xref: /netbsd-src/sys/arch/atari/atari/atari_init.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: atari_init.c,v 1.83 2009/07/08 12:23:09 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1995 Leo Weppelman
5  * Copyright (c) 1994 Michael L. Hitch
6  * Copyright (c) 1993 Markus Wild
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Markus Wild.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: atari_init.c,v 1.83 2009/07/08 12:23:09 tsutsui Exp $");
37 
38 #include "opt_ddb.h"
39 #include "opt_mbtype.h"
40 #include "opt_m060sp.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/user.h>
46 #include <sys/ioctl.h>
47 #include <sys/select.h>
48 #include <sys/tty.h>
49 #include <sys/buf.h>
50 #include <sys/msgbuf.h>
51 #include <sys/mbuf.h>
52 #include <sys/extent.h>
53 #include <sys/protosw.h>
54 #include <sys/domain.h>
55 #include <sys/dkbad.h>
56 #include <sys/reboot.h>
57 #include <sys/exec.h>
58 #include <sys/core.h>
59 #include <sys/kcore.h>
60 
61 #include <uvm/uvm_extern.h>
62 
63 #include <machine/vmparam.h>
64 #include <machine/pte.h>
65 #include <machine/cpu.h>
66 #include <machine/iomap.h>
67 #include <machine/mfp.h>
68 #include <machine/scu.h>
69 #include <machine/acia.h>
70 #include <machine/kcore.h>
71 #include <machine/intr.h>
72 
73 #include <m68k/cpu.h>
74 #include <m68k/cacheops.h>
75 
76 #include <atari/atari/stalloc.h>
77 #include <atari/dev/clockvar.h>
78 #include <atari/dev/ym2149reg.h>
79 
80 #include "pci.h"
81 
82 void start_c(int, u_int, u_int, u_int, char *);
83 static void atari_hwinit(void);
84 static void cpu_init_kcorehdr(paddr_t, paddr_t);
85 static void initcpu(void);
86 static void mmu030_setup(paddr_t, u_int, paddr_t, psize_t, paddr_t, paddr_t);
87 static void map_io_areas(paddr_t, psize_t, u_int);
88 static void set_machtype(void);
89 
90 #if defined(M68040) || defined(M68060)
91 static void mmu040_setup(paddr_t, u_int, paddr_t, psize_t, paddr_t, paddr_t);
92 #endif
93 
94 /*
95  * Extent maps to manage all memory space, including I/O ranges.  Allocate
96  * storage for 8 regions in each, initially.  Later, iomem_malloc_safe
97  * will indicate that it's safe to use malloc() to dynamically allocate
98  * region descriptors.
99  * This means that the fixed static storage is only used for registrating
100  * the found memory regions and the bus-mapping of the console.
101  *
102  * The extent maps are not static!  They are used for bus address space
103  * allocation.
104  */
105 static long iomem_ex_storage[EXTENT_FIXED_STORAGE_SIZE(8) / sizeof(long)];
106 struct extent *iomem_ex;
107 int iomem_malloc_safe;
108 
109 /*
110  * All info needed to generate a panic dump. All fields are setup by
111  * start_c().
112  * XXX: Should sheck usage of phys_segs. There is some unwanted overlap
113  *      here.... Also, the name is badly choosen. Phys_segs contains the
114  *      segment descriptions _after_ reservations are made.
115  * XXX: 'lowram' is obsoleted by the new panicdump format
116  */
117 static cpu_kcore_hdr_t cpu_kcore_hdr;
118 
119 extern u_int 	lowram;
120 extern u_int	proc0paddr;
121 int		machineid, mmutype, cputype, astpending;
122 #if defined(M68040) || defined(M68060)
123 extern int	protostfree;
124 #endif
125 
126 extern char		*esym;
127 extern struct pcb	*curpcb;
128 
129 /*
130  * This is the virtual address of physical page 0. Used by 'do_boot()'.
131  */
132 vaddr_t	page_zero;
133 
134 /*
135  * Crude support for allocation in ST-ram. Currently only used to allocate
136  * video ram.
137  * The physical address is also returned because the video init needs it to
138  * setup the controller at the time the vm-system is not yet operational so
139  * 'kvtop()' cannot be used.
140  */
141 #ifndef ST_POOL_SIZE
142 #define	ST_POOL_SIZE	40			/* XXX: enough? */
143 #endif
144 
145 u_long	st_pool_size = ST_POOL_SIZE * PAGE_SIZE; /* Patchable	*/
146 u_long	st_pool_virt, st_pool_phys;
147 
148 /*
149  * Are we relocating the kernel to TT-Ram if possible? It is faster, but
150  * it is also reported not to work on all TT's. So the default is NO.
151  */
152 #ifndef	RELOC_KERNEL
153 #define	RELOC_KERNEL	0
154 #endif
155 int	reloc_kernel = RELOC_KERNEL;		/* Patchable	*/
156 
157 #define	RELOC_PA(base, pa)	((base) + (pa))	/* used to set up PTE etc. */
158 
159 /*
160  * this is the C-level entry function, it's called from locore.s.
161  * Preconditions:
162  *	Interrupts are disabled
163  *	PA == VA, we don't have to relocate addresses before enabling
164  *		the MMU
165  * 	Exec is no longer available (because we're loaded all over
166  *		low memory, no ExecBase is available anymore)
167  *
168  * It's purpose is:
169  *	Do the things that are done in locore.s in the hp300 version,
170  *		this includes allocation of kernel maps and enabling the MMU.
171  *
172  * Some of the code in here is `stolen' from Amiga MACH, and was
173  * written by Bryan Ford and Niklas Hallqvist.
174  *
175  * Very crude 68040 support by Michael L. Hitch.
176  */
177 int kernel_copyback = 1;
178 
179 void
180 start_c(int id, u_int ttphystart, u_int ttphysize, u_int stphysize, char *esym_addr)
181 	/* id:			 Machine id			*/
182 	/* ttphystart, ttphysize:	 Start address and size of TT-ram */
183 	/* stphysize:		 Size of ST-ram 		*/
184 	/* esym_addr:		 Address of kernel '_esym' symbol */
185 {
186 	extern char	end[];
187 	extern void	etext(void);
188 	extern u_long	protorp[2];
189 	paddr_t		pstart;		/* Next available physical address */
190 	vaddr_t		vstart;		/* Next available virtual address */
191 	vsize_t		avail;
192 	paddr_t		ptpa;
193 	psize_t		ptsize;
194 	u_int		ptextra;
195 	vaddr_t		kva;
196 	u_int		tc, i;
197 	pt_entry_t	*pg, *epg;
198 	pt_entry_t	pg_proto;
199 	vaddr_t		end_loaded;
200 	paddr_t		kbase;
201 	u_int		kstsize;
202 	paddr_t		Sysseg_pa;
203 	paddr_t		Sysptmap_pa;
204 
205 #if defined(_MILANHW_)
206 	/* XXX
207 	 * XXX The right place todo this is probably the booter (Leo)
208 	 * XXX More than 16MB memory is not yet supported on the Milan!
209 	 * The Milan Lies about the presence of TT-RAM. If you insert
210 	 * 16MB it is split in 14MB ST starting at address 0 and 2MB TT RAM,
211 	 * starting at address 16MB.
212 	 */
213 	stphysize += ttphysize;
214 	ttphysize  = ttphystart = 0;
215 #endif
216 	boot_segs[0].start       = 0;
217 	boot_segs[0].end         = stphysize;
218 	boot_segs[1].start       = ttphystart;
219 	boot_segs[1].end         = ttphystart + ttphysize;
220 	boot_segs[2].start = boot_segs[2].end = 0; /* End of segments! */
221 
222 	/*
223 	 * The following is a hack. We do not know how much ST memory we
224 	 * really need until after configuration has finished. At this
225 	 * time I have no idea how to grab ST memory at that time.
226 	 * The round_page() call is ment to correct errors made by
227 	 * binpatching!
228 	 */
229 	st_pool_size   = m68k_round_page(st_pool_size);
230 	st_pool_phys   = stphysize - st_pool_size;
231 	stphysize      = st_pool_phys;
232 
233 	machineid      = id;
234 	esym           = esym_addr;
235 
236 	/*
237 	 * the kernel ends at end() or esym.
238 	 */
239 	if (esym == NULL)
240 		end_loaded = (vaddr_t)&end;
241 	else
242 		end_loaded = (vaddr_t)esym;
243 
244 	/*
245 	 * If we have enough fast-memory to put the kernel in and the
246 	 * RELOC_KERNEL option is set, do it!
247 	 */
248 	if ((reloc_kernel != 0) && (ttphysize >= end_loaded))
249 		kbase = ttphystart;
250 	else
251 		kbase = 0;
252 
253 	/*
254 	 * Determine the type of machine we are running on. This needs
255 	 * to be done early (and before initcpu())!
256 	 */
257 	set_machtype();
258 
259 	/*
260 	 * Initialize CPU specific stuff
261 	 */
262 	initcpu();
263 
264 	/*
265 	 * We run the kernel from ST memory at the moment.
266 	 * The kernel segment table is put just behind the loaded image.
267 	 * pstart: start of usable ST memory
268 	 * avail : size of ST memory available.
269 	 */
270 	vstart = (vaddr_t)end_loaded;
271 	vstart = m68k_round_page(vstart);
272 	pstart = (paddr_t)vstart;	/* pre-reloc PA == kernel VA here */
273 	avail  = stphysize - pstart;
274 
275 	/*
276 	 * Save KVA of proc0 user-area and allocate it
277 	 */
278 	proc0paddr = vstart;
279 	pstart    += USPACE;
280 	vstart    += USPACE;
281 	avail     -= USPACE;
282 
283 	/*
284 	 * Calculate the number of pages needed for Sysseg.
285 	 * For the 68030, we need 256 descriptors (segment-table-entries).
286 	 * This easily fits into one page.
287 	 * For the 68040, both the level-1 and level-2 descriptors are
288 	 * stored into Sysseg. We currently handle a maximum sum of MAXKL2SIZE
289 	 * level-1 & level-2 tables.
290 	 */
291 #if defined(M68040) || defined(M68060)
292 	if (mmutype == MMU_68040)
293 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
294 	else
295 #endif
296 		kstsize = 1;
297 	/*
298 	 * allocate the kernel segment table
299 	 */
300 	Sysseg_pa  = pstart;			/* pre-reloc PA to init STEs */
301 	Sysseg     = (st_entry_t *)vstart;
302 	pstart    += kstsize * PAGE_SIZE;
303 	vstart    += kstsize * PAGE_SIZE;
304 	avail     -= kstsize * PAGE_SIZE;
305 
306 	/*
307 	 * allocate kernel page table map
308 	 */
309 	Sysptmap_pa = pstart;			/* pre-reloc PA to init PTEs */
310 	Sysptmap = (pt_entry_t *)vstart;
311 	pstart  += PAGE_SIZE;
312 	vstart  += PAGE_SIZE;
313 	avail   -= PAGE_SIZE;
314 
315 	/*
316 	 * Determine the number of pte's we need for extra's like
317 	 * ST I/O map's.
318 	 */
319 	ptextra = btoc(STIO_SIZE);
320 
321 	/*
322 	 * If present, add pci areas
323 	 */
324 	if (machineid & ATARI_HADES)
325 		ptextra += btoc(PCI_CONF_SIZE + PCI_IO_SIZE + PCI_MEM_SIZE);
326 	if (machineid & ATARI_MILAN)
327 		ptextra += btoc(PCI_IO_SIZE + PCI_MEM_SIZE);
328 	ptextra += btoc(BOOTM_VA_POOL);
329 
330 	/*
331 	 * The 'pt' (the initial kernel pagetable) has to map the kernel and
332 	 * the I/O areas. The various I/O areas are mapped (virtually) at
333 	 * the top of the address space mapped by 'pt' (ie. just below Sysmap).
334 	 */
335 	ptpa	= pstart;			/* pre-reloc PA to init PTEs */
336 	ptsize  = (Sysptsize + howmany(ptextra, NPTEPG)) << PGSHIFT;
337 	pstart += ptsize;
338 	vstart += ptsize;
339 	avail  -= ptsize;
340 
341 	/*
342 	 * Sysmap is now placed at the end of Supervisor virtual address space.
343 	 */
344 	Sysmap = (pt_entry_t *)-(NPTEPG * PAGE_SIZE);
345 
346 	/*
347 	 * Initialize segment tables
348 	 */
349 #if defined(M68040) || defined(M68060)
350 	if (mmutype == MMU_68040)
351 		mmu040_setup(Sysseg_pa, kstsize, ptpa, ptsize, Sysptmap_pa,
352 		    kbase);
353 	else
354 #endif /* defined(M68040) || defined(M68060) */
355 		mmu030_setup(Sysseg_pa, kstsize, ptpa, ptsize, Sysptmap_pa,
356 		    kbase);
357 
358 	/*
359 	 * initialize kernel page table page(s).
360 	 * Assume load at VA 0.
361 	 * - Text pages are RO
362 	 * - Page zero is invalid
363 	 */
364 	pg_proto = RELOC_PA(kbase, 0) | PG_RO | PG_V;
365 	pg       = (pt_entry_t *)ptpa;
366 	*pg++    = PG_NV;
367 
368 	pg_proto += PAGE_SIZE;
369 	for (kva = PAGE_SIZE; kva < (vaddr_t)etext; kva += PAGE_SIZE) {
370 		*pg++ = pg_proto;
371 		pg_proto += PAGE_SIZE;
372 	}
373 
374 	/*
375 	 * data, bss and dynamic tables are read/write
376 	 */
377 	pg_proto = (pg_proto & PG_FRAME) | PG_RW | PG_V;
378 
379 #if defined(M68040) || defined(M68060)
380 	/*
381 	 * Map the kernel segment table cache invalidated for
382 	 * these machines (for the 68040 not strictly necessary, but
383 	 * recommended by Motorola; for the 68060 mandatory)
384 	 */
385 	if (mmutype == MMU_68040) {
386 
387 		if (kernel_copyback)
388 			pg_proto |= PG_CCB;
389 
390 		for (; kva < (vaddr_t)Sysseg; kva += PAGE_SIZE) {
391 			*pg++ = pg_proto;
392 			pg_proto += PAGE_SIZE;
393 		}
394 
395 		pg_proto = (pg_proto & ~PG_CCB) | PG_CI;
396 		for (; kva < (vaddr_t)Sysptmap; kva += PAGE_SIZE) {
397 			*pg++ = pg_proto;
398 			pg_proto += PAGE_SIZE;
399 		}
400 
401 		pg_proto = (pg_proto & ~PG_CI);
402 		if (kernel_copyback)
403 			pg_proto |= PG_CCB;
404 	}
405 #endif /* defined(M68040) || defined(M68060) */
406 
407 	/*
408 	 * go till end of data allocated so far
409 	 * plus proc0 u-area (to be allocated)
410 	 */
411 	for (; kva < vstart; kva += PAGE_SIZE) {
412 		*pg++ = pg_proto;
413 		pg_proto += PAGE_SIZE;
414 	}
415 
416 	/*
417 	 * invalidate remainder of kernel PT
418 	 */
419 	epg = (pt_entry_t *)ptpa;
420 	epg = &epg[ptsize / sizeof(pt_entry_t)];
421 	while (pg < epg)
422 		*pg++ = PG_NV;
423 
424 	/*
425 	 * Map various I/O areas
426 	 */
427 	map_io_areas(ptpa, ptsize, ptextra);
428 
429 	/*
430 	 * Map the allocated space in ST-ram now. In the contig-case, there
431 	 * is no need to make a distinction between virtual and physical
432 	 * addresses. But I make it anyway to be prepared.
433 	 * Physcal space is already reserved!
434 	 */
435 	st_pool_virt = vstart;
436 	pg           = (pt_entry_t *)ptpa;
437 	pg           = &pg[vstart / PAGE_SIZE];
438 	pg_proto     = st_pool_phys | PG_RW | PG_CI | PG_V;
439 	vstart      += st_pool_size;
440 	while (pg_proto < (st_pool_phys + st_pool_size)) {
441 		*pg++     = pg_proto;
442 		pg_proto += PAGE_SIZE;
443 	}
444 
445 	/*
446 	 * Map physical page_zero and page-zero+1 (First ST-ram page). We need
447 	 * to reference it in the reboot code. Two pages are mapped, because
448 	 * we must make sure 'doboot()' is contained in it (see the tricky
449 	 * copying there....).
450 	 */
451 	page_zero  = vstart;
452 	pg         = (pt_entry_t *)ptpa;
453 	pg         = &pg[vstart / PAGE_SIZE];
454 	*pg++      = PG_RW | PG_CI | PG_V;
455 	vstart    += PAGE_SIZE;
456 	*pg        = PG_RW | PG_CI | PG_V | PAGE_SIZE;
457 	vstart    += PAGE_SIZE;
458 
459 	/*
460 	 * All necessary STEs and PTEs have been initialized.
461 	 * Update Sysseg_pa and Sysptmap_pa to point relocated PA.
462 	 */
463 	if (kbase) {
464 		Sysseg_pa   += kbase;
465 		Sysptmap_pa += kbase;
466 	}
467 
468 	lowram  = 0 >> PGSHIFT; /* XXX */
469 
470 	/*
471 	 * Fill in usable segments. The page indexes will be initialized
472 	 * later when all reservations are made.
473 	 */
474 	usable_segs[0].start = 0;
475 	usable_segs[0].end   = stphysize;
476 	usable_segs[0].free_list = VM_FREELIST_STRAM;
477 	usable_segs[1].start = ttphystart;
478 	usable_segs[1].end   = ttphystart + ttphysize;
479 	usable_segs[1].free_list = VM_FREELIST_TTRAM;
480 	usable_segs[2].start = usable_segs[2].end = 0; /* End of segments! */
481 
482 	if (kbase) {
483 		/*
484 		 * First page of ST-ram is unusable, reserve the space
485 		 * for the kernel in the TT-ram segment.
486 		 * Note: Because physical page-zero is partially mapped to ROM
487 		 *       by hardware, it is unusable.
488 		 */
489 		usable_segs[0].start  = PAGE_SIZE;
490 		usable_segs[1].start += pstart;
491 	} else
492 		usable_segs[0].start += pstart;
493 
494 	/*
495 	 * As all segment sizes are now valid, calculate page indexes and
496 	 * available physical memory.
497 	 */
498 	usable_segs[0].first_page = 0;
499 	for (i = 1; usable_segs[i].start; i++) {
500 		usable_segs[i].first_page  = usable_segs[i-1].first_page;
501 		usable_segs[i].first_page +=
502 		    (usable_segs[i-1].end - usable_segs[i-1].start) / PAGE_SIZE;
503 	}
504 	for (i = 0, physmem = 0; usable_segs[i].start; i++)
505 		physmem += usable_segs[i].end - usable_segs[i].start;
506 	physmem >>= PGSHIFT;
507 
508 	/*
509 	 * get the pmap module in sync with reality.
510 	 */
511 	pmap_bootstrap(vstart, Sysseg_pa);
512 
513 	/*
514 	 * Prepare to enable the MMU.
515 	 * Setup and load SRP nolimit, share global, 4 byte PTE's
516 	 */
517 	protorp[0] = 0x80000202;
518 	protorp[1] = Sysseg_pa;			/* + segtable address */
519 
520 	cpu_init_kcorehdr(kbase, Sysseg_pa);
521 
522 	/*
523 	 * copy over the kernel (and all now initialized variables)
524 	 * to fastram.  DONT use bcopy(), this beast is much larger
525 	 * than 128k !
526 	 */
527 	if (kbase) {
528 		register paddr_t *lp, *le, *fp;
529 
530 		lp = (paddr_t *)0;
531 		le = (paddr_t *)pstart;
532 		fp = (paddr_t *)kbase;
533 		while(lp < le)
534 			*fp++ = *lp++;
535 	}
536 #if defined(M68040) || defined(M68060)
537 	if (mmutype == MMU_68040) {
538 		/*
539 		 * movel Sysseg_pa,a0;
540 		 * movec a0,SRP;
541 		 * pflusha;
542 		 * movel #$0xc000,d0;
543 		 * movec d0,TC
544 		 */
545 		if (cputype == CPU_68060) {
546 			/* XXX: Need the branch cache be cleared? */
547 			__asm volatile (".word 0x4e7a,0x0002;"
548 				      "orl #0x400000,%%d0;"
549 				      ".word 0x4e7b,0x0002" : : : "d0");
550 		}
551 		__asm volatile ("movel %0,%%a0;"
552 			      ".word 0x4e7b,0x8807" : : "a" (Sysseg_pa) : "a0");
553 		__asm volatile (".word 0xf518" : : );
554 		__asm volatile ("movel #0xc000,%%d0;"
555 			      ".word 0x4e7b,0x0003" : : : "d0" );
556 	} else
557 #endif
558 	{
559 		__asm volatile ("pmove %0@,%%srp" : : "a" (&protorp[0]));
560 		/*
561 		 * setup and load TC register.
562 		 * enable_cpr, enable_srp, pagesize=8k,
563 		 * A = 8 bits, B = 11 bits
564 		 */
565 		tc = 0x82d08b00;
566 		__asm volatile ("pmove %0@,%%tc" : : "a" (&tc));
567 	}
568 
569 	/* Is this to fool the optimizer?? */
570 	i = *(int *)proc0paddr;
571 	*(volatile int *)proc0paddr = i;
572 
573 	/*
574 	 * Initialize the "u-area" pages.
575 	 * Must initialize p_addr before autoconfig or the
576 	 * fault handler will get a NULL reference.
577 	 */
578 	memset((u_char *)proc0paddr, 0, USPACE);
579 	lwp0.l_addr = (struct user *)proc0paddr;
580 	curlwp = &lwp0;
581 	curpcb  = &((struct user *)proc0paddr)->u_pcb;
582 
583 	/*
584 	 * Get the hardware into a defined state
585 	 */
586 	atari_hwinit();
587 
588 	/*
589 	 * Initialize stmem allocator
590 	 */
591 	init_stmem();
592 
593 	/*
594 	 * Initialize the I/O mem extent map.
595 	 * Note: we don't have to check the return value since
596 	 * creation of a fixed extent map will never fail (since
597 	 * descriptor storage has already been allocated).
598 	 *
599 	 * N.B. The iomem extent manages _all_ physical addresses
600 	 * on the machine.  When the amount of RAM is found, all
601 	 * extents of RAM are allocated from the map.
602 	 */
603 	iomem_ex = extent_create("iomem", 0x0, 0xffffffff, M_DEVBUF,
604 	    (void *)iomem_ex_storage, sizeof(iomem_ex_storage),
605 	    EX_NOCOALESCE|EX_NOWAIT);
606 
607 	/*
608 	 * Allocate the physical RAM from the extent map
609 	 */
610 	for (i = 0; boot_segs[i].end != 0; i++) {
611 		if (extent_alloc_region(iomem_ex, boot_segs[i].start,
612 		    boot_segs[i].end - boot_segs[i].start, EX_NOWAIT)) {
613 			/* XXX: Ahum, should not happen ;-) */
614 			printf("Warning: Cannot allocate boot memory from"
615 			    " extent map!?\n");
616 		}
617 	}
618 
619 	/*
620 	 * Initialize interrupt mapping.
621 	 */
622 	intr_init();
623 }
624 
625 /*
626  * Try to figure out on what type of machine we are running
627  * Note: This module runs *before* the io-mapping is setup!
628  */
629 static void
630 set_machtype(void)
631 {
632 
633 #ifdef _MILANHW_
634 	machineid |= ATARI_MILAN;
635 
636 #else
637 	stio_addr = 0xff8000;	/* XXX: For TT & Falcon only */
638 	if (badbaddr((void *)__UNVOLATILE(&MFP2->mf_gpip), sizeof(char))) {
639 		/*
640 		 * Watch out! We can also have a Hades with < 16Mb
641 		 * RAM here...
642 		 */
643 		if (!badbaddr((void *)__UNVOLATILE(&MFP->mf_gpip),
644 		    sizeof(char))) {
645 			machineid |= ATARI_FALCON;
646 			return;
647 		}
648 	}
649 	if (!badbaddr((void *)(PCI_CONFB_PHYS + PCI_CONFM_PHYS), sizeof(char)))
650 		machineid |= ATARI_HADES;
651 	else
652 		machineid |= ATARI_TT;
653 #endif /* _MILANHW_ */
654 }
655 
656 static void
657 atari_hwinit(void)
658 {
659 
660 #if defined(_ATARIHW_)
661 	/*
662 	 * Initialize the sound chip
663 	 */
664 	ym2149_init();
665 
666 	/*
667 	 * Make sure that the midi acia will not generate an interrupt
668 	 * unless something attaches to it. We cannot do this for the
669 	 * keyboard acia because this breaks the '-d' option of the
670 	 * booter...
671 	 */
672 	MDI->ac_cs = 0;
673 #endif /* defined(_ATARIHW_) */
674 
675 	/*
676 	 * Initialize both MFP chips (if both present!) to generate
677 	 * auto-vectored interrupts with EOI. The active-edge registers are
678 	 * set up. The interrupt enable registers are set to disable all
679 	 * interrupts.
680 	 */
681 	MFP->mf_iera  = MFP->mf_ierb = 0;
682 	MFP->mf_imra  = MFP->mf_imrb = 0;
683 	MFP->mf_aer   = MFP->mf_ddr  = 0;
684 	MFP->mf_vr    = 0x40;
685 
686 #if defined(_ATARIHW_)
687 	if (machineid & (ATARI_TT|ATARI_HADES)) {
688 		MFP2->mf_iera = MFP2->mf_ierb = 0;
689 		MFP2->mf_imra = MFP2->mf_imrb = 0;
690 		MFP2->mf_aer  = 0x80;
691 		MFP2->mf_vr   = 0x50;
692 	}
693 
694 	if (machineid & ATARI_TT) {
695 		/*
696 		 * Initialize the SCU, to enable interrupts on the SCC (ipl5),
697 		 * MFP (ipl6) and softints (ipl1).
698 		 */
699 		SCU->sys_mask = SCU_SYS_SOFT;
700 		SCU->vme_mask = SCU_MFP | SCU_SCC;
701 #ifdef DDB
702 		/*
703 		 * This allows people with the correct hardware modification
704 		 * to drop into the debugger from an NMI.
705 		 */
706 		SCU->sys_mask |= SCU_IRQ7;
707 #endif
708 	}
709 #endif /* defined(_ATARIHW_) */
710 
711 	/*
712 	 * Initialize a timer for delay(9).
713 	 */
714 	init_delay();
715 
716 #if NPCI > 0
717 	if (machineid & (ATARI_HADES|ATARI_MILAN)) {
718 		/*
719 		 * Configure PCI-bus
720 		 */
721 		init_pci_bus();
722 	}
723 #endif
724 
725 }
726 
727 /*
728  * Do the dull work of mapping the various I/O areas. They MUST be Cache
729  * inhibited!
730  * All I/O areas are virtually mapped at the end of the pt-table.
731  */
732 static void
733 map_io_areas(paddr_t ptpa, psize_t ptsize, u_int ptextra)
734 	/* ptsize:		 Size of 'pt' in bytes	*/
735 	/* ptextra:	 #of additional I/O pte's	*/
736 {
737 	extern void	bootm_init(vaddr_t, pt_entry_t *, u_long);
738 	vaddr_t		ioaddr;
739 	pt_entry_t	*pt, *pg, *epg;
740 	pt_entry_t	pg_proto;
741 	u_long		mask;
742 
743 	pt = (pt_entry_t *)ptpa;
744 	ioaddr = ((ptsize / sizeof(pt_entry_t)) - ptextra) * PAGE_SIZE;
745 
746 	/*
747 	 * Map ST-IO area
748 	 */
749 	stio_addr = ioaddr;
750 	ioaddr   += STIO_SIZE;
751 	pg        = &pt[stio_addr / PAGE_SIZE];
752 	epg       = &pg[btoc(STIO_SIZE)];
753 #ifdef _MILANHW_
754 	/*
755 	 * Turn on byte swaps in the ST I/O area. On the Milan, the
756 	 * U0 signal of the MMU controls the BigEndian signal
757 	 * of the PLX9080. We use this setting so we can read/write the
758 	 * PLX registers (and PCI-config space) in big-endian mode.
759 	 */
760 	pg_proto  = STIO_PHYS | PG_RW | PG_CI | PG_V | 0x100;
761 #else
762 	pg_proto  = STIO_PHYS | PG_RW | PG_CI | PG_V;
763 #endif
764 	while(pg < epg) {
765 		*pg++     = pg_proto;
766 		pg_proto += PAGE_SIZE;
767 	}
768 
769 	/*
770 	 * Map PCI areas
771 	 */
772 	if (machineid & ATARI_HADES) {
773 		/*
774 		 * Only Hades maps the PCI-config space!
775 		 */
776 		pci_conf_addr = ioaddr;
777 		ioaddr       += PCI_CONF_SIZE;
778 		pg            = &pt[pci_conf_addr / PAGE_SIZE];
779 		epg           = &pg[btoc(PCI_CONF_SIZE)];
780 		mask          = PCI_CONFM_PHYS;
781 		pg_proto      = PCI_CONFB_PHYS | PG_RW | PG_CI | PG_V;
782 		for (; pg < epg; mask <<= 1)
783 			*pg++ = pg_proto | mask;
784 	} else
785 		pci_conf_addr = 0; /* XXX: should crash */
786 
787 	if (machineid & (ATARI_HADES|ATARI_MILAN)) {
788 		pci_io_addr   = ioaddr;
789 		ioaddr       += PCI_IO_SIZE;
790 		pg	      = &pt[pci_io_addr / PAGE_SIZE];
791 		epg           = &pg[btoc(PCI_IO_SIZE)];
792 		pg_proto      = PCI_IO_PHYS | PG_RW | PG_CI | PG_V;
793 		while (pg < epg) {
794 			*pg++     = pg_proto;
795 			pg_proto += PAGE_SIZE;
796 		}
797 
798 		pci_mem_addr  = ioaddr;
799 		/* Provide an uncached PCI address for the MILAN */
800 		pci_mem_uncached = ioaddr;
801 		ioaddr       += PCI_MEM_SIZE;
802 		epg           = &pg[btoc(PCI_MEM_SIZE)];
803 		pg_proto      = PCI_VGA_PHYS | PG_RW | PG_CI | PG_V;
804 		while (pg < epg) {
805 			*pg++     = pg_proto;
806 			pg_proto += PAGE_SIZE;
807 		}
808 	}
809 
810 	bootm_init(ioaddr, pg, BOOTM_VA_POOL);
811 	/*
812 	 * ioaddr += BOOTM_VA_POOL;
813 	 * pg = &pg[btoc(BOOTM_VA_POOL)];
814 	 */
815 }
816 
817 /*
818  * Used by dumpconf() to get the size of the machine-dependent panic-dump
819  * header in disk blocks.
820  */
821 
822 #define CHDRSIZE (ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)))
823 #define MDHDRSIZE roundup(CHDRSIZE, dbtob(1))
824 
825 int
826 cpu_dumpsize(void)
827 {
828 
829 	return btodb(MDHDRSIZE);
830 }
831 
832 /*
833  * Called by dumpsys() to dump the machine-dependent header.
834  * XXX: Assumes that it will all fit in one diskblock.
835  */
836 int
837 cpu_dump(int (*dump)(dev_t, daddr_t, void *, size_t), daddr_t *p_blkno)
838 {
839 	int		buf[MDHDRSIZE/sizeof(int)];
840 	int		error;
841 	kcore_seg_t	*kseg_p;
842 	cpu_kcore_hdr_t	*chdr_p;
843 
844 	kseg_p = (kcore_seg_t *)buf;
845 	chdr_p = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*kseg_p)) / sizeof(int)];
846 
847 	/*
848 	 * Generate a segment header
849 	 */
850 	CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
851 	kseg_p->c_size = MDHDRSIZE - ALIGN(sizeof(*kseg_p));
852 
853 	/*
854 	 * Add the md header
855 	 */
856 	*chdr_p = cpu_kcore_hdr;
857 	error = dump(dumpdev, *p_blkno, (void *)buf, sizeof(buf));
858 	*p_blkno += btodb(sizeof(buf));
859 	return (error);
860 }
861 
862 #if (M68K_NPHYS_RAM_SEGS < NMEM_SEGS)
863 #error "Configuration error: M68K_NPHYS_RAM_SEGS < NMEM_SEGS"
864 #endif
865 /*
866  * Initialize the cpu_kcore_header.
867  */
868 static void
869 cpu_init_kcorehdr(paddr_t kbase, paddr_t sysseg_pa)
870 {
871 	cpu_kcore_hdr_t *h = &cpu_kcore_hdr;
872 	struct m68k_kcore_hdr *m = &h->un._m68k;
873 	extern char end[];
874 	int	i;
875 
876 	memset(&cpu_kcore_hdr, 0, sizeof(cpu_kcore_hdr));
877 
878 	/*
879 	 * Initialize the `dispatcher' portion of the header.
880 	 */
881 	strcpy(h->name, machine);
882 	h->page_size = PAGE_SIZE;
883 	h->kernbase = KERNBASE;
884 
885 	/*
886 	 * Fill in information about our MMU configuration.
887 	 */
888 	m->mmutype	= mmutype;
889 	m->sg_v		= SG_V;
890 	m->sg_frame	= SG_FRAME;
891 	m->sg_ishift	= SG_ISHIFT;
892 	m->sg_pmask	= SG_PMASK;
893 	m->sg40_shift1	= SG4_SHIFT1;
894 	m->sg40_mask2	= SG4_MASK2;
895 	m->sg40_shift2	= SG4_SHIFT2;
896 	m->sg40_mask3	= SG4_MASK3;
897 	m->sg40_shift3	= SG4_SHIFT3;
898 	m->sg40_addr1	= SG4_ADDR1;
899 	m->sg40_addr2	= SG4_ADDR2;
900 	m->pg_v		= PG_V;
901 	m->pg_frame	= PG_FRAME;
902 
903 	/*
904 	 * Initialize pointer to kernel segment table.
905 	 */
906 	m->sysseg_pa = sysseg_pa;		/* PA after relocation */
907 
908 	/*
909 	 * Initialize relocation value such that:
910 	 *
911 	 *	pa = (va - KERNBASE) + reloc
912 	 */
913 	m->reloc = kbase;
914 
915 	/*
916 	 * Define the end of the relocatable range.
917 	 */
918 	m->relocend = (vaddr_t)end;
919 
920 	for (i = 0; i < NMEM_SEGS; i++) {
921 		m->ram_segs[i].start = boot_segs[i].start;
922 		m->ram_segs[i].size  = boot_segs[i].end -
923 		    boot_segs[i].start;
924 	}
925 }
926 
927 void
928 mmu030_setup(paddr_t sysseg_pa, u_int kstsize, paddr_t ptpa, psize_t ptsize, paddr_t sysptmap_pa, paddr_t kbase)
929 	/* sysseg_pa:	 System segment table		*/
930 	/* kstsize:	 size of 'sysseg' in pages	*/
931 	/* ptpa:		 Kernel page table		*/
932 	/* ptsize:		 size	of 'pt' in bytes	*/
933 	/* sysptmap_pa:	 System page table		*/
934 {
935 	st_entry_t	sg_proto, *sg, *esg;
936 	pt_entry_t	pg_proto, *pg, *epg;
937 
938 	/*
939 	 * Map the page table pages in both the HW segment table
940 	 * and the software Sysptmap.
941 	 */
942 	sg  = (st_entry_t *)sysseg_pa;
943 	pg  = (pt_entry_t *)sysptmap_pa;
944 	epg = &pg[ptsize >> PGSHIFT];
945 	sg_proto = RELOC_PA(kbase, ptpa) | SG_RW | SG_V;
946 	pg_proto = RELOC_PA(kbase, ptpa) | PG_RW | PG_CI | PG_V;
947 	while (pg < epg) {
948 		*sg++ = sg_proto;
949 		*pg++ = pg_proto;
950 		sg_proto += PAGE_SIZE;
951 		pg_proto += PAGE_SIZE;
952 	}
953 
954 	/*
955 	 * Invalidate the remainder of the tables.
956 	 */
957 	esg = (st_entry_t *)sysseg_pa;
958 	esg = &esg[256];			/* XXX should be TIA_SIZE */
959 	while (sg < esg)
960 		*sg++ = SG_NV;
961 	epg = (pt_entry_t *)sysptmap_pa;
962 	epg = &epg[NPTEPG];			/* XXX should be TIB_SIZE */
963 	while (pg < epg)
964 		*pg++ = PG_NV;
965 
966 	/*
967 	 * Initialize the PTE for the last one to point Sysptmap.
968 	 */
969 	sg = (st_entry_t *)sysseg_pa;
970 	sg = &sg[256 - 1];			/* XXX should be TIA_SIZE */
971 	pg = (pt_entry_t *)sysptmap_pa;
972 	pg = &pg[256 - 1];			/* XXX should be TIA_SIZE */
973 	*sg = RELOC_PA(kbase, sysptmap_pa) | SG_RW | SG_V;
974 	*pg = RELOC_PA(kbase, sysptmap_pa) | PG_RW | PG_CI | PG_V;
975 }
976 
977 #if defined(M68040) || defined(M68060)
978 void
979 mmu040_setup(paddr_t sysseg_pa, u_int kstsize, paddr_t ptpa, psize_t ptsize, paddr_t sysptmap_pa, paddr_t kbase)
980 	/* sysseg_pa:	 System segment table		*/
981 	/* kstsize:	 size of 'sysseg' in pages	*/
982 	/* ptpa:		 Kernel page table		*/
983 	/* ptsize:		 size	of 'pt' in bytes	*/
984 	/* sysptmap_pa:	 System page table		*/
985 {
986 	int		nl1desc, nl2desc, i;
987 	st_entry_t	sg_proto, *sg, *esg;
988 	pt_entry_t	pg_proto, *pg, *epg;
989 
990 	/*
991 	 * First invalidate the entire "segment table" pages
992 	 * (levels 1 and 2 have the same "invalid" values).
993 	 */
994 	sg  = (st_entry_t *)sysseg_pa;
995 	esg = &sg[kstsize * NPTEPG];
996 	while (sg < esg)
997 		*sg++ = SG_NV;
998 
999 	/*
1000 	 * Initialize level 2 descriptors (which immediately
1001 	 * follow the level 1 table).
1002 	 * We need:
1003 	 *	NPTEPG / SG4_LEV3SIZE
1004 	 * level 2 descriptors to map each of the nptpages
1005 	 * pages of PTEs.  Note that we set the "used" bit
1006 	 * now to save the HW the expense of doing it.
1007 	 */
1008 	nl2desc = (ptsize >> PGSHIFT) * (NPTEPG / SG4_LEV3SIZE);
1009 	sg  = (st_entry_t *)sysseg_pa;
1010 	sg  = &sg[SG4_LEV1SIZE];
1011 	esg = &sg[nl2desc];
1012 	sg_proto = RELOC_PA(kbase, ptpa) | SG_U | SG_RW | SG_V;
1013 	while (sg < esg) {
1014 		*sg++     = sg_proto;
1015 		sg_proto += (SG4_LEV3SIZE * sizeof(st_entry_t));
1016 	}
1017 
1018 	/*
1019 	 * Initialize level 1 descriptors.  We need:
1020 	 *	howmany(nl2desc, SG4_LEV2SIZE)
1021 	 * level 1 descriptors to map the 'nl2desc' level 2's.
1022 	 */
1023 	nl1desc = howmany(nl2desc, SG4_LEV2SIZE);
1024 	sg  = (st_entry_t *)sysseg_pa;
1025 	esg = &sg[nl1desc];
1026 	sg_proto = RELOC_PA(kbase, (paddr_t)&sg[SG4_LEV1SIZE])
1027 	    | SG_U | SG_RW | SG_V;
1028 	while (sg < esg) {
1029 		*sg++     = sg_proto;
1030 		sg_proto += (SG4_LEV2SIZE * sizeof(st_entry_t));
1031 	}
1032 
1033 	/* Sysmap is last entry in level 1 */
1034 	sg  = (st_entry_t *)sysseg_pa;
1035 	sg  = &sg[SG4_LEV1SIZE - 1];
1036 	*sg = sg_proto;
1037 
1038 	/*
1039 	 * Kernel segment table at end of next level 2 table
1040 	 */
1041 	i = SG4_LEV1SIZE + (nl1desc * SG4_LEV2SIZE);
1042 	sg  = (st_entry_t *)sysseg_pa;
1043 	sg  = &sg[i + SG4_LEV2SIZE - (NPTEPG / SG4_LEV3SIZE)];
1044 	esg = &sg[NPTEPG / SG4_LEV3SIZE];
1045 	sg_proto = RELOC_PA(kbase, sysptmap_pa) | SG_U | SG_RW | SG_V;
1046 	while (sg < esg) {
1047 		*sg++ = sg_proto;
1048 		sg_proto += (SG4_LEV3SIZE * sizeof(st_entry_t));
1049 	}
1050 
1051 	/* Include additional level 2 table for Sysmap in protostfree */
1052 	protostfree = (~0 << (1 + nl1desc + 1)) /* & ~(~0 << MAXKL2SIZE) */;
1053 
1054 	/*
1055 	 * Initialize Sysptmap
1056 	 */
1057 	pg  = (pt_entry_t *)sysptmap_pa;
1058 	epg = &pg[ptsize >> PGSHIFT];
1059 	pg_proto = RELOC_PA(kbase, ptpa) | PG_RW | PG_CI | PG_V;
1060 	while (pg < epg) {
1061 		*pg++ = pg_proto;
1062 		pg_proto += PAGE_SIZE;
1063 	}
1064 
1065 	/*
1066 	 * Invalidate rest of Sysptmap page.
1067 	 */
1068 	epg = (pt_entry_t *)sysptmap_pa;
1069 	epg = &epg[NPTEPG];		/* XXX: should be TIB_SIZE */
1070 	while (pg < epg)
1071 		*pg++ = PG_NV;
1072 
1073 	/*
1074 	 * Initialize the PTE for the last one to point Sysptmap.
1075 	 */
1076 	pg = (pt_entry_t *)sysptmap_pa;
1077 	pg = &pg[256 - 1];		/* XXX: should be TIA_SIZE */
1078 	*pg = RELOC_PA(kbase, sysptmap_pa) | PG_RW | PG_CI | PG_V;
1079 }
1080 #endif /* M68040 */
1081 
1082 #if defined(M68060)
1083 int m68060_pcr_init = 0x21;	/* make this patchable */
1084 #endif
1085 
1086 static void
1087 initcpu(void)
1088 {
1089 	typedef void trapfun(void);
1090 
1091 	switch (cputype) {
1092 
1093 #if defined(M68060)
1094 	case CPU_68060:
1095 		{
1096 			extern trapfun	*vectab[256];
1097 			extern trapfun	buserr60, addrerr4060, fpfault;
1098 #if defined(M060SP)
1099 			extern u_int8_t FP_CALL_TOP[], I_CALL_TOP[];
1100 #else
1101 			extern trapfun illinst;
1102 #endif
1103 
1104 			__asm volatile ("movl %0,%%d0; .word 0x4e7b,0x0808" : :
1105 					"d"(m68060_pcr_init):"d0" );
1106 
1107 			/* bus/addrerr vectors */
1108 			vectab[2] = buserr60;
1109 			vectab[3] = addrerr4060;
1110 
1111 #if defined(M060SP)
1112 			/* integer support */
1113 			vectab[61] = (trapfun *)&I_CALL_TOP[128 + 0x00];
1114 
1115 			/* floating point support */
1116 			/*
1117 			 * XXX maybe we really should run-time check for the
1118 			 * stack frame format here:
1119 			 */
1120 			vectab[11] = (trapfun *)&FP_CALL_TOP[128 + 0x30];
1121 
1122 			vectab[55] = (trapfun *)&FP_CALL_TOP[128 + 0x38];
1123 			vectab[60] = (trapfun *)&FP_CALL_TOP[128 + 0x40];
1124 
1125 			vectab[54] = (trapfun *)&FP_CALL_TOP[128 + 0x00];
1126 			vectab[52] = (trapfun *)&FP_CALL_TOP[128 + 0x08];
1127 			vectab[53] = (trapfun *)&FP_CALL_TOP[128 + 0x10];
1128 			vectab[51] = (trapfun *)&FP_CALL_TOP[128 + 0x18];
1129 			vectab[50] = (trapfun *)&FP_CALL_TOP[128 + 0x20];
1130 			vectab[49] = (trapfun *)&FP_CALL_TOP[128 + 0x28];
1131 #else
1132 			vectab[61] = illinst;
1133 #endif
1134 			vectab[48] = fpfault;
1135 		}
1136 		break;
1137 #endif /* defined(M68060) */
1138 #if defined(M68040)
1139 	case CPU_68040:
1140 		{
1141 			extern trapfun	*vectab[256];
1142 			extern trapfun	buserr40, addrerr4060;
1143 
1144 			/* bus/addrerr vectors */
1145 			vectab[2] = buserr40;
1146 			vectab[3] = addrerr4060;
1147 		}
1148 		break;
1149 #endif /* defined(M68040) */
1150 #if defined(M68030) || defined(M68020)
1151 	case CPU_68030:
1152 	case CPU_68020:
1153 		{
1154 			extern trapfun	*vectab[256];
1155 			extern trapfun	buserr2030, addrerr2030;
1156 
1157 			/* bus/addrerr vectors */
1158 			vectab[2] = buserr2030;
1159 			vectab[3] = addrerr2030;
1160 		}
1161 		break;
1162 #endif /* defined(M68030) || defined(M68020) */
1163 	}
1164 
1165 	DCIS();
1166 }
1167 
1168 #ifdef DEBUG
1169 void dump_segtable(u_int *);
1170 void dump_pagetable(u_int *, u_int, u_int);
1171 u_int vmtophys(u_int *, u_int);
1172 
1173 void
1174 dump_segtable(u_int *stp)
1175 {
1176 	u_int *s, *es;
1177 	int shift, i;
1178 
1179 	s = stp;
1180 	{
1181 		es = s + (M68K_STSIZE >> 2);
1182 		shift = SG_ISHIFT;
1183 	}
1184 
1185 	/*
1186 	 * XXX need changes for 68040
1187 	 */
1188 	for (i = 0; s < es; s++, i++)
1189 		if (*s & SG_V)
1190 			printf("$%08x: $%08x\t", i << shift, *s & SG_FRAME);
1191 	printf("\n");
1192 }
1193 
1194 void
1195 dump_pagetable(u_int *ptp, u_int i, u_int n)
1196 {
1197 	u_int *p, *ep;
1198 
1199 	p = ptp + i;
1200 	ep = p + n;
1201 	for (; p < ep; p++, i++)
1202 		if (*p & PG_V)
1203 			printf("$%08x -> $%08x\t", i, *p & PG_FRAME);
1204 	printf("\n");
1205 }
1206 
1207 u_int
1208 vmtophys(u_int *ste, u_int vm)
1209 {
1210 
1211 	ste = (u_int *)(*(ste + (vm >> SEGSHIFT)) & SG_FRAME);
1212 	ste += (vm & SG_PMASK) >> PGSHIFT;
1213 	return (*ste & -PAGE_SIZE) | (vm & (PAGE_SIZE - 1));
1214 }
1215 
1216 #endif
1217