xref: /netbsd-src/sys/arch/atari/atari/atari_init.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: atari_init.c,v 1.48 2000/03/28 23:57:25 simonb Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Leo Weppelman
5  * Copyright (c) 1994 Michael L. Hitch
6  * Copyright (c) 1993 Markus Wild
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Markus Wild.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/proc.h>
40 #include <vm/vm.h>
41 #include <sys/user.h>
42 #include <sys/ioctl.h>
43 #include <sys/select.h>
44 #include <sys/tty.h>
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/msgbuf.h>
48 #include <sys/mbuf.h>
49 #include <sys/extent.h>
50 #include <sys/protosw.h>
51 #include <sys/domain.h>
52 #include <sys/dkbad.h>
53 #include <sys/reboot.h>
54 #include <sys/exec.h>
55 #include <sys/core.h>
56 #include <sys/kcore.h>
57 #include <vm/pmap.h>
58 
59 #include <machine/vmparam.h>
60 #include <machine/pte.h>
61 #include <machine/cpu.h>
62 #include <machine/iomap.h>
63 #include <machine/mfp.h>
64 #include <machine/scu.h>
65 #include <machine/acia.h>
66 #include <machine/kcore.h>
67 
68 #include <m68k/cpu.h>
69 #include <m68k/cacheops.h>
70 
71 #include <atari/atari/intr.h>
72 #include <atari/atari/stalloc.h>
73 #include <atari/dev/ym2149reg.h>
74 
75 #include "pci.h"
76 
77 void start_c __P((int, u_int, u_int, u_int, char *));
78 static void atari_hwinit __P((void));
79 static void cpu_init_kcorehdr __P((u_long));
80 static void initcpu __P((void));
81 static void mmu030_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int,
82 			      pt_entry_t *, u_int, u_int));
83 static void map_io_areas __P((pt_entry_t *, u_int, u_int));
84 static void set_machtype __P((void));
85 
86 #if defined(M68040) || defined(M68060)
87 static void mmu040_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int,
88 			      pt_entry_t *, u_int, u_int));
89 #endif
90 
91 /*
92  * Extent maps to manage all memory space, including I/O ranges.  Allocate
93  * storage for 8 regions in each, initially.  Later, iomem_malloc_safe
94  * will indicate that it's safe to use malloc() to dynamically allocate
95  * region descriptors.
96  * This means that the fixed static storage is only used for registrating
97  * the found memory regions and the bus-mapping of the console.
98  *
99  * The extent maps are not static!  They are used for bus address space
100  * allocation.
101  */
102 static long iomem_ex_storage[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
103 struct extent *iomem_ex;
104 int iomem_malloc_safe;
105 
106 /*
107  * All info needed to generate a panic dump. All fields are setup by
108  * start_c().
109  * XXX: Should sheck usage of phys_segs. There is some unwanted overlap
110  *      here.... Also, the name is badly choosen. Phys_segs contains the
111  *      segment descriptions _after_ reservations are made.
112  * XXX: 'lowram' is obsoleted by the new panicdump format
113  */
114 static cpu_kcore_hdr_t cpu_kcore_hdr;
115 
116 extern u_int 	lowram;
117 extern u_int	Sysptsize, Sysseg_pa, proc0paddr;
118 extern pt_entry_t *Sysptmap;
119 extern st_entry_t *Sysseg;
120 u_int		*Sysmap;
121 int		machineid, mmutype, cputype, astpending;
122 char		*vmmap;
123 pv_entry_t	pv_table;
124 #if defined(M68040) || defined(M68060)
125 extern int	protostfree;
126 #endif
127 
128 extern char		*esym;
129 extern struct pcb	*curpcb;
130 
131 /*
132  * This is the virtual address of physical page 0. Used by 'do_boot()'.
133  */
134 vaddr_t	page_zero;
135 
136 /*
137  * Crude support for allocation in ST-ram. Currently only used to allocate
138  * video ram.
139  * The physical address is also returned because the video init needs it to
140  * setup the controller at the time the vm-system is not yet operational so
141  * 'kvtop()' cannot be used.
142  */
143 #ifndef ST_POOL_SIZE
144 #define	ST_POOL_SIZE	40			/* XXX: enough? */
145 #endif
146 
147 u_long	st_pool_size = ST_POOL_SIZE * NBPG;	/* Patchable	*/
148 u_long	st_pool_virt, st_pool_phys;
149 
150 /*
151  * Are we relocating the kernel to TT-Ram if possible? It is faster, but
152  * it is also reported not to work on all TT's. So the default is NO.
153  */
154 #ifndef	RELOC_KERNEL
155 #define	RELOC_KERNEL	0
156 #endif
157 int	reloc_kernel = RELOC_KERNEL;		/* Patchable	*/
158 
159 /*
160  * this is the C-level entry function, it's called from locore.s.
161  * Preconditions:
162  *	Interrupts are disabled
163  *	PA == VA, we don't have to relocate addresses before enabling
164  *		the MMU
165  * 	Exec is no longer available (because we're loaded all over
166  *		low memory, no ExecBase is available anymore)
167  *
168  * It's purpose is:
169  *	Do the things that are done in locore.s in the hp300 version,
170  *		this includes allocation of kernel maps and enabling the MMU.
171  *
172  * Some of the code in here is `stolen' from Amiga MACH, and was
173  * written by Bryan Ford and Niklas Hallqvist.
174  *
175  * Very crude 68040 support by Michael L. Hitch.
176  */
177 
178 void
179 start_c(id, ttphystart, ttphysize, stphysize, esym_addr)
180 int	id;			/* Machine id				*/
181 u_int	ttphystart, ttphysize;	/* Start address and size of TT-ram	*/
182 u_int	stphysize;		/* Size of ST-ram	 		*/
183 char	*esym_addr;		/* Address of kernel '_esym' symbol	*/
184 {
185 	extern char	end[];
186 	extern void	etext __P((void));
187 	extern u_long	protorp[2];
188 	u_int		pstart;		/* Next available physical address*/
189 	u_int		vstart;		/* Next available virtual address */
190 	u_int		avail;
191 	pt_entry_t	*pt;
192 	u_int		ptsize, ptextra;
193 	u_int		tc, i;
194 	u_int		*pg;
195 	u_int		pg_proto;
196 	u_int		end_loaded;
197 	u_long		kbase;
198 	u_int		kstsize;
199 
200 	boot_segs[0].start       = 0;
201 	boot_segs[0].end         = stphysize;
202 	boot_segs[1].start       = ttphystart;
203 	boot_segs[1].end         = ttphystart + ttphysize;
204 	boot_segs[2].start = boot_segs[2].end = 0; /* End of segments! */
205 
206 	/*
207 	 * The following is a hack. We do not know how much ST memory we
208 	 * really need until after configuration has finished. At this
209 	 * time I have no idea how to grab ST memory at that time.
210 	 * The round_page() call is ment to correct errors made by
211 	 * binpatching!
212 	 */
213 	st_pool_size   = m68k_round_page(st_pool_size);
214 	st_pool_phys   = stphysize - st_pool_size;
215 	stphysize      = st_pool_phys;
216 
217 	machineid      = id;
218 	esym           = esym_addr;
219 
220 	/*
221 	 * the kernel ends at end() or esym.
222 	 */
223 	if(esym == NULL)
224 		end_loaded = (u_int)end;
225 	else end_loaded = (u_int)esym;
226 
227 	/*
228 	 * If we have enough fast-memory to put the kernel in and the
229 	 * RELOC_KERNEL option is set, do it!
230 	 */
231 	if((reloc_kernel != 0) && (ttphysize >= end_loaded))
232 		kbase = ttphystart;
233 	else kbase = 0;
234 
235 	/*
236 	 * update these as soon as possible!
237 	 */
238 	PAGE_SIZE  = NBPG;
239 	PAGE_MASK  = NBPG-1;
240 	PAGE_SHIFT = PG_SHIFT;
241 
242 	/*
243 	 * Determine the type of machine we are running on. This needs
244 	 * to be done early (and before initcpu())!
245 	 */
246 	set_machtype();
247 
248 	/*
249 	 * Initialize cpu specific stuff
250 	 */
251 	initcpu();
252 
253 	/*
254 	 * We run the kernel from ST memory at the moment.
255 	 * The kernel segment table is put just behind the loaded image.
256 	 * pstart: start of usable ST memory
257 	 * avail : size of ST memory available.
258 	 */
259 	pstart = (u_int)end_loaded;
260 	pstart = m68k_round_page(pstart);
261 	avail  = stphysize - pstart;
262 
263 	/*
264 	 * Calculate the number of pages needed for Sysseg.
265 	 * For the 68030, we need 256 descriptors (segment-table-entries).
266 	 * This easily fits into one page.
267 	 * For the 68040, both the level-1 and level-2 descriptors are
268 	 * stored into Sysseg. We currently handle a maximum sum of MAXKL2SIZE
269 	 * level-1 & level-2 tables.
270 	 */
271 #if defined(M68040) || defined(M68060)
272 	if (mmutype == MMU_68040)
273 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
274 	else
275 #endif
276 		kstsize = 1;
277 	/*
278 	 * allocate the kernel segment table
279 	 */
280 	Sysseg     = (st_entry_t *)pstart;
281 	Sysseg_pa  = (u_int)Sysseg + kbase;
282 	pstart    += kstsize * NBPG;
283 	avail     -= kstsize * NBPG;
284 
285 	/*
286 	 * Determine the number of pte's we need for extra's like
287 	 * ST I/O map's.
288 	 */
289 	ptextra = btoc(STIO_SIZE);
290 
291 	/*
292 	 * If present, add pci areas
293 	 */
294 	if (machineid & ATARI_HADES)
295 		ptextra += btoc(PCI_CONF_SIZE + PCI_IO_SIZE + PCI_VGA_SIZE);
296 	ptextra += btoc(BOOTM_VA_POOL);
297 
298 	/*
299 	 * The 'pt' (the initial kernel pagetable) has to map the kernel and
300 	 * the I/O areas. The various I/O areas are mapped (virtually) at
301 	 * the top of the address space mapped by 'pt' (ie. just below Sysmap).
302 	 */
303 	pt      = (pt_entry_t *)pstart;
304 	ptsize  = (Sysptsize + howmany(ptextra, NPTEPG)) << PGSHIFT;
305 	pstart += ptsize;
306 	avail  -= ptsize;
307 
308 	/*
309 	 * allocate kernel page table map
310 	 */
311 	Sysptmap = (pt_entry_t *)pstart;
312 	pstart  += NBPG;
313 	avail   -= NBPG;
314 
315 	/*
316 	 * Set Sysmap; mapped after page table pages. Because I too (LWP)
317 	 * didn't understand the reason for this, I borrowed the following
318 	 * (sligthly modified) comment from mac68k/locore.s:
319 	 * LAK:  There seems to be some confusion here about the next line,
320 	 * so I'll explain.  The kernel needs some way of dynamically modifying
321 	 * the page tables for its own virtual memory.  What it does is that it
322 	 * has a page table map.  This page table map is mapped right after the
323 	 * kernel itself (in our implementation; in HP's it was after the I/O
324 	 * space). Therefore, the first three (or so) entries in the segment
325 	 * table point to the first three pages of the page tables (which
326 	 * point to the kernel) and the next entry in the segment table points
327 	 * to the page table map (this is done later).  Therefore, the value
328 	 * of the pointer "Sysmap" will be something like 16M*3 = 48M.  When
329 	 * the kernel addresses this pointer (e.g., Sysmap[0]), it will get
330 	 * the first longword of the first page map (== pt[0]).  Since the
331 	 * page map mirrors the segment table, addressing any index of Sysmap
332 	 * will give you a PTE of the page maps which map the kernel.
333 	 */
334 	Sysmap = (u_int *)(ptsize << (SEGSHIFT - PGSHIFT));
335 
336 	/*
337 	 * Initialize segment tables
338 	 */
339 #if defined(M68040) || defined(M68060)
340 	if (mmutype == MMU_68040)
341 		mmu040_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase);
342 	else
343 #endif /* defined(M68040) || defined(M68060) */
344 		mmu030_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase);
345 
346 	/*
347 	 * initialize kernel page table page(s).
348 	 * Assume load at VA 0.
349 	 * - Text pages are RO
350 	 * - Page zero is invalid
351 	 */
352 	pg_proto = (0 + kbase) | PG_RO | PG_V;
353 	pg       = pt;
354 	*pg++ = PG_NV; pg_proto += NBPG;
355 	for(i = NBPG; i < (u_int)etext; i += NBPG, pg_proto += NBPG)
356 		*pg++ = pg_proto;
357 
358 	/*
359 	 * data, bss and dynamic tables are read/write
360 	 */
361 	pg_proto = (pg_proto & PG_FRAME) | PG_RW | PG_V;
362 
363 #if defined(M68040) || defined(M68060)
364 	/*
365 	 * Map the kernel segment table cache invalidated for
366 	 * these machines (for the 68040 not strictly necessary, but
367 	 * recommended by Motorola; for the 68060 mandatory)
368 	 */
369 	if (mmutype == MMU_68040) {
370 	    for (; i < (u_int)Sysseg; i += NBPG, pg_proto += NBPG)
371 		*pg++ = pg_proto;
372 	    pg_proto = (pg_proto & ~PG_CCB) | PG_CI;
373 	    for (; i < (u_int)&Sysseg[kstsize * NPTEPG]; i += NBPG,
374 							 pg_proto += NBPG)
375 		*pg++ = pg_proto;
376 	    pg_proto = (pg_proto & ~PG_CI) | PG_CCB;
377 	}
378 #endif /* defined(M68040) || defined(M68060) */
379 
380 	/*
381 	 * go till end of data allocated so far
382 	 * plus proc0 u-area (to be allocated)
383 	 */
384 	for(; i < pstart + USPACE; i += NBPG, pg_proto += NBPG)
385 		*pg++ = pg_proto;
386 
387 	/*
388 	 * invalidate remainder of kernel PT
389 	 */
390 	while(pg < &pt[ptsize/sizeof(pt_entry_t)])
391 		*pg++ = PG_NV;
392 
393 	/*
394 	 * Map various I/O areas
395 	 */
396 	map_io_areas(pt, ptsize, ptextra);
397 
398 	/*
399 	 * Save KVA of proc0 user-area and allocate it
400 	 */
401 	proc0paddr = pstart;
402 	pstart    += USPACE;
403 	avail     -= USPACE;
404 
405 	/*
406 	 * At this point, virtual and physical allocation starts to divert.
407 	 */
408 	vstart     = pstart;
409 
410 	/*
411 	 * Map the allocated space in ST-ram now. In the contig-case, there
412 	 * is no need to make a distinction between virtual and physical
413 	 * adresses. But I make it anyway to be prepared.
414 	 * Physcal space is already reserved!
415 	 */
416 	st_pool_virt = vstart;
417 	pg           = &pt[vstart / NBPG];
418 	pg_proto     = st_pool_phys | PG_RW | PG_CI | PG_V;
419 	vstart      += st_pool_size;
420 	while(pg_proto < (st_pool_phys + st_pool_size)) {
421 		*pg++     = pg_proto;
422 		pg_proto += NBPG;
423 	}
424 
425 	/*
426 	 * Map physical page_zero and page-zero+1 (First ST-ram page). We need
427 	 * to reference it in the reboot code. Two pages are mapped, because
428 	 * we must make sure 'doboot()' is contained in it (see the tricky
429 	 * copying there....).
430 	 */
431 	page_zero  = vstart;
432 	pg         = &pt[vstart / NBPG];
433 	*pg++      = PG_RW | PG_CI | PG_V;
434 	vstart    += NBPG;
435 	*pg        = PG_RW | PG_CI | PG_V | NBPG;
436 	vstart    += NBPG;
437 
438 	lowram  = 0 >> PGSHIFT; /* XXX */
439 
440 	/*
441 	 * Fill in usable segments. The page indexes will be initialized
442 	 * later when all reservations are made.
443 	 */
444 	usable_segs[0].start = 0;
445 	usable_segs[0].end   = stphysize;
446 	usable_segs[1].start = ttphystart;
447 	usable_segs[1].end   = ttphystart + ttphysize;
448 	usable_segs[2].start = usable_segs[2].end = 0; /* End of segments! */
449 
450 	if(kbase) {
451 		/*
452 		 * First page of ST-ram is unusable, reserve the space
453 		 * for the kernel in the TT-ram segment.
454 		 * Note: Because physical page-zero is partially mapped to ROM
455 		 *       by hardware, it is unusable.
456 		 */
457 		usable_segs[0].start  = NBPG;
458 		usable_segs[1].start += pstart;
459 	}
460 	else usable_segs[0].start += pstart;
461 
462 	/*
463 	 * As all segment sizes are now valid, calculate page indexes and
464 	 * available physical memory.
465 	 */
466 	usable_segs[0].first_page = 0;
467 	for (i = 1; usable_segs[i].start; i++) {
468 		usable_segs[i].first_page  = usable_segs[i-1].first_page;
469 		usable_segs[i].first_page +=
470 			(usable_segs[i-1].end - usable_segs[i-1].start) / NBPG;
471 	}
472 	for (i = 0, physmem = 0; usable_segs[i].start; i++)
473 		physmem += usable_segs[i].end - usable_segs[i].start;
474 	physmem >>= PGSHIFT;
475 
476 	/*
477 	 * get the pmap module in sync with reality.
478 	 */
479 	pmap_bootstrap(vstart, stio_addr, ptextra);
480 
481 	/*
482 	 * Prepare to enable the MMU.
483 	 * Setup and load SRP nolimit, share global, 4 byte PTE's
484 	 */
485 	protorp[0] = 0x80000202;
486 	protorp[1] = (u_int)Sysseg + kbase;	/* + segtable address */
487 	Sysseg_pa  = (u_int)Sysseg + kbase;
488 
489 	cpu_init_kcorehdr(kbase);
490 
491 	/*
492 	 * copy over the kernel (and all now initialized variables)
493 	 * to fastram.  DONT use bcopy(), this beast is much larger
494 	 * than 128k !
495 	 */
496 	if(kbase) {
497 		register u_long	*lp, *le, *fp;
498 
499 		lp = (u_long *)0;
500 		le = (u_long *)pstart;
501 		fp = (u_long *)kbase;
502 		while(lp < le)
503 			*fp++ = *lp++;
504 	}
505 #if defined(M68040) || defined(M68060)
506 	if (mmutype == MMU_68040) {
507 		/*
508 		 * movel Sysseg_pa,a0;
509 		 * movec a0,SRP;
510 		 * pflusha;
511 		 * movel #$0xc000,d0;
512 		 * movec d0,TC
513 		 */
514 		if (cputype == CPU_68060) {
515 			/* XXX: Need the branch cache be cleared? */
516 			asm volatile (".word 0x4e7a,0x0002;"
517 				      "orl #0x400000,d0;"
518 				      ".word 0x4e7b,0x0002" : : : "d0");
519 		}
520 		asm volatile ("movel %0,a0;"
521 			      ".word 0x4e7b,0x8807" : : "a" (Sysseg_pa) : "a0");
522 		asm volatile (".word 0xf518" : : );
523 		asm volatile ("movel #0xc000,d0;"
524 			      ".word 0x4e7b,0x0003" : : : "d0" );
525 	} else
526 #endif
527 	{
528 		asm volatile ("pmove %0@,srp" : : "a" (&protorp[0]));
529 		/*
530 		 * setup and load TC register.
531 		 * enable_cpr, enable_srp, pagesize=8k,
532 		 * A = 8 bits, B = 11 bits
533 		 */
534 		tc = 0x82d08b00;
535 		asm volatile ("pmove %0@,tc" : : "a" (&tc));
536 	}
537 
538 	/* Is this to fool the optimizer?? */
539 	i = *(int *)proc0paddr;
540 	*(volatile int *)proc0paddr = i;
541 
542 	/*
543 	 * Initialize the "u-area" pages.
544 	 * Must initialize p_addr before autoconfig or the
545 	 * fault handler will get a NULL reference.
546 	 */
547 	bzero((u_char *)proc0paddr, USPACE);
548 	proc0.p_addr = (struct user *)proc0paddr;
549 	curproc = &proc0;
550 	curpcb  = &((struct user *)proc0paddr)->u_pcb;
551 
552 	/*
553 	 * Get the hardware into a defined state
554 	 */
555 	atari_hwinit();
556 
557 	/*
558 	 * Initialize stmem allocator
559 	 */
560 	init_stmem();
561 
562 	/*
563 	 * Initialize the I/O mem extent map.
564 	 * Note: we don't have to check the return value since
565 	 * creation of a fixed extent map will never fail (since
566 	 * descriptor storage has already been allocated).
567 	 *
568 	 * N.B. The iomem extent manages _all_ physical addresses
569 	 * on the machine.  When the amount of RAM is found, all
570 	 * extents of RAM are allocated from the map.
571 	 */
572 	iomem_ex = extent_create("iomem", 0x0, 0xffffffff, M_DEVBUF,
573 	    (caddr_t)iomem_ex_storage, sizeof(iomem_ex_storage),
574 	    EX_NOCOALESCE|EX_NOWAIT);
575 
576 	/*
577 	 * Allocate the physical RAM from the extent map
578 	 */
579 	for (i = 0; boot_segs[i].end != 0; i++) {
580 		if (extent_alloc_region(iomem_ex, boot_segs[i].start,
581 			  boot_segs[i].end - boot_segs[i].start, EX_NOWAIT)) {
582 			/* XXX: Ahum, should not happen ;-) */
583 			printf("Warning: Cannot allocate boot memory from"
584 			       " extent map!?\n");
585 		}
586 	}
587 
588 	/*
589 	 * Initialize interrupt mapping.
590 	 */
591 	intr_init();
592 }
593 
594 /*
595  * Try to figure out on what type of machine we are running
596  * Note: This module runs *before* the io-mapping is setup!
597  */
598 static void
599 set_machtype()
600 {
601 	stio_addr = 0xff8000;	/* XXX: For TT & Falcon only */
602 	if(badbaddr((caddr_t)&MFP2->mf_gpip, sizeof(char))) {
603 		/*
604 		 * Watch out! We can also have a Hades with < 16Mb
605 		 * RAM here...
606 		 */
607 		if(!badbaddr((caddr_t)&MFP->mf_gpip, sizeof(char))) {
608 			machineid |= ATARI_FALCON;
609 			return;
610 		}
611 	}
612 	if(!badbaddr((caddr_t)(PCI_CONFB_PHYS + PCI_CONFM_PHYS), sizeof(char)))
613 		machineid |= ATARI_HADES;
614 	else machineid |= ATARI_TT;
615 }
616 
617 static void
618 atari_hwinit()
619 {
620 	/*
621 	 * Initialize the sound chip
622 	 */
623 	ym2149_init();
624 
625 	/*
626 	 * Make sure that the midi acia will not generate an interrupt
627 	 * unless something attaches to it. We cannot do this for the
628 	 * keyboard acia because this breaks the '-d' option of the
629 	 * booter...
630 	 */
631 	MDI->ac_cs = 0;
632 
633 	/*
634 	 * Initialize both MFP chips (if both present!) to generate
635 	 * auto-vectored interrupts with EOI. The active-edge registers are
636 	 * set up. The interrupt enable registers are set to disable all
637 	 * interrupts.
638 	 */
639 	MFP->mf_iera  = MFP->mf_ierb = 0;
640 	MFP->mf_imra  = MFP->mf_imrb = 0;
641 	MFP->mf_aer   = MFP->mf_ddr  = 0;
642 	MFP->mf_vr    = 0x40;
643 	if(machineid & (ATARI_TT|ATARI_HADES)) {
644 		MFP2->mf_iera = MFP2->mf_ierb = 0;
645 		MFP2->mf_imra = MFP2->mf_imrb = 0;
646 		MFP2->mf_aer  = 0x80;
647 		MFP2->mf_vr   = 0x50;
648 	}
649 	if(machineid & ATARI_TT) {
650 		/*
651 		 * Initialize the SCU, to enable interrupts on the SCC (ipl5),
652 		 * MFP (ipl6) and softints (ipl1).
653 		 */
654 		SCU->sys_mask = SCU_SYS_SOFT;
655 		SCU->vme_mask = SCU_MFP | SCU_SCC;
656 #ifdef DDB
657 		/*
658 		 * This allows people with the correct hardware modification
659 		 * to drop into the debugger from an NMI.
660 		 */
661 		SCU->sys_mask |= SCU_IRQ7;
662 #endif
663 	}
664 
665 #if NPCI > 0
666 	if(machineid & ATARI_HADES) {
667 		/*
668 		 * Configure PCI-bus
669 		 */
670 		init_pci_bus();
671 	}
672 #endif
673 
674 }
675 
676 /*
677  * Do the dull work of mapping the various I/O areas. They MUST be Cache
678  * inhibited!
679  * All I/O areas are virtually mapped at the end of the pt-table.
680  */
681 static void
682 map_io_areas(pt, ptsize, ptextra)
683 pt_entry_t	*pt;
684 u_int		ptsize;		/* Size of 'pt' in bytes	*/
685 u_int		ptextra;	/* #of additional I/O pte's	*/
686 {
687 	extern void	bootm_init __P((vaddr_t, pt_entry_t *, u_long));
688 	vaddr_t		ioaddr;
689 	pt_entry_t	*pg, *epg;
690 	pt_entry_t	pg_proto;
691 	u_long		mask;
692 
693 	ioaddr = ((ptsize / sizeof(pt_entry_t)) - ptextra) * NBPG;
694 
695 	/*
696 	 * Map ST-IO area
697 	 */
698 	stio_addr = ioaddr;
699 	ioaddr   += STIO_SIZE;
700 	pg        = &pt[stio_addr / NBPG];
701 	epg       = &pg[btoc(STIO_SIZE)];
702 	pg_proto  = STIO_PHYS | PG_RW | PG_CI | PG_V;
703 	while(pg < epg) {
704 		*pg++     = pg_proto;
705 		pg_proto += NBPG;
706 	}
707 
708 	/*
709 	 * Map PCI areas
710 	 */
711 	if (machineid & ATARI_HADES) {
712 
713 		pci_conf_addr = ioaddr;
714 		ioaddr       += PCI_CONF_SIZE;
715 		pg            = &pt[pci_conf_addr / NBPG];
716 		epg           = &pg[btoc(PCI_CONF_SIZE)];
717 		mask          = PCI_CONFM_PHYS;
718 		pg_proto      = PCI_CONFB_PHYS | PG_RW | PG_CI | PG_V;
719 		for(; pg < epg; mask <<= 1)
720 			*pg++ = pg_proto | mask;
721 
722 		pci_io_addr   = ioaddr;
723 		ioaddr       += PCI_IO_SIZE;
724 		epg           = &pg[btoc(PCI_IO_SIZE)];
725 		pg_proto      = PCI_IO_PHYS | PG_RW | PG_CI | PG_V;
726 		while(pg < epg) {
727 			*pg++     = pg_proto;
728 			pg_proto += NBPG;
729 		}
730 
731 		pci_mem_addr  = ioaddr;
732 		ioaddr       += PCI_VGA_SIZE;
733 		epg           = &pg[btoc(PCI_VGA_SIZE)];
734 		pg_proto      = PCI_VGA_PHYS | PG_RW | PG_CI | PG_V;
735 		while(pg < epg) {
736 			*pg++     = pg_proto;
737 			pg_proto += NBPG;
738 		}
739 	}
740 
741 	bootm_init(ioaddr, pg, BOOTM_VA_POOL);
742 	/*
743 	 * ioaddr += BOOTM_VA_POOL;
744 	 * pg = &pg[btoc(BOOTM_VA_POOL)];
745 	 */
746 }
747 
748 /*
749  * Used by dumpconf() to get the size of the machine-dependent panic-dump
750  * header in disk blocks.
751  */
752 int
753 cpu_dumpsize()
754 {
755 	int	size;
756 
757 	size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
758 	return (btodb(roundup(size, dbtob(1))));
759 }
760 
761 /*
762  * Called by dumpsys() to dump the machine-dependent header.
763  * XXX: Assumes that it will all fit in one diskblock.
764  */
765 int
766 cpu_dump(dump, p_blkno)
767 int	(*dump) __P((dev_t, daddr_t, caddr_t, size_t));
768 daddr_t	*p_blkno;
769 {
770 	int		buf[dbtob(1)/sizeof(int)];
771 	int		error;
772 	kcore_seg_t	*kseg_p;
773 	cpu_kcore_hdr_t	*chdr_p;
774 
775 	kseg_p = (kcore_seg_t *)buf;
776 	chdr_p = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*kseg_p)) / sizeof(int)];
777 
778 	/*
779 	 * Generate a segment header
780 	 */
781 	CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
782 	kseg_p->c_size = dbtob(1) - ALIGN(sizeof(*kseg_p));
783 
784 	/*
785 	 * Add the md header
786 	 */
787 	*chdr_p = cpu_kcore_hdr;
788 	error = dump(dumpdev, *p_blkno, (caddr_t)buf, dbtob(1));
789 	*p_blkno += 1;
790 	return (error);
791 }
792 
793 #if (M68K_NPHYS_RAM_SEGS < NMEM_SEGS)
794 #error "Configuration error: M68K_NPHYS_RAM_SEGS < NMEM_SEGS"
795 #endif
796 /*
797  * Initialize the cpu_kcore_header.
798  */
799 static void
800 cpu_init_kcorehdr(kbase)
801 u_long	kbase;
802 {
803 	cpu_kcore_hdr_t *h = &cpu_kcore_hdr;
804 	struct m68k_kcore_hdr *m = &h->un._m68k;
805 	extern char end[];
806 	int	i;
807 
808 	bzero(&cpu_kcore_hdr, sizeof(cpu_kcore_hdr));
809 
810 	/*
811 	 * Initialize the `dispatcher' portion of the header.
812 	 */
813 	strcpy(h->name, machine);
814 	h->page_size = NBPG;
815 	h->kernbase = KERNBASE;
816 
817 	/*
818 	 * Fill in information about our MMU configuration.
819 	 */
820 	m->mmutype	= mmutype;
821 	m->sg_v		= SG_V;
822 	m->sg_frame	= SG_FRAME;
823 	m->sg_ishift	= SG_ISHIFT;
824 	m->sg_pmask	= SG_PMASK;
825 	m->sg40_shift1	= SG4_SHIFT1;
826 	m->sg40_mask2	= SG4_MASK2;
827 	m->sg40_shift2	= SG4_SHIFT2;
828 	m->sg40_mask3	= SG4_MASK3;
829 	m->sg40_shift3	= SG4_SHIFT3;
830 	m->sg40_addr1	= SG4_ADDR1;
831 	m->sg40_addr2	= SG4_ADDR2;
832 	m->pg_v		= PG_V;
833 	m->pg_frame	= PG_FRAME;
834 
835 	/*
836 	 * Initialize pointer to kernel segment table.
837 	 */
838 	m->sysseg_pa = (u_int)Sysseg + kbase;
839 
840 	/*
841 	 * Initialize relocation value such that:
842 	 *
843 	 *	pa = (va - KERNBASE) + reloc
844 	 */
845 	m->reloc = kbase;
846 
847 	/*
848 	 * Define the end of the relocatable range.
849 	 */
850 	m->relocend = (u_int32_t)end;
851 
852 	for (i = 0; i < NMEM_SEGS; i++) {
853 		m->ram_segs[i].start = boot_segs[i].start;
854 		m->ram_segs[i].size  = boot_segs[i].end -
855 		    boot_segs[i].start;
856 	}
857 }
858 
859 void
860 mmu030_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase)
861 	st_entry_t	*sysseg;	/* System segment table		*/
862 	u_int		kstsize;	/* size of 'sysseg' in pages	*/
863 	pt_entry_t	*pt;		/* Kernel page table		*/
864 	u_int		ptsize;		/* size	of 'pt' in bytes	*/
865 	pt_entry_t	*sysptmap;	/* System page table		*/
866 	u_int		sysptsize;	/* size of 'sysptmap' in pages	*/
867 	u_int		kbase;
868 {
869 	st_entry_t	sg_proto, *sg;
870 	pt_entry_t	pg_proto, *pg, *epg;
871 
872 	sg_proto = ((u_int)pt + kbase) | SG_RW | SG_V;
873 	pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V;
874 
875 	/*
876 	 * Map the page table pages in both the HW segment table
877 	 * and the software Sysptmap.  Note that Sysptmap is also
878 	 * considered a PT page, hence the +sysptsize.
879 	 */
880 	sg  = sysseg;
881 	pg  = sysptmap;
882 	epg = &pg[(ptsize >> PGSHIFT) + sysptsize];
883 	while(pg < epg) {
884 		*sg++ = sg_proto;
885 		*pg++ = pg_proto;
886 		sg_proto += NBPG;
887 		pg_proto += NBPG;
888 	}
889 
890 	/*
891 	 * invalidate the remainder of the tables
892 	 */
893 	epg = &sysptmap[sysptsize * NPTEPG];
894 	while(pg < epg) {
895 		*sg++ = SG_NV;
896 		*pg++ = PG_NV;
897 	}
898 }
899 
900 #if defined(M68040) || defined(M68060)
901 void
902 mmu040_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase)
903 	st_entry_t	*sysseg;	/* System segment table		*/
904 	u_int		kstsize;	/* size of 'sysseg' in pages	*/
905 	pt_entry_t	*pt;		/* Kernel page table		*/
906 	u_int		ptsize;		/* size	of 'pt' in bytes	*/
907 	pt_entry_t	*sysptmap;	/* System page table		*/
908 	u_int		sysptsize;	/* size of 'sysptmap' in pages	*/
909 	u_int		kbase;
910 {
911 	int		i;
912 	st_entry_t	sg_proto, *sg, *esg;
913 	pt_entry_t	pg_proto;
914 
915 	/*
916 	 * First invalidate the entire "segment table" pages
917 	 * (levels 1 and 2 have the same "invalid" values).
918 	 */
919 	sg  = sysseg;
920 	esg = &sg[kstsize * NPTEPG];
921 	while (sg < esg)
922 		*sg++ = SG_NV;
923 
924 	/*
925 	 * Initialize level 2 descriptors (which immediately
926 	 * follow the level 1 table). These should map 'pt' + 'sysptmap'.
927 	 * We need:
928 	 *	NPTEPG / SG4_LEV3SIZE
929 	 * level 2 descriptors to map each of the nptpages + 1
930 	 * pages of PTEs.  Note that we set the "used" bit
931 	 * now to save the HW the expense of doing it.
932 	 */
933 	i   = ((ptsize >> PGSHIFT) + sysptsize) * (NPTEPG / SG4_LEV3SIZE);
934 	sg  = &sysseg[SG4_LEV1SIZE];
935 	esg = &sg[i];
936 	sg_proto = ((u_int)pt + kbase) | SG_U | SG_RW | SG_V;
937 	while (sg < esg) {
938 		*sg++     = sg_proto;
939 		sg_proto += (SG4_LEV3SIZE * sizeof (st_entry_t));
940 	}
941 
942 	/*
943 	 * Initialize level 1 descriptors.  We need:
944 	 *	roundup(num, SG4_LEV2SIZE) / SG4_LEVEL2SIZE
945 	 * level 1 descriptors to map the 'num' level 2's.
946 	 */
947 	i = roundup(i, SG4_LEV2SIZE) / SG4_LEV2SIZE;
948 	protostfree = (-1 << (i + 1)) /* & ~(-1 << MAXKL2SIZE) */;
949 	sg  = sysseg;
950 	esg = &sg[i];
951 	sg_proto = ((u_int)&sg[SG4_LEV1SIZE] + kbase) | SG_U | SG_RW |SG_V;
952 	while (sg < esg) {
953 		*sg++     = sg_proto;
954 		sg_proto += (SG4_LEV2SIZE * sizeof(st_entry_t));
955 	}
956 
957 	/*
958 	 * Initialize sysptmap
959 	 */
960 	sg  = sysptmap;
961 	esg = &sg[(ptsize >> PGSHIFT) + sysptsize];
962 	pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V;
963 	while (sg < esg) {
964 		*sg++     = pg_proto;
965 		pg_proto += NBPG;
966 	}
967 	/*
968 	 * Invalidate rest of Sysptmap page
969 	 */
970 	esg = &sysptmap[sysptsize * NPTEPG];
971 	while (sg < esg)
972 		*sg++ = SG_NV;
973 }
974 #endif /* M68040 */
975 
976 #if defined(M68060)
977 int m68060_pcr_init = 0x21;	/* make this patchable */
978 #endif
979 
980 static void
981 initcpu()
982 {
983 	typedef void trapfun __P((void));
984 
985 	switch (cputype) {
986 
987 #if defined(M68060)
988 	case CPU_68060:
989 		{
990 			extern trapfun	*vectab[256];
991 			extern trapfun	buserr60, addrerr4060, fpfault;
992 #if defined(M060SP)
993 			extern u_int8_t FP_CALL_TOP[], I_CALL_TOP[];
994 #else
995 			extern trapfun illinst;
996 #endif
997 
998 			asm volatile ("movl %0,d0; .word 0x4e7b,0x0808" : :
999 					"d"(m68060_pcr_init):"d0" );
1000 
1001 			/* bus/addrerr vectors */
1002 			vectab[2] = buserr60;
1003 			vectab[3] = addrerr4060;
1004 
1005 #if defined(M060SP)
1006 			/* integer support */
1007 			vectab[61] = (trapfun *)&I_CALL_TOP[128 + 0x00];
1008 
1009 			/* floating point support */
1010 			/*
1011 			 * XXX maybe we really should run-time check for the
1012 			 * stack frame format here:
1013 			 */
1014 			vectab[11] = (trapfun *)&FP_CALL_TOP[128 + 0x30];
1015 
1016 			vectab[55] = (trapfun *)&FP_CALL_TOP[128 + 0x38];
1017 			vectab[60] = (trapfun *)&FP_CALL_TOP[128 + 0x40];
1018 
1019 			vectab[54] = (trapfun *)&FP_CALL_TOP[128 + 0x00];
1020 			vectab[52] = (trapfun *)&FP_CALL_TOP[128 + 0x08];
1021 			vectab[53] = (trapfun *)&FP_CALL_TOP[128 + 0x10];
1022 			vectab[51] = (trapfun *)&FP_CALL_TOP[128 + 0x18];
1023 			vectab[50] = (trapfun *)&FP_CALL_TOP[128 + 0x20];
1024 			vectab[49] = (trapfun *)&FP_CALL_TOP[128 + 0x28];
1025 #else
1026 			vectab[61] = illinst;
1027 #endif
1028 			vectab[48] = fpfault;
1029 		}
1030 		break;
1031 #endif /* defined(M68060) */
1032 #if defined(M68040)
1033 	case CPU_68040:
1034 		{
1035 			extern trapfun	*vectab[256];
1036 			extern trapfun	buserr40, addrerr4060;
1037 
1038 			/* bus/addrerr vectors */
1039 			vectab[2] = buserr40;
1040 			vectab[3] = addrerr4060;
1041 		}
1042 		break;
1043 #endif /* defined(M68040) */
1044 #if defined(M68030) || defined(M68020)
1045 	case CPU_68030:
1046 	case CPU_68020:
1047 		{
1048 			extern trapfun	*vectab[256];
1049 			extern trapfun	buserr2030, addrerr2030;
1050 
1051 			/* bus/addrerr vectors */
1052 			vectab[2] = buserr2030;
1053 			vectab[3] = addrerr2030;
1054 		}
1055 		break;
1056 #endif /* defined(M68030) || defined(M68020) */
1057 	}
1058 
1059 	DCIS();
1060 }
1061 
1062 #ifdef DEBUG
1063 void dump_segtable __P((u_int *));
1064 void dump_pagetable __P((u_int *, u_int, u_int));
1065 u_int vmtophys __P((u_int *, u_int));
1066 
1067 void
1068 dump_segtable(stp)
1069 	u_int *stp;
1070 {
1071 	u_int *s, *es;
1072 	int shift, i;
1073 
1074 	s = stp;
1075 	{
1076 		es = s + (ATARI_STSIZE >> 2);
1077 		shift = SG_ISHIFT;
1078 	}
1079 
1080 	/*
1081 	 * XXX need changes for 68040
1082 	 */
1083 	for (i = 0; s < es; s++, i++)
1084 		if (*s & SG_V)
1085 			printf("$%08x: $%08x\t", i << shift, *s & SG_FRAME);
1086 	printf("\n");
1087 }
1088 
1089 void
1090 dump_pagetable(ptp, i, n)
1091 	u_int *ptp, i, n;
1092 {
1093 	u_int *p, *ep;
1094 
1095 	p = ptp + i;
1096 	ep = p + n;
1097 	for (; p < ep; p++, i++)
1098 		if (*p & PG_V)
1099 			printf("$%08x -> $%08x\t", i, *p & PG_FRAME);
1100 	printf("\n");
1101 }
1102 
1103 u_int
1104 vmtophys(ste, vm)
1105 	u_int *ste, vm;
1106 {
1107 	ste = (u_int *) (*(ste + (vm >> SEGSHIFT)) & SG_FRAME);
1108 		ste += (vm & SG_PMASK) >> PGSHIFT;
1109 	return((*ste & -NBPG) | (vm & (NBPG - 1)));
1110 }
1111 
1112 #endif
1113