1 /* $NetBSD: atari_init.c,v 1.18 1996/09/16 06:28:41 leo Exp $ */ 2 3 /* 4 * Copyright (c) 1995 Leo Weppelman 5 * Copyright (c) 1994 Michael L. Hitch 6 * Copyright (c) 1993 Markus Wild 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by Markus Wild. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/proc.h> 38 #include <vm/vm.h> 39 #include <sys/user.h> 40 #include <sys/ioctl.h> 41 #include <sys/select.h> 42 #include <sys/tty.h> 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/msgbuf.h> 46 #include <sys/mbuf.h> 47 #include <sys/protosw.h> 48 #include <sys/domain.h> 49 #include <sys/dkbad.h> 50 #include <sys/reboot.h> 51 #include <sys/exec.h> 52 #include <sys/core.h> 53 #include <sys/kcore.h> 54 #include <vm/pmap.h> 55 #include <machine/vmparam.h> 56 #include <machine/pte.h> 57 #include <machine/cpu.h> 58 #include <machine/iomap.h> 59 #include <machine/mfp.h> 60 #include <machine/scu.h> 61 #include <machine/kcore.h> 62 #include <atari/atari/stalloc.h> 63 #include <atari/dev/ym2149reg.h> 64 65 void start_c __P((int, u_int, u_int, u_int, char *)); 66 static void cpu_init_kcorehdr __P((u_long)); 67 static void mmu030_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int, 68 pt_entry_t *, u_int, u_int)); 69 static void map_io_areas __P((pt_entry_t *, u_int, u_int)); 70 static void set_machtype __P((void)); 71 72 #if defined(M68040) || defined(M68060) 73 static void mmu040_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int, 74 pt_entry_t *, u_int, u_int)); 75 #endif 76 77 /* 78 * All info needed to generate a panic dump. All fields are setup by 79 * start_c(). 80 * XXX: Should sheck usage of phys_segs. There is some unwanted overlap 81 * here.... Also, the name is badly choosen. Phys_segs contains the 82 * segment descriptions _after_ reservations are made. 83 * XXX: 'lowram' is obsoleted by the new panicdump format 84 */ 85 static cpu_kcore_hdr_t cpu_kcore_hdr; 86 87 extern u_int lowram; 88 extern u_int Sysptsize, Sysseg_pa, proc0paddr; 89 extern pt_entry_t *Sysptmap; 90 extern st_entry_t *Sysseg; 91 u_int *Sysmap; 92 int machineid, mmutype, cpu040, astpending; 93 char *vmmap; 94 pv_entry_t pv_table; 95 #if defined(M68040) || defined(M68060) 96 extern int protostfree; 97 #endif 98 99 extern char *esym; 100 101 /* 102 * This is the virtual address of physical page 0. Used by 'do_boot()'. 103 */ 104 vm_offset_t page_zero; 105 106 /* 107 * Crude support for allocation in ST-ram. Currently only used to allocate 108 * video ram. 109 * The physical address is also returned because the video init needs it to 110 * setup the controller at the time the vm-system is not yet operational so 111 * 'kvtop()' cannot be used. 112 */ 113 #ifndef ST_POOL_SIZE 114 #define ST_POOL_SIZE 40 /* XXX: enough? */ 115 #endif 116 117 u_long st_pool_size = ST_POOL_SIZE * NBPG; /* Patchable */ 118 u_long st_pool_virt, st_pool_phys; 119 120 /* 121 * this is the C-level entry function, it's called from locore.s. 122 * Preconditions: 123 * Interrupts are disabled 124 * PA == VA, we don't have to relocate addresses before enabling 125 * the MMU 126 * Exec is no longer available (because we're loaded all over 127 * low memory, no ExecBase is available anymore) 128 * 129 * It's purpose is: 130 * Do the things that are done in locore.s in the hp300 version, 131 * this includes allocation of kernel maps and enabling the MMU. 132 * 133 * Some of the code in here is `stolen' from Amiga MACH, and was 134 * written by Bryan Ford and Niklas Hallqvist. 135 * 136 * Very crude 68040 support by Michael L. Hitch. 137 */ 138 139 void 140 start_c(id, ttphystart, ttphysize, stphysize, esym_addr) 141 int id; /* Machine id */ 142 u_int ttphystart, ttphysize; /* Start address and size of TT-ram */ 143 u_int stphysize; /* Size of ST-ram */ 144 char *esym_addr; /* Address of kernel '_esym' symbol */ 145 { 146 extern char end[]; 147 extern void etext __P((void)); 148 extern u_long protorp[2]; 149 u_int pstart; /* Next available physical address*/ 150 u_int vstart; /* Next available virtual address */ 151 u_int avail; 152 pt_entry_t *pt; 153 u_int ptsize, ptextra; 154 u_int tc, i; 155 u_int *pg; 156 u_int pg_proto; 157 u_int end_loaded; 158 u_long kbase; 159 u_int kstsize; 160 161 boot_segs[0].start = 0; 162 boot_segs[0].end = stphysize; 163 boot_segs[1].start = ttphystart; 164 boot_segs[1].end = ttphystart + ttphysize; 165 boot_segs[2].start = boot_segs[2].end = 0; /* End of segments! */ 166 167 /* 168 * The following is a hack. We do not know how much ST memory we 169 * really need until after configuration has finished. At this 170 * time I have no idea how to grab ST memory at that time. 171 * The round_page() call is ment to correct errors made by 172 * binpatching! 173 */ 174 st_pool_size = atari_round_page(st_pool_size); 175 st_pool_phys = stphysize - st_pool_size; 176 stphysize = st_pool_phys; 177 178 machineid = id; 179 esym = esym_addr; 180 181 /* 182 * the kernel ends at end() or esym. 183 */ 184 if(esym == NULL) 185 end_loaded = (u_int)end; 186 else end_loaded = (u_int)esym; 187 188 /* 189 * If we have enough fast-memory to put the kernel in, do it! 190 */ 191 if(ttphysize >= end_loaded) 192 kbase = ttphystart; 193 else kbase = 0; 194 195 /* 196 * update these as soon as possible! 197 */ 198 PAGE_SIZE = NBPG; 199 PAGE_MASK = NBPG-1; 200 PAGE_SHIFT = PG_SHIFT; 201 202 /* 203 * Determine the type of machine we are running on. This needs 204 * to be done early! 205 */ 206 set_machtype(); 207 208 /* 209 * We run the kernel from ST memory at the moment. 210 * The kernel segment table is put just behind the loaded image. 211 * pstart: start of usable ST memory 212 * avail : size of ST memory available. 213 */ 214 pstart = (u_int)end_loaded; 215 pstart = atari_round_page(pstart); 216 avail = stphysize - pstart; 217 218 /* 219 * Calculate the number of pages needed for Sysseg. 220 * For the 68030, we need 256 descriptors (segment-table-entries). 221 * This easily fits into one page. 222 * For the 68040, both the level-1 and level-2 descriptors are 223 * stored into Sysseg. We currently handle a maximum sum of MAXKL2SIZE 224 * level-1 & level-2 tables. 225 */ 226 #if defined(M68040) || defined(M68060) 227 if (mmutype == MMU_68040) 228 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 229 else 230 #endif 231 kstsize = 1; 232 /* 233 * allocate the kernel segment table 234 */ 235 Sysseg = (st_entry_t *)pstart; 236 Sysseg_pa = (u_int)Sysseg + kbase; 237 pstart += kstsize * NBPG; 238 avail -= kstsize * NBPG; 239 240 /* 241 * Determine the number of pte's we need for extra's like 242 * ST I/O map's. 243 */ 244 ptextra = btoc(STIO_SIZE); 245 246 /* 247 * If present, add pci areas 248 */ 249 if (machineid & ATARI_HADES) 250 ptextra += btoc(PCI_CONF_SIZE + PCI_IO_SIZE + PCI_MEM_SIZE); 251 252 /* 253 * The 'pt' (the initial kernel pagetable) has to map the kernel and 254 * the I/O areas. The various I/O areas are mapped (virtually) at 255 * the top of the address space mapped by 'pt' (ie. just below Sysmap). 256 */ 257 pt = (pt_entry_t *)pstart; 258 ptsize = (Sysptsize + howmany(ptextra, NPTEPG)) << PGSHIFT; 259 pstart += ptsize; 260 avail -= ptsize; 261 262 /* 263 * allocate kernel page table map 264 */ 265 Sysptmap = (pt_entry_t *)pstart; 266 pstart += NBPG; 267 avail -= NBPG; 268 269 /* 270 * Set Sysmap; mapped after page table pages. Because I too (LWP) 271 * didn't understand the reason for this, I borrowed the following 272 * (sligthly modified) comment from mac68k/locore.s: 273 * LAK: There seems to be some confusion here about the next line, 274 * so I'll explain. The kernel needs some way of dynamically modifying 275 * the page tables for its own virtual memory. What it does is that it 276 * has a page table map. This page table map is mapped right after the 277 * kernel itself (in our implementation; in HP's it was after the I/O 278 * space). Therefore, the first three (or so) entries in the segment 279 * table point to the first three pages of the page tables (which 280 * point to the kernel) and the next entry in the segment table points 281 * to the page table map (this is done later). Therefore, the value 282 * of the pointer "Sysmap" will be something like 16M*3 = 48M. When 283 * the kernel addresses this pointer (e.g., Sysmap[0]), it will get 284 * the first longword of the first page map (== pt[0]). Since the 285 * page map mirrors the segment table, addressing any index of Sysmap 286 * will give you a PTE of the page maps which map the kernel. 287 */ 288 Sysmap = (u_int *)(ptsize << (SEGSHIFT - PGSHIFT)); 289 290 /* 291 * Initialize segment tables 292 */ 293 #if defined(M68040) || defined(M68060) 294 if (mmutype == MMU_68040) 295 mmu040_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase); 296 else 297 #endif /* defined(M68040) || defined(M68060) */ 298 mmu030_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase); 299 300 /* 301 * initialize kernel page table page(s). 302 * Assume load at VA 0. 303 * - Text pages are RO 304 * - Page zero is invalid 305 */ 306 pg_proto = (0 + kbase) | PG_RO | PG_V; 307 pg = pt; 308 *pg++ = PG_NV; pg_proto += NBPG; 309 for(i = NBPG; i < (u_int)etext; i += NBPG, pg_proto += NBPG) 310 *pg++ = pg_proto; 311 312 /* 313 * data, bss and dynamic tables are read/write 314 */ 315 pg_proto = (pg_proto & PG_FRAME) | PG_RW | PG_V; 316 317 #if defined(M68040) || defined(M68060) 318 /* 319 * Map the kernel segment table cache invalidated for 320 * these machines (for the 68040 not strictly necessary, but 321 * recommended by Motorola; for the 68060 mandatory) 322 */ 323 if (mmutype == MMU_68040) { 324 for (; i < (u_int)Sysseg; i += NBPG, pg_proto += NBPG) 325 *pg++ = pg_proto; 326 pg_proto = (pg_proto & ~PG_CCB) | PG_CI; 327 for (; i < (u_int)&Sysseg[kstsize * NPTEPG]; i += NBPG, 328 pg_proto += NBPG) 329 *pg++ = pg_proto; 330 pg_proto = (pg_proto & ~PG_CI) | PG_CCB; 331 } 332 #endif /* defined(M68040) || defined(M68060) */ 333 334 /* 335 * go till end of data allocated so far 336 * plus proc0 u-area (to be allocated) 337 */ 338 for(; i < pstart + USPACE; i += NBPG, pg_proto += NBPG) 339 *pg++ = pg_proto; 340 341 /* 342 * invalidate remainder of kernel PT 343 */ 344 while(pg < &pt[ptsize/sizeof(pt_entry_t)]) 345 *pg++ = PG_NV; 346 347 /* 348 * Map various I/O areas 349 */ 350 map_io_areas(pt, ptsize, ptextra); 351 352 /* 353 * Clear proc0 user-area 354 */ 355 bzero((u_char *)pstart, USPACE); 356 357 /* 358 * Save KVA of proc0 user-area and allocate it 359 */ 360 proc0paddr = pstart; 361 pstart += USPACE; 362 avail -= USPACE; 363 364 /* 365 * At this point, virtual and physical allocation starts to divert. 366 */ 367 vstart = pstart; 368 369 /* 370 * Map the allocated space in ST-ram now. In the contig-case, there 371 * is no need to make a distinction between virtual and physical 372 * adresses. But I make it anyway to be prepared. 373 * Physcal space is already reserved! 374 */ 375 st_pool_virt = vstart; 376 pg = &pt[vstart / NBPG]; 377 pg_proto = st_pool_phys | PG_RW | PG_CI | PG_V; 378 vstart += st_pool_size; 379 while(pg_proto < (st_pool_phys + st_pool_size)) { 380 *pg++ = pg_proto; 381 pg_proto += NBPG; 382 } 383 384 /* 385 * Map physical page_zero and page-zero+1 (First ST-ram page). We need 386 * to reference it in the reboot code. Two pages are mapped, because 387 * we must make sure 'doboot()' is contained in it (see the tricky 388 * copying there....). 389 */ 390 page_zero = vstart; 391 pg = &pt[vstart / NBPG]; 392 *pg++ = PG_RW | PG_CI | PG_V; 393 vstart += NBPG; 394 *pg = PG_RW | PG_CI | PG_V | NBPG; 395 vstart += NBPG; 396 397 lowram = 0 >> PGSHIFT; /* XXX */ 398 399 /* 400 * Fill in usable segments. The page indexes will be initialized 401 * later when all reservations are made. 402 */ 403 usable_segs[0].start = 0; 404 usable_segs[0].end = stphysize; 405 usable_segs[1].start = ttphystart; 406 usable_segs[1].end = ttphystart + ttphysize; 407 usable_segs[2].start = usable_segs[2].end = 0; /* End of segments! */ 408 409 if(kbase) { 410 /* 411 * First page of ST-ram is unusable, reserve the space 412 * for the kernel in the TT-ram segment. 413 * Note: Because physical page-zero is partially mapped to ROM 414 * by hardware, it is unusable. 415 */ 416 usable_segs[0].start = NBPG; 417 usable_segs[1].start += pstart; 418 } 419 else usable_segs[0].start += pstart; 420 421 /* 422 * As all segment sizes are now valid, calculate page indexes and 423 * available physical memory. 424 */ 425 usable_segs[0].first_page = 0; 426 for (i = 1; usable_segs[i].start; i++) { 427 usable_segs[i].first_page = usable_segs[i-1].first_page; 428 usable_segs[i].first_page += 429 (usable_segs[i-1].end - usable_segs[i-1].start) / NBPG; 430 } 431 for (i = 0, physmem = 0; usable_segs[i].start; i++) 432 physmem += usable_segs[i].end - usable_segs[i].start; 433 physmem >>= PGSHIFT; 434 435 /* 436 * get the pmap module in sync with reality. 437 */ 438 pmap_bootstrap(vstart, stio_addr, ptextra); 439 440 /* 441 * Prepare to enable the MMU. 442 * Setup and load SRP nolimit, share global, 4 byte PTE's 443 */ 444 protorp[0] = 0x80000202; 445 protorp[1] = (u_int)Sysseg + kbase; /* + segtable address */ 446 Sysseg_pa = (u_int)Sysseg + kbase; 447 448 cpu_init_kcorehdr(kbase); 449 450 /* 451 * copy over the kernel (and all now initialized variables) 452 * to fastram. DONT use bcopy(), this beast is much larger 453 * than 128k ! 454 */ 455 if(kbase) { 456 register u_long *lp, *le, *fp; 457 458 lp = (u_long *)0; 459 le = (u_long *)pstart; 460 fp = (u_long *)kbase; 461 while(lp < le) 462 *fp++ = *lp++; 463 } 464 #if defined(M68040) || defined(M68060) 465 if (mmutype == MMU_68040) { 466 /* 467 * movel Sysseg_pa,a0; 468 * movec a0,SRP; 469 * pflusha; 470 * movel #$0xc000,d0; 471 * movec d0,TC 472 */ 473 asm volatile ("movel %0,a0;.word 0x4e7b,0x8807" : : "a" (Sysseg_pa) : "a0"); 474 asm volatile (".word 0xf518" : : ); 475 asm volatile ("movel #0xc000,d0; .word 0x4e7b,0x0003" : : :"d0" ); 476 } else 477 #endif 478 { 479 asm volatile ("pmove %0@,srp" : : "a" (&protorp[0])); 480 /* 481 * setup and load TC register. 482 * enable_cpr, enable_srp, pagesize=8k, 483 * A = 8 bits, B = 11 bits 484 */ 485 tc = 0x82d08b00; 486 asm volatile ("pmove %0@,tc" : : "a" (&tc)); 487 } 488 489 /* Is this to fool the optimizer?? */ 490 i = *(int *)proc0paddr; 491 *(volatile int *)proc0paddr = i; 492 493 ym2149_init(); 494 495 /* 496 * Initialize both MFP chips (if both present!) to generate 497 * auto-vectored interrupts with EOI. The active-edge registers are 498 * set up. The interrupt enable registers are set to disable all 499 * interrupts. 500 * A test on presence on the second MFP determines if this is a 501 * TT030 or a Falcon. This is added to 'machineid'. 502 */ 503 MFP->mf_iera = MFP->mf_ierb = 0; 504 MFP->mf_imra = MFP->mf_imrb = 0; 505 MFP->mf_aer = MFP->mf_ddr = 0; 506 MFP->mf_vr = 0x40; 507 if(machineid & (ATARI_TT|ATARI_HADES)) { 508 MFP2->mf_iera = MFP2->mf_ierb = 0; 509 MFP2->mf_imra = MFP2->mf_imrb = 0; 510 MFP2->mf_aer = 0x80; 511 MFP2->mf_vr = 0x50; 512 } 513 if(machineid & ATARI_TT) { 514 /* 515 * Initialize the SCU, to enable interrupts on the SCC (ipl5), 516 * MFP (ipl6) and softints (ipl1). 517 */ 518 SCU->sys_mask = SCU_MFP | SCU_SCC | SCU_SYS_SOFT; 519 #ifdef DDB 520 /* 521 * This allows people with the correct hardware modification 522 * to drop into the debugger from an NMI. 523 */ 524 SCU->sys_mask |= SCU_IRQ7; 525 #endif 526 527 } 528 529 /* 530 * Initialize stmem allocator 531 */ 532 init_stmem(); 533 } 534 535 /* 536 * Try to figure out on what type of machine we are running 537 * Note: This module runs *before* 538 */ 539 static void 540 set_machtype() 541 { 542 if(!badbaddr((caddr_t)(PCI_CONFB_PHYS + PCI_CONFM_PHYS))) 543 machineid |= ATARI_HADES; 544 else { 545 if(!badbaddr((caddr_t)&MFP2->mf_gpip)) 546 machineid |= ATARI_TT; 547 else machineid |= ATARI_FALCON; 548 } 549 } 550 551 /* 552 * Do the dull work of mapping the various I/O areas. They MUST be Cache 553 * inhibited! 554 * All I/O areas are virtually mapped at the end of the pt-table. 555 */ 556 static void 557 map_io_areas(pt, ptsize, ptextra) 558 pt_entry_t *pt; 559 u_int ptsize; /* Size of 'pt' in bytes */ 560 u_int ptextra; /* #of additional I/O pte's */ 561 { 562 vm_offset_t ioaddr; 563 pt_entry_t *pg, *epg; 564 pt_entry_t pg_proto; 565 u_long mask; 566 567 ioaddr = ((ptsize / sizeof(pt_entry_t)) - ptextra) * NBPG; 568 569 /* 570 * Map ST-IO area 571 */ 572 stio_addr = ioaddr; 573 ioaddr += STIO_SIZE; 574 pg = &pt[stio_addr / NBPG]; 575 epg = &pg[btoc(STIO_SIZE)]; 576 pg_proto = STIO_PHYS | PG_RW | PG_CI | PG_V; 577 while(pg < epg) { 578 *pg++ = pg_proto; 579 pg_proto += NBPG; 580 } 581 582 /* 583 * Map PCI areas 584 */ 585 if (machineid & ATARI_HADES) { 586 587 pci_conf_addr = ioaddr; 588 ioaddr += PCI_CONF_SIZE; 589 pg = &pt[pci_conf_addr / NBPG]; 590 epg = &pg[btoc(PCI_CONF_SIZE)]; 591 mask = PCI_CONFM_PHYS; 592 pg_proto = PCI_CONFB_PHYS | PG_RW | PG_CI | PG_V; 593 for(; pg < epg; mask >>= 1) 594 *pg++ = pg_proto | mask; 595 596 pci_io_addr = ioaddr; 597 ioaddr += PCI_IO_SIZE; 598 epg = &pg[btoc(PCI_IO_SIZE)]; 599 pg_proto = PCI_IO_PHYS | PG_RW | PG_CI | PG_V; 600 while(pg < epg) { 601 *pg++ = pg_proto; 602 pg_proto += NBPG; 603 } 604 605 pci_mem_addr = ioaddr; 606 ioaddr += PCI_MEM_SIZE; 607 epg = &pg[btoc(PCI_MEM_SIZE)]; 608 pg_proto = PCI_MEM_PHYS | PG_RW | PG_CI | PG_V; 609 while(pg < epg) { 610 *pg++ = pg_proto; 611 pg_proto += NBPG; 612 } 613 } 614 } 615 616 /* 617 * Used by dumpconf() to get the size of the machine-dependent panic-dump 618 * header in disk blocks. 619 */ 620 int 621 cpu_dumpsize() 622 { 623 int size; 624 625 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)); 626 return (btodb(roundup(size, dbtob(1)))); 627 } 628 629 /* 630 * Called by dumpsys() to dump the machine-dependent header. 631 * XXX: Assumes that it will all fit in one diskblock. 632 */ 633 int 634 cpu_dump(dump, p_blkno) 635 int (*dump) __P((dev_t, daddr_t, caddr_t, size_t)); 636 daddr_t *p_blkno; 637 { 638 int buf[dbtob(1)/sizeof(int)]; 639 int error; 640 kcore_seg_t *kseg_p; 641 cpu_kcore_hdr_t *chdr_p; 642 643 kseg_p = (kcore_seg_t *)buf; 644 chdr_p = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*kseg_p)) / sizeof(int)]; 645 646 /* 647 * Generate a segment header 648 */ 649 CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU); 650 kseg_p->c_size = dbtob(1) - ALIGN(sizeof(*kseg_p)); 651 652 /* 653 * Add the md header 654 */ 655 *chdr_p = cpu_kcore_hdr; 656 error = dump(dumpdev, *p_blkno, (caddr_t)buf, dbtob(1)); 657 *p_blkno += 1; 658 return (error); 659 } 660 661 #if (NPHYS_RAM_SEGS < NMEM_SEGS) 662 #error "Configuration error: NPHYS_RAM_SEGS < NMEM_SEGS" 663 #endif 664 /* 665 * Initialize the cpu_kcore_header. 666 */ 667 static void 668 cpu_init_kcorehdr(kbase) 669 u_long kbase; 670 { 671 int i; 672 673 for (i = 0; i < NMEM_SEGS; i++) { 674 cpu_kcore_hdr.ram_segs[i].start = boot_segs[i].start; 675 cpu_kcore_hdr.ram_segs[i].size = boot_segs[i].end 676 - boot_segs[i].start; 677 } 678 cpu_kcore_hdr.mmutype = mmutype; 679 cpu_kcore_hdr.kernel_pa = kbase; 680 cpu_kcore_hdr.sysseg_pa = (st_entry_t *)((u_int)Sysseg + kbase); 681 } 682 683 void 684 mmu030_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase) 685 st_entry_t *sysseg; /* System segment table */ 686 u_int kstsize; /* size of 'sysseg' in pages */ 687 pt_entry_t *pt; /* Kernel page table */ 688 u_int ptsize; /* size of 'pt' in bytes */ 689 pt_entry_t *sysptmap; /* System page table */ 690 u_int sysptsize; /* size of 'sysptmap' in pages */ 691 u_int kbase; 692 { 693 st_entry_t sg_proto, *sg; 694 pt_entry_t pg_proto, *pg, *epg; 695 696 sg_proto = ((u_int)pt + kbase) | SG_RW | SG_V; 697 pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V; 698 699 /* 700 * Map the page table pages in both the HW segment table 701 * and the software Sysptmap. Note that Sysptmap is also 702 * considered a PT page, hence the +sysptsize. 703 */ 704 sg = sysseg; 705 pg = sysptmap; 706 epg = &pg[(ptsize >> PGSHIFT) + sysptsize]; 707 while(pg < epg) { 708 *sg++ = sg_proto; 709 *pg++ = pg_proto; 710 sg_proto += NBPG; 711 pg_proto += NBPG; 712 } 713 714 /* 715 * invalidate the remainder of the tables 716 */ 717 epg = &sysptmap[sysptsize * NPTEPG]; 718 while(pg < epg) { 719 *sg++ = SG_NV; 720 *pg++ = PG_NV; 721 } 722 } 723 724 #if defined(M68040) || defined(M68060) 725 void 726 mmu040_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase) 727 st_entry_t *sysseg; /* System segment table */ 728 u_int kstsize; /* size of 'sysseg' in pages */ 729 pt_entry_t *pt; /* Kernel page table */ 730 u_int ptsize; /* size of 'pt' in bytes */ 731 pt_entry_t *sysptmap; /* System page table */ 732 u_int sysptsize; /* size of 'sysptmap' in pages */ 733 u_int kbase; 734 { 735 int i; 736 st_entry_t sg_proto, *sg, *esg; 737 pt_entry_t pg_proto; 738 739 /* 740 * First invalidate the entire "segment table" pages 741 * (levels 1 and 2 have the same "invalid" values). 742 */ 743 sg = sysseg; 744 esg = &sg[kstsize * NPTEPG]; 745 while (sg < esg) 746 *sg++ = SG_NV; 747 748 /* 749 * Initialize level 2 descriptors (which immediately 750 * follow the level 1 table). These should map 'pt' + 'sysptmap'. 751 * We need: 752 * NPTEPG / SG4_LEV3SIZE 753 * level 2 descriptors to map each of the nptpages + 1 754 * pages of PTEs. Note that we set the "used" bit 755 * now to save the HW the expense of doing it. 756 */ 757 i = ((ptsize >> PGSHIFT) + sysptsize) * (NPTEPG / SG4_LEV3SIZE); 758 sg = &sysseg[SG4_LEV1SIZE]; 759 esg = &sg[i]; 760 sg_proto = ((u_int)pt + kbase) | SG_U | SG_RW | SG_V; 761 while (sg < esg) { 762 *sg++ = sg_proto; 763 sg_proto += (SG4_LEV3SIZE * sizeof (st_entry_t)); 764 } 765 766 /* 767 * Initialize level 1 descriptors. We need: 768 * roundup(num, SG4_LEV2SIZE) / SG4_LEVEL2SIZE 769 * level 1 descriptors to map the 'num' level 2's. 770 */ 771 i = roundup(i, SG4_LEV2SIZE) / SG4_LEV2SIZE; 772 protostfree = (-1 << (i + 1)) /* & ~(-1 << MAXKL2SIZE) */; 773 sg = sysseg; 774 esg = &sg[i]; 775 sg_proto = ((u_int)&sg[SG4_LEV1SIZE] + kbase) | SG_U | SG_RW |SG_V; 776 while (sg < esg) { 777 *sg++ = sg_proto; 778 sg_proto += (SG4_LEV2SIZE * sizeof(st_entry_t)); 779 } 780 781 /* 782 * Initialize sysptmap 783 */ 784 sg = sysptmap; 785 esg = &sg[(ptsize >> PGSHIFT) + sysptsize]; 786 pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V; 787 while (sg < esg) { 788 *sg++ = pg_proto; 789 pg_proto += NBPG; 790 } 791 /* 792 * Invalidate rest of Sysptmap page 793 */ 794 esg = &sysptmap[sysptsize * NPTEPG]; 795 while (sg < esg) 796 *sg++ = SG_NV; 797 } 798 #endif /* M68040 */ 799 800 #ifdef DEBUG 801 void 802 dump_segtable(stp) 803 u_int *stp; 804 { 805 u_int *s, *es; 806 int shift, i; 807 808 s = stp; 809 { 810 es = s + (ATARI_STSIZE >> 2); 811 shift = SG_ISHIFT; 812 } 813 814 /* 815 * XXX need changes for 68040 816 */ 817 for (i = 0; s < es; s++, i++) 818 if (*s & SG_V) 819 printf("$%08lx: $%08lx\t", i << shift, *s & SG_FRAME); 820 printf("\n"); 821 } 822 823 void 824 dump_pagetable(ptp, i, n) 825 u_int *ptp, i, n; 826 { 827 u_int *p, *ep; 828 829 p = ptp + i; 830 ep = p + n; 831 for (; p < ep; p++, i++) 832 if (*p & PG_V) 833 printf("$%08lx -> $%08lx\t", i, *p & PG_FRAME); 834 printf("\n"); 835 } 836 837 u_int 838 vmtophys(ste, vm) 839 u_int *ste, vm; 840 { 841 ste = (u_int *) (*(ste + (vm >> SEGSHIFT)) & SG_FRAME); 842 ste += (vm & SG_PMASK) >> PGSHIFT; 843 return((*ste & -NBPG) | (vm & (NBPG - 1))); 844 } 845 846 #endif 847