!
732  * All I/O areas are virtually mapped at the end of the pt-table.
733  */
734 static void
735 map_io_areas(paddr_t ptpa, psize_t ptsize, u_int ptextra)
736 	/* ptsize:	 Size of 'pt' in bytes		*/
737 	/* ptextra:	 #of additional I/O pte's	*/
738 {
739 	extern void	bootm_init(vaddr_t, pt_entry_t *, u_long);
740 	vaddr_t		ioaddr;
741 	pt_entry_t	*pt, *pg, *epg;
742 	pt_entry_t	pg_proto;
743 	u_long		mask;
744 
745 	pt = (pt_entry_t *)ptpa;
746 	ioaddr = ((ptsize / sizeof(pt_entry_t)) - ptextra) * PAGE_SIZE;
747 
748 	/*
749 	 * Map ST-IO area
750 	 */
751 	stio_addr = ioaddr;
752 	ioaddr   += STIO_SIZE;
753 	pg        = &pt[stio_addr / PAGE_SIZE];
754 	epg       = &pg[btoc(STIO_SIZE)];
755 #ifdef _MILANHW_
756 	/*
757 	 * Turn on byte swaps in the ST I/O area. On the Milan, the
758 	 * U0 signal of the MMU controls the BigEndian signal
759 	 * of the PLX9080. We use this setting so we can read/write the
760 	 * PLX registers (and PCI-config space) in big-endian mode.
761 	 */
762 	pg_proto  = STIO_PHYS | PG_RW | PG_CI | PG_V | 0x100;
763 #else
764 	pg_proto  = STIO_PHYS | PG_RW | PG_CI | PG_V;
765 #endif
766 	while (pg < epg) {
767 		*pg++     = pg_proto;
768 		pg_proto += PAGE_SIZE;
769 	}
770 
771 	/*
772 	 * Map PCI areas
773 	 */
774 	if (machineid & ATARI_HADES) {
775 		/*
776 		 * Only Hades maps the PCI-config space!
777 		 */
778 		pci_conf_addr = ioaddr;
779 		ioaddr       += PCI_CONFIG_SIZE;
780 		pg            = &pt[pci_conf_addr / PAGE_SIZE];
781 		epg           = &pg[btoc(PCI_CONFIG_SIZE)];
782 		mask          = PCI_CONFM_PHYS;
783 		pg_proto      = PCI_CONFB_PHYS | PG_RW | PG_CI | PG_V;
784 		for (; pg < epg; mask <<= 1)
785 			*pg++ = pg_proto | mask;
786 	} else
787 		pci_conf_addr = 0; /* XXX: should crash */
788 
789 	if (machineid & (ATARI_HADES|ATARI_MILAN)) {
790 		pci_io_addr   = ioaddr;
791 		ioaddr       += PCI_IO_SIZE;
792 		pg	      = &pt[pci_io_addr / PAGE_SIZE];
793 		epg           = &pg[btoc(PCI_IO_SIZE)];
794 		pg_proto      = PCI_IO_PHYS | PG_RW | PG_CI | PG_V;
795 		while (pg < epg) {
796 			*pg++     = pg_proto;
797 			pg_proto += PAGE_SIZE;
798 		}
799 
800 		pci_mem_addr  = ioaddr;
801 		/* Provide an uncached PCI address for the MILAN */
802 		pci_mem_uncached = ioaddr;
803 		ioaddr       += PCI_MEM_SIZE;
804 		epg           = &pg[btoc(PCI_MEM_SIZE)];
805 		pg_proto      = PCI_VGA_PHYS | PG_RW | PG_CI | PG_V;
806 		while (pg < epg) {
807 			*pg++     = pg_proto;
808 			pg_proto += PAGE_SIZE;
809 		}
810 	}
811 
812 	bootm_init(ioaddr, pg, BOOTM_VA_POOL);
813 	/*
814 	 * ioaddr += BOOTM_VA_POOL;
815 	 * pg = &pg[btoc(BOOTM_VA_POOL)];
816 	 */
817 }
818 
819 /*
820  * Used by dumpconf() to get the size of the machine-dependent panic-dump
821  * header in disk blocks.
822  */
823 
824 #define CHDRSIZE (ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)))
825 #define MDHDRSIZE roundup(CHDRSIZE, dbtob(1))
826 
827 int
828 cpu_dumpsize(void)
829 {
830 
831 	return btodb(MDHDRSIZE);
832 }
833 
834 /*
835  * Called by dumpsys() to dump the machine-dependent header.
836  * XXX: Assumes that it will all fit in one diskblock.
837  */
838 int
839 cpu_dump(int (*dump)(dev_t, daddr_t, void *, size_t), daddr_t *p_blkno)
840 {
841 	int		buf[MDHDRSIZE/sizeof(int)];
842 	int		error;
843 	kcore_seg_t	*kseg_p;
844 	cpu_kcore_hdr_t	*chdr_p;
845 
846 	kseg_p = (kcore_seg_t *)buf;
847 	chdr_p = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*kseg_p)) / sizeof(int)];
848 
849 	/*
850 	 * Generate a segment header
851 	 */
852 	CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
853 	kseg_p->c_size = MDHDRSIZE - ALIGN(sizeof(*kseg_p));
854 
855 	/*
856 	 * Add the md header
857 	 */
858 	*chdr_p = cpu_kcore_hdr;
859 	error = dump(dumpdev, *p_blkno, (void *)buf, sizeof(buf));
860 	*p_blkno += btodb(sizeof(buf));
861 	return (error);
862 }
863 
864 #if (M68K_NPHYS_RAM_SEGS < NMEM_SEGS)
865 #error "Configuration error: M68K_NPHYS_RAM_SEGS < NMEM_SEGS"
866 #endif
867 /*
868  * Initialize the cpu_kcore_header.
869  */
870 static void
871 cpu_init_kcorehdr(paddr_t kbase, paddr_t sysseg_pa)
872 {
873 	cpu_kcore_hdr_t *h = &cpu_kcore_hdr;
874 	struct m68k_kcore_hdr *m = &h->un._m68k;
875 	extern char end[];
876 	int i;
877 
878 	memset(&cpu_kcore_hdr, 0, sizeof(cpu_kcore_hdr));
879 
880 	/*
881 	 * Initialize the `dispatcher' portion of the header.
882 	 */
883 	strcpy(h->name, machine);
884 	h->page_size = PAGE_SIZE;
885 	h->kernbase = KERNBASE;
886 
887 	/*
888 	 * Fill in information about our MMU configuration.
889 	 */
890 	m->mmutype	= mmutype;
891 	m->sg_v		= SG_V;
892 	m->sg_frame	= SG_FRAME;
893 	m->sg_ishift	= SG_ISHIFT;
894 	m->sg_pmask	= SG_PMASK;
895 	m->sg40_shift1	= SG4_SHIFT1;
896 	m->sg40_mask2	= SG4_MASK2;
897 	m->sg40_shift2	= SG4_SHIFT2;
898 	m->sg40_mask3	= SG4_MASK3;
899 	m->sg40_shift3	= SG4_SHIFT3;
900 	m->sg40_addr1	= SG4_ADDR1;
901 	m->sg40_addr2	= SG4_ADDR2;
902 	m->pg_v		= PG_V;
903 	m->pg_frame	= PG_FRAME;
904 
905 	/*
906 	 * Initialize pointer to kernel segment table.
907 	 */
908 	m->sysseg_pa = sysseg_pa;		/* PA after relocation */
909 
910 	/*
911 	 * Initialize relocation value such that:
912 	 *
913 	 *	pa = (va - KERNBASE) + reloc
914 	 */
915 	m->reloc = kbase;
916 
917 	/*
918 	 * Define the end of the relocatable range.
919 	 */
920 	m->relocend = (vaddr_t)end;
921 
922 	for (i = 0; i < NMEM_SEGS; i++) {
923 		m->ram_segs[i].start = boot_segs[i].start;
924 		m->ram_segs[i].size  = boot_segs[i].end -
925 		    boot_segs[i].start;
926 	}
927 }
928 
929 void
930 mmu030_setup(paddr_t sysseg_pa, u_int kstsize, paddr_t ptpa, psize_t ptsize,
931     paddr_t sysptmap_pa, paddr_t kbase)
932 	/* sysseg_pa:	 System segment table		*/
933 	/* kstsize:	 size of 'sysseg' in pages	*/
934 	/* ptpa:	 Kernel page table		*/
935 	/* ptsize:	 size	of 'pt' in bytes	*/
936 	/* sysptmap_pa:	 System page table		*/
937 {
938 	st_entry_t	sg_proto, *sg, *esg;
939 	pt_entry_t	pg_proto, *pg, *epg;
940 
941 	/*
942 	 * Map the page table pages in both the HW segment table
943 	 * and the software Sysptmap.
944 	 */
945 	sg  = (st_entry_t *)sysseg_pa;
946 	pg  = (pt_entry_t *)sysptmap_pa;
947 	epg = &pg[ptsize >> PGSHIFT];
948 	sg_proto = RELOC_PA(kbase, ptpa) | SG_RW | SG_V;
949 	pg_proto = RELOC_PA(kbase, ptpa) | PG_RW | PG_CI | PG_V;
950 	while (pg < epg) {
951 		*sg++ = sg_proto;
952 		*pg++ = pg_proto;
953 		sg_proto += PAGE_SIZE;
954 		pg_proto += PAGE_SIZE;
955 	}
956 
957 	/*
958 	 * Invalidate the remainder of the tables.
959 	 */
960 	esg = (st_entry_t *)sysseg_pa;
961 	esg = &esg[TIA_SIZE];
962 	while (sg < esg)
963 		*sg++ = SG_NV;
964 	epg = (pt_entry_t *)sysptmap_pa;
965 	epg = &epg[TIB_SIZE];
966 	while (pg < epg)
967 		*pg++ = PG_NV;
968 
969 	/*
970 	 * Initialize the PTE for the last one to point Sysptmap.
971 	 */
972 	sg = (st_entry_t *)sysseg_pa;
973 	sg = &sg[SYSMAP_VA >> SEGSHIFT];
974 	pg = (pt_entry_t *)sysptmap_pa;
975 	pg = &pg[SYSMAP_VA >> SEGSHIFT];
976 	*sg = RELOC_PA(kbase, sysptmap_pa) | SG_RW | SG_V;
977 	*pg = RELOC_PA(kbase, sysptmap_pa) | PG_RW | PG_CI | PG_V;
978 }
979 
980 #if defined(M68040) || defined(M68060)
981 void
982 mmu040_setup(paddr_t sysseg_pa, u_int kstsize, paddr_t ptpa, psize_t ptsize,
983     paddr_t sysptmap_pa, paddr_t kbase)
984 	/* sysseg_pa:	 System segment table		*/
985 	/* kstsize:	 size of 'sysseg' in pages	*/
986 	/* ptpa:	 Kernel page table		*/
987 	/* ptsize:	 size	of 'pt' in bytes	*/
988 	/* sysptmap_pa:	 System page table		*/
989 {
990 	int		nl1desc, nl2desc, i;
991 	st_entry_t	sg_proto, *sg, *esg;
992 	pt_entry_t	pg_proto, *pg, *epg;
993 
994 	/*
995 	 * First invalidate the entire "segment table" pages
996 	 * (levels 1 and 2 have the same "invalid" values).
997 	 */
998 	sg  = (st_entry_t *)sysseg_pa;
999 	esg = &sg[kstsize * NPTEPG];
1000 	while (sg < esg)
1001 		*sg++ = SG_NV;
1002 
1003 	/*
1004 	 * Initialize level 2 descriptors (which immediately
1005 	 * follow the level 1 table).
1006 	 * We need:
1007 	 *	NPTEPG / SG4_LEV3SIZE
1008 	 * level 2 descriptors to map each of the nptpages
1009 	 * pages of PTEs.  Note that we set the "used" bit
1010 	 * now to save the HW the expense of doing it.
1011 	 */
1012 	nl2desc = (ptsize >> PGSHIFT) * (NPTEPG / SG4_LEV3SIZE);
1013 	sg  = (st_entry_t *)sysseg_pa;
1014 	sg  = &sg[SG4_LEV1SIZE];
1015 	esg = &sg[nl2desc];
1016 	sg_proto = RELOC_PA(kbase, ptpa) | SG_U | SG_RW | SG_V;
1017 	while (sg < esg) {
1018 		*sg++     = sg_proto;
1019 		sg_proto += (SG4_LEV3SIZE * sizeof(st_entry_t));
1020 	}
1021 
1022 	/*
1023 	 * Initialize level 1 descriptors.  We need:
1024 	 *	howmany(nl2desc, SG4_LEV2SIZE)
1025 	 * level 1 descriptors to map the 'nl2desc' level 2's.
1026 	 */
1027 	nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
1028 	sg  = (st_entry_t *)sysseg_pa;
1029 	esg = &sg[nl1desc];
1030 	sg_proto = RELOC_PA(kbase, (paddr_t)&sg[SG4_LEV1SIZE])
1031 	    | SG_U | SG_RW | SG_V;
1032 	while (sg < esg) {
1033 		*sg++     = sg_proto;
1034 		sg_proto += (SG4_LEV2SIZE * sizeof(st_entry_t));
1035 	}
1036 
1037 	/* Sysmap is last entry in level 1 */
1038 	sg  = (st_entry_t *)sysseg_pa;
1039 	sg  = &sg[SG4_LEV1SIZE - 1];
1040 	*sg = sg_proto;
1041 
1042 	/*
1043 	 * Kernel segment table at end of next level 2 table
1044 	 */
1045 	i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE);
1046 	sg  = (st_entry_t *)sysseg_pa;
1047 	sg  = &sg[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE)];
1048 	esg = &sg[NPTEPG / SG4_LEV3SIZE];
1049 	sg_proto = RELOC_PA(kbase, sysptmap_pa) | SG_U | SG_RW | SG_V;
1050 	while (sg < esg) {
1051 		*sg++ = sg_proto;
1052 		sg_proto += (SG4_LEV3SIZE * sizeof(st_entry_t));
1053 	}
1054 
1055 	/* Include additional level 2 table for Sysmap in protostfree */
1056 	protostfree = (~0 << (1 + nl1desc + 1)) /* & ~(~0 << MAXKL2SIZE) */;
1057 
1058 	/*
1059 	 * Initialize Sysptmap
1060 	 */
1061 	pg  = (pt_entry_t *)sysptmap_pa;
1062 	epg = &pg[ptsize >> PGSHIFT];
1063 	pg_proto = RELOC_PA(kbase, ptpa) | PG_RW | PG_CI | PG_V;
1064 	while (pg < epg) {
1065 		*pg++ = pg_proto;
1066 		pg_proto += PAGE_SIZE;
1067 	}
1068 
1069 	/*
1070 	 * Invalidate rest of Sysptmap page.
1071 	 */
1072 	epg = (pt_entry_t *)sysptmap_pa;
1073 	epg = &epg[TIB_SIZE];
1074 	while (pg < epg)
1075 		*pg++ = PG_NV;
1076 
1077 	/*
1078 	 * Initialize the PTE for the last one to point Sysptmap.
1079 	 */
1080 	pg = (pt_entry_t *)sysptmap_pa;
1081 	pg = &pg[SYSMAP_VA >> SEGSHIFT];
1082 	*pg = RELOC_PA(kbase, sysptmap_pa) | PG_RW | PG_CI | PG_V;
1083 }
1084 #endif /* M68040 */
1085 
1086 #if defined(M68060)
1087 int m68060_pcr_init = 0x21;	/* make this patchable */
1088 #endif
1089 
1090 static void
1091 initcpu(void)
1092 {
1093 	typedef void trapfun(void);
1094 
1095 	switch (cputype) {
1096 
1097 #if defined(M68060)
1098 	case CPU_68060:
1099 		{
1100 			extern trapfun	*vectab[256];
1101 			extern trapfun	buserr60, addrerr4060, fpfault;
1102 #if defined(M060SP)
1103 			extern u_int8_t FP_CALL_TOP[], I_CALL_TOP[];
1104 #else
1105 			extern trapfun illinst;
1106 #endif
1107 
1108 			__asm volatile ("movl %0,%%d0; .word 0x4e7b,0x0808" : :
1109 					"d"(m68060_pcr_init):"d0" );
1110 
1111 			/* bus/addrerr vectors */
1112 			vectab[2] = buserr60;
1113 			vectab[3] = addrerr4060;
1114 
1115 #if defined(M060SP)
1116 			/* integer support */
1117 			vectab[61] = (trapfun *)&I_CALL_TOP[128 + 0x00];
1118 
1119 			/* floating point support */
1120 			/*
1121 			 * XXX maybe we really should run-time check for the
1122 			 * stack frame format here:
1123 			 */
1124 			vectab[11] = (trapfun *)&FP_CALL_TOP[128 + 0x30];
1125 
1126 			vectab[55] = (trapfun *)&FP_CALL_TOP[128 + 0x38];
1127 			vectab[60] = (trapfun *)&FP_CALL_TOP[128 + 0x40];
1128 
1129 			vectab[54] = (trapfun *)&FP_CALL_TOP[128 + 0x00];
1130 			vectab[52] = (trapfun *)&FP_CALL_TOP[128 + 0x08];
1131 			vectab[53] = (trapfun *)&FP_CALL_TOP[128 + 0x10];
1132 			vectab[51] = (trapfun *)&FP_CALL_TOP[128 + 0x18];
1133 			vectab[50] = (trapfun *)&FP_CALL_TOP[128 + 0x20];
1134 			vectab[49] = (trapfun *)&FP_CALL_TOP[128 + 0x28];
1135 #else
1136 			vectab[61] = illinst;
1137 #endif
1138 			vectab[48] = fpfault;
1139 		}
1140 		break;
1141 #endif /* defined(M68060) */
1142 #if defined(M68040)
1143 	case CPU_68040:
1144 		{
1145 			extern trapfun	*vectab[256];
1146 			extern trapfun	buserr40, addrerr4060;
1147 
1148 			/* bus/addrerr vectors */
1149 			vectab[2] = buserr40;
1150 			vectab[3] = addrerr4060;
1151 		}
1152 		break;
1153 #endif /* defined(M68040) */
1154 #if defined(M68030) || defined(M68020)
1155 	case CPU_68030:
1156 	case CPU_68020:
1157 		{
1158 			extern trapfun	*vectab[256];
1159 			extern trapfun	buserr2030, addrerr2030;
1160 
1161 			/* bus/addrerr vectors */
1162 			vectab[2] = buserr2030;
1163 			vectab[3] = addrerr2030;
1164 		}
1165 		break;
1166 #endif /* defined(M68030) || defined(M68020) */
1167 	}
1168 
1169 	DCIS();
1170 }
1171 
1172 #ifdef DEBUG
1173 void dump_segtable(u_int *);
1174 void dump_pagetable(u_int *, u_int, u_int);
1175 u_int vmtophys(u_int *, u_int);
1176 
1177 void
1178 dump_segtable(u_int *stp)
1179 {
1180 	u_int *s, *es;
1181 	int shift, i;
1182 
1183 	s = stp;
1184 	{
1185 		es = s + (M68K_STSIZE >> 2);
1186 		shift = SG_ISHIFT;
1187 	}
1188 
1189 	/*
1190 	 * XXX need changes for 68040
1191 	 */
1192 	for (i = 0; s < es; s++, i++)
1193 		if (*s & SG_V)
1194 			printf("$%08x: $%08x\t", i << shift, *s & SG_FRAME);
1195 	printf("\n");
1196 }
1197 
1198 void
1199 dump_pagetable(u_int *ptp, u_int i, u_int n)
1200 {
1201 	u_int *p, *ep;
1202 
1203 	p = ptp + i;
1204 	ep = p + n;
1205 	for (; p < ep; p++, i++)
1206 		if (*p & PG_V)
1207 			printf("$%08x -> $%08x\t", i, *p & PG_FRAME);
1208 	printf("\n");
1209 }
1210 
1211 u_int
1212 vmtophys(u_int *ste, u_int vm)
1213 {
1214 
1215 	ste = (u_int *)(*(ste + (vm >> SEGSHIFT)) & SG_FRAME);
1216 	ste += (vm & SG_PMASK) >> PGSHIFT;
1217 	return (*ste & -PAGE_SIZE) | (vm & (PAGE_SIZE - 1));
1218 }
1219 
1220 #endif
1221