xref: /netbsd-src/sys/arch/arm/xscale/ixp425_if_npe.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: ixp425_if_npe.c,v 1.25 2014/03/20 06:48:54 skrll Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.25 2014/03/20 06:48:54 skrll Exp $");
32 
33 /*
34  * Intel XScale NPE Ethernet driver.
35  *
36  * This driver handles the two ports present on the IXP425.
37  * Packet processing is done by the Network Processing Engines
38  * (NPE's) that work together with a MAC and PHY. The MAC
39  * is also mapped to the XScale cpu; the PHY is accessed via
40  * the MAC. NPE-XScale communication happens through h/w
41  * queues managed by the Q Manager block.
42  *
43  * The code here replaces the ethAcc, ethMii, and ethDB classes
44  * in the Intel Access Library (IAL) and the OS-specific driver.
45  *
46  * XXX add vlan support
47  * XXX NPE-C port doesn't work yet
48  */
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/device.h>
54 #include <sys/callout.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/socket.h>
58 #include <sys/endian.h>
59 #include <sys/ioctl.h>
60 #include <sys/syslog.h>
61 
62 #include <sys/bus.h>
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 
69 #include <net/bpf.h>
70 
71 #include <sys/rnd.h>
72 
73 #include <arm/xscale/ixp425reg.h>
74 #include <arm/xscale/ixp425var.h>
75 #include <arm/xscale/ixp425_qmgr.h>
76 #include <arm/xscale/ixp425_npevar.h>
77 #include <arm/xscale/ixp425_if_npereg.h>
78 
79 #include <dev/mii/miivar.h>
80 
81 #include "locators.h"
82 
83 struct npebuf {
84 	struct npebuf	*ix_next;	/* chain to next buffer */
85 	void		*ix_m;		/* backpointer to mbuf */
86 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
87 	struct npehwbuf	*ix_hw;		/* associated h/w block */
88 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
89 };
90 
91 struct npedma {
92 	const char*	name;
93 	int		nbuf;		/* # npebuf's allocated */
94 	bus_dmamap_t	m_map;
95 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
96 	bus_dmamap_t	buf_map;
97 	bus_addr_t	buf_phys;	/* phys addr of buffers */
98 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
99 };
100 
101 struct npe_softc {
102 	device_t	sc_dev;
103 	struct ethercom	sc_ethercom;
104 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
105 	struct mii_data	sc_mii;
106 	bus_space_tag_t	sc_iot;
107 	bus_dma_tag_t	sc_dt;
108 	bus_space_handle_t sc_ioh;	/* MAC register window */
109 	bus_space_handle_t sc_miih;	/* MII register window */
110 	struct ixpnpe_softc *sc_npe;	/* NPE support */
111 	int		sc_unit;
112 	int		sc_phy;
113 	struct callout	sc_tick_ch;	/* Tick callout */
114 	struct npedma	txdma;
115 	struct npebuf	*tx_free;	/* list of free tx buffers */
116 	struct npedma	rxdma;
117 	int		rx_qid;		/* rx qid */
118 	int		rx_freeqid;	/* rx free buffers qid */
119 	int		tx_qid;		/* tx qid */
120 	int		tx_doneqid;	/* tx completed qid */
121 	struct npestats	*sc_stats;
122 	bus_dmamap_t	sc_stats_map;
123 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
124 	int		sc_if_flags;	/* keep last if_flags */
125 	krndsource_t rnd_source; /* random source */
126 };
127 
128 /*
129  * Per-unit static configuration for IXP425.  The tx and
130  * rx free Q id's are fixed by the NPE microcode.  The
131  * rx Q id's are programmed to be separate to simplify
132  * multi-port processing.  It may be better to handle
133  * all traffic through one Q (as done by the Intel drivers).
134  *
135  * Note that the PHY's are accessible only from MAC A
136  * on the IXP425.  This and other platform-specific
137  * assumptions probably need to be handled through hints.
138  */
139 static const struct {
140 	const char	*desc;		/* device description */
141 	int		npeid;		/* NPE assignment */
142 	int		macport;	/* Port number of the MAC */
143 	uint32_t	imageid;	/* NPE firmware image id */
144 	uint32_t	regbase;
145 	int		regsize;
146 	uint32_t	miibase;
147 	int		miisize;
148 	uint8_t		rx_qid;
149 	uint8_t		rx_freeqid;
150 	uint8_t		tx_qid;
151 	uint8_t		tx_doneqid;
152 } npeconfig[NPE_PORTS_MAX] = {
153 	{ .desc		= "IXP NPE-B",
154 	  .npeid	= NPE_B,
155 	  .macport	= 0x10,
156 	  .imageid	= IXP425_NPE_B_IMAGEID,
157 	  .regbase	= IXP425_MAC_A_HWBASE,
158 	  .regsize	= IXP425_MAC_A_SIZE,
159 	  .miibase	= IXP425_MAC_A_HWBASE,
160 	  .miisize	= IXP425_MAC_A_SIZE,
161 	  .rx_qid	= 4,
162 	  .rx_freeqid	= 27,
163 	  .tx_qid	= 24,
164 	  .tx_doneqid	= 31
165 	},
166 	{ .desc		= "IXP NPE-C",
167 	  .npeid	= NPE_C,
168 	  .macport	= 0x20,
169 	  .imageid	= IXP425_NPE_C_IMAGEID,
170 	  .regbase	= IXP425_MAC_B_HWBASE,
171 	  .regsize	= IXP425_MAC_B_SIZE,
172 	  .miibase	= IXP425_MAC_A_HWBASE,
173 	  .miisize	= IXP425_MAC_A_SIZE,
174 	  .rx_qid	= 12,
175 	  .rx_freeqid	= 28,
176 	  .tx_qid	= 25,
177 	  .tx_doneqid	= 31
178 	},
179 };
180 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
181 
182 static __inline uint32_t
183 RD4(struct npe_softc *sc, bus_size_t off)
184 {
185 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
186 }
187 
188 static __inline void
189 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
190 {
191 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
192 }
193 
194 static int	npe_activate(struct npe_softc *);
195 #if 0
196 static void	npe_deactivate(struct npe_softc *);
197 #endif
198 static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
199 static void	npe_setmac(struct npe_softc *sc, const u_char *eaddr);
200 static void	npe_getmac(struct npe_softc *sc);
201 static void	npe_txdone(int qid, void *arg);
202 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
203 			struct mbuf *);
204 static void	npe_rxdone(int qid, void *arg);
205 static void	npeinit_macreg(struct npe_softc *);
206 static int	npeinit(struct ifnet *);
207 static void	npeinit_resetcb(void *);
208 static void	npeinit_locked(void *);
209 static void	npestart(struct ifnet *);
210 static void	npestop(struct ifnet *, int);
211 static void	npewatchdog(struct ifnet *);
212 static int	npeioctl(struct ifnet * ifp, u_long, void *);
213 
214 static int	npe_setrxqosentry(struct npe_softc *, int classix,
215 			int trafclass, int qid);
216 static int	npe_updatestats(struct npe_softc *);
217 #if 0
218 static int	npe_getstats(struct npe_softc *);
219 static uint32_t	npe_getimageid(struct npe_softc *);
220 static int	npe_setloopback(struct npe_softc *, int ena);
221 #endif
222 
223 static int	npe_miibus_readreg(device_t, int, int);
224 static void	npe_miibus_writereg(device_t, int, int, int);
225 static void	npe_miibus_statchg(struct ifnet *);
226 
227 static int	npe_debug;
228 #define DPRINTF(sc, fmt, ...) do {			\
229 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
230 } while (0)
231 #define DPRINTFn(n, sc, fmt, ...) do {			\
232 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
233 } while (0)
234 
235 #define	NPE_TXBUF	128
236 #define	NPE_RXBUF	64
237 
238 #ifndef ETHER_ALIGN
239 #define	ETHER_ALIGN	2	/* XXX: Ditch this */
240 #endif
241 
242 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
243 				    + ((uint64_t)addr[1] << 32)	\
244 				    + ((uint64_t)addr[2] << 24)	\
245 				    + ((uint64_t)addr[3] << 16)	\
246 				    + ((uint64_t)addr[4] << 8)	\
247 				    + (uint64_t)addr[5])
248 
249 /* NB: all tx done processing goes through one queue */
250 static int tx_doneqid = -1;
251 
252 void (*npe_getmac_md)(int, uint8_t *);
253 
254 static int npe_match(device_t, cfdata_t, void *);
255 static void npe_attach(device_t, device_t, void *);
256 
257 CFATTACH_DECL_NEW(npe, sizeof(struct npe_softc),
258     npe_match, npe_attach, NULL, NULL);
259 
260 static int
261 npe_match(device_t parent, cfdata_t cf, void *arg)
262 {
263 	struct ixpnpe_attach_args *na = arg;
264 
265 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
266 }
267 
268 static void
269 npe_attach(device_t parent, device_t self, void *arg)
270 {
271 	struct npe_softc *sc = device_private(self);
272 	struct ixpnpe_softc *isc = device_private(parent);
273 	struct ixpnpe_attach_args *na = arg;
274 	struct ifnet *ifp;
275 
276 	aprint_naive("\n");
277 	aprint_normal(": Ethernet co-processor\n");
278 
279 	sc->sc_dev = self;
280 	sc->sc_iot = na->na_iot;
281 	sc->sc_dt = na->na_dt;
282 	sc->sc_npe = na->na_npe;
283 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
284 	sc->sc_phy = na->na_phy;
285 
286 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
287 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
288 
289 	callout_init(&sc->sc_tick_ch, 0);
290 
291 	if (npe_activate(sc)) {
292 		aprint_error_dev(sc->sc_dev,
293 		    "Failed to activate NPE (missing microcode?)\n");
294 		return;
295 	}
296 
297 	npe_getmac(sc);
298 	npeinit_macreg(sc);
299 
300 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
301 	    ether_sprintf(sc->sc_enaddr));
302 
303 	ifp = &sc->sc_ethercom.ec_if;
304 	sc->sc_mii.mii_ifp = ifp;
305 	sc->sc_mii.mii_readreg = npe_miibus_readreg;
306 	sc->sc_mii.mii_writereg = npe_miibus_writereg;
307 	sc->sc_mii.mii_statchg = npe_miibus_statchg;
308 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
309 
310 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
311 	    npe_ifmedia_status);
312 
313 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
314 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
315 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
316 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
317 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
318 	} else
319 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
320 
321 	ifp->if_softc = sc;
322 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
323 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 	ifp->if_start = npestart;
325 	ifp->if_ioctl = npeioctl;
326 	ifp->if_watchdog = npewatchdog;
327 	ifp->if_init = npeinit;
328 	ifp->if_stop = npestop;
329 	IFQ_SET_READY(&ifp->if_snd);
330 
331 	/* VLAN capable */
332 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
333 
334 	if_attach(ifp);
335 	ether_ifattach(ifp, sc->sc_enaddr);
336 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
337 	    RND_TYPE_NET, 0);
338 
339 	/* callback function to reset MAC */
340 	isc->macresetcbfunc = npeinit_resetcb;
341 	isc->macresetcbarg = sc;
342 }
343 
344 /*
345  * Compute and install the multicast filter.
346  */
347 static void
348 npe_setmcast(struct npe_softc *sc)
349 {
350 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
351 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
352 	uint32_t reg;
353 	uint32_t msg[2];
354 	int i;
355 
356 	/* Always use filter. Is here a correct position? */
357 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
358 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
359 
360 	if (ifp->if_flags & IFF_PROMISC) {
361 		memset(mask, 0, ETHER_ADDR_LEN);
362 		memset(addr, 0, ETHER_ADDR_LEN);
363 	} else if (ifp->if_flags & IFF_ALLMULTI) {
364 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
365 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
366  all_multi:
367 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
368 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
369 	} else {
370 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
371 		struct ether_multistep step;
372 		struct ether_multi *enm;
373 
374 		memset(clr, 0, ETHER_ADDR_LEN);
375 		memset(set, 0xff, ETHER_ADDR_LEN);
376 
377 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
378 		while (enm != NULL) {
379 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
380 				ifp->if_flags |= IFF_ALLMULTI;
381 				goto all_multi;
382 			}
383 
384 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
385 				clr[i] |= enm->enm_addrlo[i];
386 				set[i] &= enm->enm_addrlo[i];
387 			}
388 
389 			ETHER_NEXT_MULTI(step, enm);
390 		}
391 
392 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
393 			mask[i] = set[i] | ~clr[i];
394 			addr[i] = set[i];
395 		}
396 	}
397 
398 	/*
399 	 * Write the mask and address registers.
400 	 */
401 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
402 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
403 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
404 	}
405 
406 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
407 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
408 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
409 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
410 	    | (addr[5] << 8) | mask[5];
411 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
412 }
413 
414 static int
415 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
416 	const char *name, int nbuf, int maxseg)
417 {
418 	bus_dma_segment_t seg;
419 	int rseg, error, i;
420 	void *hwbuf;
421 	size_t size;
422 
423 	memset(dma, 0, sizeof(*dma));
424 
425 	dma->name = name;
426 	dma->nbuf = nbuf;
427 
428 	size = nbuf * sizeof(struct npehwbuf);
429 
430 	/* XXX COHERENT for now */
431 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
432 	    1, &rseg, BUS_DMA_NOWAIT);
433 	if (error) {
434 		aprint_error_dev(sc->sc_dev,
435 		    "unable to %s for %s %s buffers, error %u\n",
436 		    "allocate memory", dma->name, "h/w", error);
437 	}
438 
439 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
440 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
441 	if (error) {
442 		aprint_error_dev(sc->sc_dev,
443 		    "unable to %s for %s %s buffers, error %u\n",
444 		    "map memory", dma->name, "h/w", error);
445  free_dmamem:
446 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
447 		return error;
448 	}
449 	dma->hwbuf = (void *)hwbuf;
450 
451 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
452 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
453 	if (error) {
454 		aprint_error_dev(sc->sc_dev,
455 		    "unable to %s for %s %s buffers, error %u\n",
456 		    "create map", dma->name, "h/w", error);
457  unmap_dmamem:
458 		dma->hwbuf = NULL;
459 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
460 		goto free_dmamem;
461 	}
462 
463 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
464 	    BUS_DMA_NOWAIT);
465 	if (error) {
466 		aprint_error_dev(sc->sc_dev,
467 		    "unable to %s for %s %s buffers, error %u\n",
468 		    "load map", dma->name, "h/w", error);
469  destroy_dmamap:
470 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
471 		goto unmap_dmamem;
472 	}
473 
474 	/* XXX M_TEMP */
475 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
476 	if (dma->buf == NULL) {
477 		aprint_error_dev(sc->sc_dev,
478 		    "unable to %s for %s %s buffers, error %u\n",
479 		    "allocate memory", dma->name, "h/w", error);
480 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
481 		error = ENOMEM;
482 		goto destroy_dmamap;
483 	}
484 
485 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
486 	for (i = 0; i < dma->nbuf; i++) {
487 		struct npebuf *npe = &dma->buf[i];
488 		struct npehwbuf *hw = &dma->hwbuf[i];
489 
490 		/* calculate offset to shared area */
491 		npe->ix_neaddr = dma->buf_phys +
492 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
493 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
494 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
495 		    MCLBYTES, 0, 0, &npe->ix_map);
496 		if (error != 0) {
497 			aprint_error_dev(sc->sc_dev,
498 			    "unable to %s for %s buffer %u, error %u\n",
499 			    "create dmamap", dma->name, i, error);
500 			/* XXXSCW: Free up maps... */
501 			return error;
502 		}
503 		npe->ix_hw = hw;
504 	}
505 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
506 	    BUS_DMASYNC_PREWRITE);
507 	return 0;
508 }
509 
510 #if 0
511 static void
512 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
513 {
514 	int i;
515 
516 /* XXXSCW: Clean this up */
517 
518 	if (dma->hwbuf != NULL) {
519 		for (i = 0; i < dma->nbuf; i++) {
520 			struct npebuf *npe = &dma->buf[i];
521 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
522 		}
523 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
524 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
525 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
526 	}
527 	if (dma->buf != NULL)
528 		free(dma->buf, M_TEMP);
529 	memset(dma, 0, sizeof(*dma));
530 }
531 #endif
532 
533 static int
534 npe_activate(struct npe_softc *sc)
535 {
536 	bus_dma_segment_t seg;
537 	int unit = sc->sc_unit;
538 	int error, i, rseg;
539 	void *statbuf;
540 
541 	/* load NPE firmware and start it running */
542 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
543 	if (error != 0)
544 		return error;
545 
546 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
547 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
548 		aprint_error_dev(sc->sc_dev, "Cannot map registers 0x%x:0x%x\n",
549 		    npeconfig[unit].regbase, npeconfig[unit].regsize);
550 		return ENOMEM;
551 	}
552 
553 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
554 		/*
555 		 * The PHY's are only accessible from one MAC (it appears)
556 		 * so for other MAC's setup an additional mapping for
557 		 * frobbing the PHY registers.
558 		 */
559 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
560 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
561 			aprint_error_dev(sc->sc_dev,
562 			    "Cannot map MII registers 0x%x:0x%x\n",
563 			    npeconfig[unit].miibase, npeconfig[unit].miisize);
564 			return ENOMEM;
565 		}
566 	} else
567 		sc->sc_miih = sc->sc_ioh;
568 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
569 	if (error != 0)
570 		return error;
571 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
572 	if (error != 0)
573 		return error;
574 
575 	/* setup statistics block */
576 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
577 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
578 	if (error) {
579 		aprint_error_dev(sc->sc_dev,
580 		    "unable to %s for %s, error %u\n",
581 		    "allocate memory", "stats block", error);
582 		return error;
583 	}
584 
585 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
586 	    &statbuf, BUS_DMA_NOWAIT);
587 	if (error) {
588 		aprint_error_dev(sc->sc_dev,
589 		    "unable to %s for %s, error %u\n",
590 		    "map memory", "stats block", error);
591 		return error;
592 	}
593 	sc->sc_stats = (void *)statbuf;
594 
595 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
596 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
597 	    &sc->sc_stats_map);
598 	if (error) {
599 		aprint_error_dev(sc->sc_dev,
600 		    "unable to %s for %s, error %u\n",
601 		    "create map", "stats block", error);
602 		return error;
603 	}
604 
605 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
606 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
607 		aprint_error_dev(sc->sc_dev,
608 		    "unable to %s for %s, error %u\n",
609 		    "load map", "stats block", error);
610 		return error;
611 	}
612 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
613 
614 	/* XXX disable half-bridge LEARNING+FILTERING feature */
615 
616 	/*
617 	 * Setup h/w rx/tx queues.  There are four q's:
618 	 *   rx		inbound q of rx'd frames
619 	 *   rx_free	pool of ixpbuf's for receiving frames
620 	 *   tx		outbound q of frames to send
621 	 *   tx_done	q of tx frames that have been processed
622 	 *
623 	 * The NPE handles the actual tx/rx process and the q manager
624 	 * handles the queues.  The driver just writes entries to the
625 	 * q manager mailbox's and gets callbacks when there are rx'd
626 	 * frames to process or tx'd frames to reap.  These callbacks
627 	 * are controlled by the q configurations; e.g. we get a
628 	 * callback when tx_done has 2 or more frames to process and
629 	 * when the rx q has at least one frame.  These setings can
630 	 * changed at the time the q is configured.
631 	 */
632 	sc->rx_qid = npeconfig[unit].rx_qid;
633 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
634 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
635 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
636 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
637 	/* tell the NPE to direct all traffic to rx_qid */
638 #if 0
639 	for (i = 0; i < 8; i++)
640 #else
641 printf("%s: remember to fix rx q setup\n", device_xname(sc->sc_dev));
642 	for (i = 0; i < 4; i++)
643 #endif
644 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
645 
646 	sc->tx_qid = npeconfig[unit].tx_qid;
647 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
648 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
649 	if (tx_doneqid == -1) {
650 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
651 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
652 		tx_doneqid = sc->tx_doneqid;
653 	}
654 
655 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
656 	npes[npeconfig[unit].npeid] = sc;
657 
658 	return 0;
659 }
660 
661 #if 0
662 static void
663 npe_deactivate(struct npe_softc *sc);
664 {
665 	int unit = sc->sc_unit;
666 
667 	npes[npeconfig[unit].npeid] = NULL;
668 
669 	/* XXX disable q's */
670 	if (sc->sc_npe != NULL)
671 		ixpnpe_stop(sc->sc_npe);
672 	if (sc->sc_stats != NULL) {
673 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
674 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
675 			sc->sc_stats_map);
676 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
677 	}
678 	if (sc->sc_stats_tag != NULL)
679 		bus_dma_tag_destroy(sc->sc_stats_tag);
680 	npe_dma_destroy(sc, &sc->txdma);
681 	npe_dma_destroy(sc, &sc->rxdma);
682 	bus_generic_detach(sc->sc_dev);
683 	if (sc->sc_mii)
684 		device_delete_child(sc->sc_dev, sc->sc_mii);
685 #if 0
686 	/* XXX sc_ioh and sc_miih */
687 	if (sc->mem_res)
688 		bus_release_resource(dev, SYS_RES_IOPORT,
689 		    rman_get_rid(sc->mem_res), sc->mem_res);
690 	sc->mem_res = 0;
691 #endif
692 }
693 #endif
694 
695 /*
696  * Notify the world which media we're using.
697  */
698 static void
699 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
700 {
701 	struct npe_softc *sc = ifp->if_softc;
702 
703 	mii_pollstat(&sc->sc_mii);
704 
705 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
706 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
707 }
708 
709 static void
710 npe_addstats(struct npe_softc *sc)
711 {
712 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
713 	struct npestats *ns = sc->sc_stats;
714 
715 	ifp->if_oerrors +=
716 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
717 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
718 		+ be32toh(ns->TxVLANIdFilterDiscards)
719 		;
720 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
721 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
722 		+ be32toh(ns->RxOverrunDiscards)
723 		+ be32toh(ns->RxUnderflowEntryDiscards)
724 		;
725 	ifp->if_collisions +=
726 		  be32toh(ns->dot3StatsSingleCollisionFrames)
727 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
728 		;
729 }
730 
731 static void
732 npe_tick(void *xsc)
733 {
734 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
735 	struct npe_softc *sc = xsc;
736 	uint32_t msg[2];
737 
738 	/*
739 	 * NB: to avoid sleeping with the softc lock held we
740 	 * split the NPE msg processing into two parts.  The
741 	 * request for statistics is sent w/o waiting for a
742 	 * reply and then on the next tick we retrieve the
743 	 * results.  This works because npe_tick is the only
744 	 * code that talks via the mailbox's (except at setup).
745 	 * This likely can be handled better.
746 	 */
747 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
748 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
749 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
750 		npe_addstats(sc);
751 	}
752 	npe_updatestats(sc);
753 	mii_tick(&sc->sc_mii);
754 
755 	/* schedule next poll */
756 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
757 #undef ACK
758 }
759 
760 static void
761 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
762 {
763 
764 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
765 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
766 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
767 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
768 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
769 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
770 }
771 
772 static void
773 npe_getmac(struct npe_softc *sc)
774 {
775 	uint8_t *eaddr = sc->sc_enaddr;
776 
777 	if (npe_getmac_md != NULL) {
778 		(*npe_getmac_md)(device_unit(sc->sc_dev), eaddr);
779 	} else {
780 		/*
781 		 * Some system's unicast address appears to be loaded from
782 		 * EEPROM on reset
783 		 */
784 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
785 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
786 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
787 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
788 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
789 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
790 	}
791 }
792 
793 struct txdone {
794 	struct npebuf *head;
795 	struct npebuf **tail;
796 	int count;
797 };
798 
799 static __inline void
800 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
801 {
802 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
803 
804 	*td->tail = sc->tx_free;
805 	sc->tx_free = td->head;
806 	/*
807 	 * We're no longer busy, so clear the busy flag and call the
808 	 * start routine to xmit more packets.
809 	 */
810 	ifp->if_opackets += td->count;
811 	ifp->if_flags &= ~IFF_OACTIVE;
812 	ifp->if_timer = 0;
813 	npestart(ifp);
814 }
815 
816 /*
817  * Q manager callback on tx done queue.  Reap mbufs
818  * and return tx buffers to the free list.  Finally
819  * restart output.  Note the microcode has only one
820  * txdone q wired into it so we must use the NPE ID
821  * returned with each npehwbuf to decide where to
822  * send buffers.
823  */
824 static void
825 npe_txdone(int qid, void *arg)
826 {
827 #define	P2V(a, dma) \
828 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
829 	struct npe_softc *sc;
830 	struct npebuf *npe;
831 	struct txdone *td, q[NPE_MAX];
832 	uint32_t entry;
833 
834 	/* XXX no NPE-A support */
835 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
836 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
837 	/* XXX max # at a time? */
838 	while (ixpqmgr_qread(qid, &entry) == 0) {
839 		sc = npes[NPE_QM_Q_NPE(entry)];
840 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
841 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
842 		rnd_add_uint32(&sc->rnd_source, entry);
843 
844 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
845 		m_freem(npe->ix_m);
846 		npe->ix_m = NULL;
847 
848 		td = &q[NPE_QM_Q_NPE(entry)];
849 		*td->tail = npe;
850 		td->tail = &npe->ix_next;
851 		td->count++;
852 	}
853 
854 	if (q[NPE_B].count)
855 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
856 	if (q[NPE_C].count)
857 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
858 #undef P2V
859 }
860 
861 static __inline struct mbuf *
862 npe_getcl(void)
863 {
864 	struct mbuf *m;
865 
866 	MGETHDR(m, M_DONTWAIT, MT_DATA);
867 	if (m != NULL) {
868 		MCLGET(m, M_DONTWAIT);
869 		if ((m->m_flags & M_EXT) == 0) {
870 			m_freem(m);
871 			m = NULL;
872 		}
873 	}
874 	return (m);
875 }
876 
877 static int
878 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
879 {
880 	struct npehwbuf *hw;
881 	int error;
882 
883 	if (m == NULL) {
884 		m = npe_getcl();
885 		if (m == NULL)
886 			return ENOBUFS;
887 	}
888 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
889 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
890 	/* backload payload and align ip hdr */
891 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
892 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
893 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
894 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
895 	if (error != 0) {
896 		m_freem(m);
897 		return error;
898 	}
899 	hw = npe->ix_hw;
900 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
901 	/* NB: NPE requires length be a multiple of 64 */
902 	/* NB: buffer length is shifted in word */
903 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
904 	hw->ix_ne[0].next = 0;
905 	npe->ix_m = m;
906 	/* Flush the memory in the mbuf */
907 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
908 	    BUS_DMASYNC_PREREAD);
909 	return 0;
910 }
911 
912 /*
913  * RX q processing for a specific NPE.  Claim entries
914  * from the hardware queue and pass the frames up the
915  * stack. Pass the rx buffers to the free list.
916  */
917 static void
918 npe_rxdone(int qid, void *arg)
919 {
920 #define	P2V(a, dma) \
921 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
922 	struct npe_softc *sc = arg;
923 	struct npedma *dma = &sc->rxdma;
924 	uint32_t entry;
925 
926 	while (ixpqmgr_qread(qid, &entry) == 0) {
927 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
928 		struct mbuf *m;
929 
930 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
931 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
932 		rnd_add_uint32(&sc->rnd_source, entry);
933 		/*
934 		 * Allocate a new mbuf to replenish the rx buffer.
935 		 * If doing so fails we drop the rx'd frame so we
936 		 * can reuse the previous mbuf.  When we're able to
937 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
938 		 * data up the stack and replace it with the newly
939 		 * allocated one.
940 		 */
941 		m = npe_getcl();
942 		if (m != NULL) {
943 			struct mbuf *mrx = npe->ix_m;
944 			struct npehwbuf *hw = npe->ix_hw;
945 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
946 
947 			/* Flush mbuf memory for rx'd data */
948 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
949 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
950 
951 			/* XXX flush hw buffer; works now 'cuz coherent */
952 			/* set m_len etc. per rx frame size */
953 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
954 			mrx->m_pkthdr.len = mrx->m_len;
955 			mrx->m_pkthdr.rcvif = ifp;
956 			/* Don't add M_HASFCS. See below */
957 
958 #if 1
959 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
960 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
961 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
962 				/* Back out "newly allocated" mbuf. */
963 				m_freem(m);
964 				ifp->if_ierrors++;
965 				goto fail;
966 			}
967 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
968 				struct ether_header *eh;
969 
970 				/*
971 				 * Workaround for "Non-Intel XScale Technology
972 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
973 				 * matches the filter (both unicast and
974 				 * multicast).
975 				 */
976 				eh = mtod(mrx, struct ether_header *);
977 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
978 					/* unicast */
979 
980 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
981 						/* discard it */
982 #if 0
983 						printf("discard it\n");
984 #endif
985 						/*
986 						 * Back out "newly allocated"
987 						 * mbuf.
988 						 */
989 						m_freem(m);
990 						goto fail;
991 					}
992 				} else if (memcmp(eh->ether_dhost,
993 					etherbroadcastaddr, 6) == 0) {
994 					/* Always accept broadcast packet*/
995 				} else {
996 					struct ethercom *ec = &sc->sc_ethercom;
997 					struct ether_multi *enm;
998 					struct ether_multistep step;
999 					int match = 0;
1000 
1001 					/* multicast */
1002 
1003 					ETHER_FIRST_MULTI(step, ec, enm);
1004 					while (enm != NULL) {
1005 						uint64_t lowint, highint, dest;
1006 
1007 						lowint = MAC2UINT64(enm->enm_addrlo);
1008 						highint = MAC2UINT64(enm->enm_addrhi);
1009 						dest = MAC2UINT64(eh->ether_dhost);
1010 #if 0
1011 						printf("%llx\n", lowint);
1012 						printf("%llx\n", dest);
1013 						printf("%llx\n", highint);
1014 #endif
1015 						if ((lowint <= dest) && (dest <= highint)) {
1016 							match = 1;
1017 							break;
1018 						}
1019 						ETHER_NEXT_MULTI(step, enm);
1020 					}
1021 					if (match == 0) {
1022 						/* discard it */
1023 #if 0
1024 						printf("discard it(M)\n");
1025 #endif
1026 						/*
1027 						 * Back out "newly allocated"
1028 						 * mbuf.
1029 						 */
1030 						m_freem(m);
1031 						goto fail;
1032 					}
1033 				}
1034 			}
1035 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1036 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1037 				    device_xname(sc->sc_dev), mrx->m_pkthdr.len);
1038 				/* Back out "newly allocated" mbuf. */
1039 				m_freem(m);
1040 				ifp->if_ierrors++;
1041 				goto fail;
1042 			}
1043 #endif
1044 
1045 			/*
1046 			 * Trim FCS!
1047 			 * NPE always adds the FCS by this driver's setting,
1048 			 * so we always trim it here and not add M_HASFCS.
1049 			 */
1050 			m_adj(mrx, -ETHER_CRC_LEN);
1051 
1052 			ifp->if_ipackets++;
1053 			/*
1054 			 * Tap off here if there is a bpf listener.
1055 			 */
1056 			bpf_mtap(ifp, mrx);
1057 			ifp->if_input(ifp, mrx);
1058 		} else {
1059 fail:
1060 			/* discard frame and re-use mbuf */
1061 			m = npe->ix_m;
1062 		}
1063 		if (npe_rxbuf_init(sc, npe, m) == 0) {
1064 			/* return npe buf to rx free list */
1065 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1066 		} else {
1067 			/* XXX should not happen */
1068 		}
1069 	}
1070 #undef P2V
1071 }
1072 
1073 static void
1074 npe_startxmit(struct npe_softc *sc)
1075 {
1076 	struct npedma *dma = &sc->txdma;
1077 	int i;
1078 
1079 	sc->tx_free = NULL;
1080 	for (i = 0; i < dma->nbuf; i++) {
1081 		struct npebuf *npe = &dma->buf[i];
1082 		if (npe->ix_m != NULL) {
1083 			/* NB: should not happen */
1084 			printf("%s: %s: free mbuf at entry %u\n",
1085 			    device_xname(sc->sc_dev), __func__, i);
1086 			m_freem(npe->ix_m);
1087 		}
1088 		npe->ix_m = NULL;
1089 		npe->ix_next = sc->tx_free;
1090 		sc->tx_free = npe;
1091 	}
1092 }
1093 
1094 static void
1095 npe_startrecv(struct npe_softc *sc)
1096 {
1097 	struct npedma *dma = &sc->rxdma;
1098 	struct npebuf *npe;
1099 	int i;
1100 
1101 	for (i = 0; i < dma->nbuf; i++) {
1102 		npe = &dma->buf[i];
1103 		npe_rxbuf_init(sc, npe, npe->ix_m);
1104 		/* set npe buf on rx free list */
1105 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1106 	}
1107 }
1108 
1109 static void
1110 npeinit_macreg(struct npe_softc *sc)
1111 {
1112 
1113 	/*
1114 	 * Reset MAC core.
1115 	 */
1116 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1117 	DELAY(NPE_MAC_RESET_DELAY);
1118 	/* configure MAC to generate MDC clock */
1119 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1120 
1121 	/* disable transmitter and reciver in the MAC */
1122  	WR4(sc, NPE_MAC_RX_CNTRL1,
1123 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1124  	WR4(sc, NPE_MAC_TX_CNTRL1,
1125 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1126 
1127 	/*
1128 	 * Set the MAC core registers.
1129 	 */
1130 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
1131 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
1132 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
1133 	/* thresholds determined by NPE firmware FS */
1134 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
1135 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
1136 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1137 						/* tx fifo threshold (bytes) */
1138 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
1139 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
1140 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
1141 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
1142 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1143 						/* assumes MII mode */
1144 	WR4(sc, NPE_MAC_TX_CNTRL1,
1145 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
1146 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
1147 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
1148 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
1149 	/* XXX pad strip? */
1150 	WR4(sc, NPE_MAC_RX_CNTRL1,
1151 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
1152 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
1153 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1154 }
1155 
1156 static void
1157 npeinit_resetcb(void *xsc)
1158 {
1159 	struct npe_softc *sc = xsc;
1160 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 	uint32_t msg[2];
1162 
1163 	ifp->if_oerrors++;
1164 	npeinit_locked(sc);
1165 
1166 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1167 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1168 	msg[1] = 0;
1169 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1170 }
1171 
1172 /*
1173  * Reset and initialize the chip
1174  */
1175 static void
1176 npeinit_locked(void *xsc)
1177 {
1178 	struct npe_softc *sc = xsc;
1179 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1180 
1181 	/* Cancel any pending I/O. */
1182 	npestop(ifp, 0);
1183 
1184 	/* Reset the chip to a known state. */
1185 	npeinit_macreg(sc);
1186 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
1187 	ether_mediachange(ifp);
1188 	npe_setmcast(sc);
1189 
1190 	npe_startxmit(sc);
1191 	npe_startrecv(sc);
1192 
1193 	ifp->if_flags |= IFF_RUNNING;
1194 	ifp->if_flags &= ~IFF_OACTIVE;
1195 	ifp->if_timer = 0;		/* just in case */
1196 
1197 	/* enable transmitter and reciver in the MAC */
1198  	WR4(sc, NPE_MAC_RX_CNTRL1,
1199 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1200  	WR4(sc, NPE_MAC_TX_CNTRL1,
1201 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1202 
1203 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1204 }
1205 
1206 static int
1207 npeinit(struct ifnet *ifp)
1208 {
1209 	struct npe_softc *sc = ifp->if_softc;
1210 	int s;
1211 
1212 	s = splnet();
1213 	npeinit_locked(sc);
1214 	splx(s);
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * Defragment an mbuf chain, returning at most maxfrags separate
1221  * mbufs+clusters.  If this is not possible NULL is returned and
1222  * the original mbuf chain is left in it's present (potentially
1223  * modified) state.  We use two techniques: collapsing consecutive
1224  * mbufs and replacing consecutive mbufs by a cluster.
1225  */
1226 static __inline struct mbuf *
1227 npe_defrag(struct mbuf *m0)
1228 {
1229 	struct mbuf *m;
1230 
1231 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1232 	if (m == NULL)
1233 		return (NULL);
1234 	M_COPY_PKTHDR(m, m0);
1235 
1236 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1237 		MCLGET(m, M_DONTWAIT);
1238 		if ((m->m_flags & M_EXT) == 0) {
1239 			m_freem(m);
1240 			return (NULL);
1241 		}
1242 	}
1243 
1244 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1245 	m_freem(m0);
1246 
1247 	return (m);
1248 }
1249 
1250 /*
1251  * Dequeue packets and place on the h/w transmit queue.
1252  */
1253 static void
1254 npestart(struct ifnet *ifp)
1255 {
1256 	struct npe_softc *sc = ifp->if_softc;
1257 	struct npebuf *npe;
1258 	struct npehwbuf *hw;
1259 	struct mbuf *m, *n;
1260 	bus_dma_segment_t *segs;
1261 	int nseg, len, error, i;
1262 	uint32_t next;
1263 
1264 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1265 		return;
1266 
1267 	while (sc->tx_free != NULL) {
1268 		IFQ_DEQUEUE(&ifp->if_snd, m);
1269 		if (m == NULL)
1270 			break;
1271 		npe = sc->tx_free;
1272 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1273 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1274 		if (error == EFBIG) {
1275 			n = npe_defrag(m);
1276 			if (n == NULL) {
1277 				printf("%s: %s: too many fragments\n",
1278 				    device_xname(sc->sc_dev), __func__);
1279 				m_freem(m);
1280 				return;	/* XXX? */
1281 			}
1282 			m = n;
1283 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1284 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1285 		}
1286 		if (error != 0) {
1287 			printf("%s: %s: error %u\n",
1288 			    device_xname(sc->sc_dev), __func__, error);
1289 			m_freem(m);
1290 			return;	/* XXX? */
1291 		}
1292 		sc->tx_free = npe->ix_next;
1293 
1294 		/*
1295 		 * Tap off here if there is a bpf listener.
1296 		 */
1297 		bpf_mtap(ifp, m);
1298 
1299 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1300 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1301 
1302 		npe->ix_m = m;
1303 		hw = npe->ix_hw;
1304 		len = m->m_pkthdr.len;
1305 		nseg = npe->ix_map->dm_nsegs;
1306 		segs = npe->ix_map->dm_segs;
1307 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1308 		for (i = 0; i < nseg; i++) {
1309 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1310 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1311 			hw->ix_ne[i].next = htobe32(next);
1312 
1313 			len = 0;		/* zero for segments > 1 */
1314 			next += sizeof(hw->ix_ne[0]);
1315 		}
1316 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
1317 		/* XXX flush descriptor instead of using uncached memory */
1318 
1319 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1320 		    __func__, sc->tx_qid, npe->ix_neaddr,
1321 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
1322 		/* stick it on the tx q */
1323 		/* XXX add vlan priority */
1324 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1325 
1326 		ifp->if_timer = 5;
1327 	}
1328 	if (sc->tx_free == NULL)
1329 		ifp->if_flags |= IFF_OACTIVE;
1330 }
1331 
1332 static void
1333 npe_stopxmit(struct npe_softc *sc)
1334 {
1335 	struct npedma *dma = &sc->txdma;
1336 	int i;
1337 
1338 	/* XXX qmgr */
1339 	for (i = 0; i < dma->nbuf; i++) {
1340 		struct npebuf *npe = &dma->buf[i];
1341 
1342 		if (npe->ix_m != NULL) {
1343 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1344 			m_freem(npe->ix_m);
1345 			npe->ix_m = NULL;
1346 		}
1347 	}
1348 }
1349 
1350 static void
1351 npe_stoprecv(struct npe_softc *sc)
1352 {
1353 	struct npedma *dma = &sc->rxdma;
1354 	int i;
1355 
1356 	/* XXX qmgr */
1357 	for (i = 0; i < dma->nbuf; i++) {
1358 		struct npebuf *npe = &dma->buf[i];
1359 
1360 		if (npe->ix_m != NULL) {
1361 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1362 			m_freem(npe->ix_m);
1363 			npe->ix_m = NULL;
1364 		}
1365 	}
1366 }
1367 
1368 /*
1369  * Turn off interrupts, and stop the nic.
1370  */
1371 void
1372 npestop(struct ifnet *ifp, int disable)
1373 {
1374 	struct npe_softc *sc = ifp->if_softc;
1375 
1376 	/*  disable transmitter and reciver in the MAC  */
1377  	WR4(sc, NPE_MAC_RX_CNTRL1,
1378 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1379  	WR4(sc, NPE_MAC_TX_CNTRL1,
1380 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1381 
1382 	callout_stop(&sc->sc_tick_ch);
1383 
1384 	npe_stopxmit(sc);
1385 	npe_stoprecv(sc);
1386 	/* XXX go into loopback & drain q's? */
1387 	/* XXX but beware of disabling tx above */
1388 
1389 	/*
1390 	 * The MAC core rx/tx disable may leave the MAC hardware in an
1391 	 * unpredictable state. A hw reset is executed before resetting
1392 	 * all the MAC parameters to a known value.
1393 	 */
1394 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1395 	DELAY(NPE_MAC_RESET_DELAY);
1396 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1397 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1398 
1399 	ifp->if_timer = 0;
1400 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1401 }
1402 
1403 void
1404 npewatchdog(struct ifnet *ifp)
1405 {
1406 	struct npe_softc *sc = ifp->if_softc;
1407 	int s;
1408 
1409 	aprint_error_dev(sc->sc_dev, "device timeout\n");
1410 	s = splnet();
1411 	ifp->if_oerrors++;
1412 	npeinit_locked(sc);
1413 	splx(s);
1414 }
1415 
1416 static int
1417 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1418 {
1419 	struct npe_softc *sc = ifp->if_softc;
1420 	struct ifreq *ifr = (struct ifreq *) data;
1421 	int s, error = 0;
1422 
1423 	s = splnet();
1424 
1425 	switch (cmd) {
1426 	case SIOCSIFMEDIA:
1427 	case SIOCGIFMEDIA:
1428 #if 0 /* not yet */
1429 		/* Flow control requires full-duplex mode. */
1430 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1431 		    (ifr->ifr_media & IFM_FDX) == 0)
1432 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1433 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1434 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1435 				/* We can do both TXPAUSE and RXPAUSE. */
1436 				ifr->ifr_media |=
1437 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1438 			}
1439 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1440 		}
1441 #endif
1442 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1443 		break;
1444 	case SIOCSIFFLAGS:
1445 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1446 			/*
1447 			 * If interface is marked down and it is running,
1448 			 * then stop and disable it.
1449 			 */
1450 			(*ifp->if_stop)(ifp, 1);
1451 		} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1452 			/*
1453 			 * If interface is marked up and it is stopped, then
1454 			 * start it.
1455 			 */
1456 			error = (*ifp->if_init)(ifp);
1457 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1458 			int diff;
1459 
1460 			/* Up (AND RUNNING). */
1461 
1462 			diff = (ifp->if_flags ^ sc->sc_if_flags)
1463 			    & (IFF_PROMISC|IFF_ALLMULTI);
1464 			if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1465 				/*
1466 				 * If the difference bettween last flag and
1467 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1468 				 * set multicast filter only (don't reset to
1469 				 * prevent link down).
1470 				 */
1471 				npe_setmcast(sc);
1472 			} else {
1473 				/*
1474 				 * Reset the interface to pick up changes in
1475 				 * any other flags that affect the hardware
1476 				 * state.
1477 				 */
1478 				error = (*ifp->if_init)(ifp);
1479 			}
1480 		}
1481 		sc->sc_if_flags = ifp->if_flags;
1482 		break;
1483 	default:
1484 		error = ether_ioctl(ifp, cmd, data);
1485 		if (error == ENETRESET) {
1486 			/*
1487 			 * Multicast list has changed; set the hardware filter
1488 			 * accordingly.
1489 			 */
1490 			npe_setmcast(sc);
1491 			error = 0;
1492 		}
1493 	}
1494 
1495 	npestart(ifp);
1496 
1497 	splx(s);
1498 	return error;
1499 }
1500 
1501 /*
1502  * Setup a traffic class -> rx queue mapping.
1503  */
1504 static int
1505 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1506 {
1507 	int npeid = npeconfig[sc->sc_unit].npeid;
1508 	uint32_t msg[2];
1509 
1510 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1511 	    | classix;
1512 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1513 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1514 }
1515 
1516 /*
1517  * Update and reset the statistics in the NPE.
1518  */
1519 static int
1520 npe_updatestats(struct npe_softc *sc)
1521 {
1522 	uint32_t msg[2];
1523 
1524 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1525 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1526 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
1527 }
1528 
1529 #if 0
1530 /*
1531  * Get the current statistics block.
1532  */
1533 static int
1534 npe_getstats(struct npe_softc *sc)
1535 {
1536 	uint32_t msg[2];
1537 
1538 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1539 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1540 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1541 }
1542 
1543 /*
1544  * Query the image id of the loaded firmware.
1545  */
1546 static uint32_t
1547 npe_getimageid(struct npe_softc *sc)
1548 {
1549 	uint32_t msg[2];
1550 
1551 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1552 	msg[1] = 0;
1553 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1554 }
1555 
1556 /*
1557  * Enable/disable loopback.
1558  */
1559 static int
1560 npe_setloopback(struct npe_softc *sc, int ena)
1561 {
1562 	uint32_t msg[2];
1563 
1564 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1565 	msg[1] = 0;
1566 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1567 }
1568 #endif
1569 
1570 /*
1571  * MII bus support routines.
1572  *
1573  * NB: ixp425 has one PHY per NPE
1574  */
1575 static uint32_t
1576 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1577 {
1578 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1579 	uint32_t v;
1580 
1581 	/* NB: registers are known to be sequential */
1582 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
1583 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1584 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1585 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1586 	return v;
1587 #undef MII_RD4
1588 }
1589 
1590 static void
1591 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1592 {
1593 #define	MII_WR4(sc, reg, v) \
1594 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1595 
1596 	/* NB: registers are known to be sequential */
1597 	MII_WR4(sc, reg+0, cmd & 0xff);
1598 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1599 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1600 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1601 #undef MII_WR4
1602 }
1603 
1604 static int
1605 npe_mii_mdio_wait(struct npe_softc *sc)
1606 {
1607 #define	MAXTRIES	100	/* XXX */
1608 	uint32_t v;
1609 	int i;
1610 
1611 	for (i = 0; i < MAXTRIES; i++) {
1612 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1613 		if ((v & NPE_MII_GO) == 0)
1614 			return 1;
1615 	}
1616 	return 0;		/* NB: timeout */
1617 #undef MAXTRIES
1618 }
1619 
1620 static int
1621 npe_miibus_readreg(device_t self, int phy, int reg)
1622 {
1623 	struct npe_softc *sc = device_private(self);
1624 	uint32_t v;
1625 
1626 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1627 		return 0xffff;
1628 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1629 	  | NPE_MII_GO;
1630 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1631 	if (npe_mii_mdio_wait(sc))
1632 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1633 	else
1634 		v = 0xffff | NPE_MII_READ_FAIL;
1635 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1636 #undef MAXTRIES
1637 }
1638 
1639 static void
1640 npe_miibus_writereg(device_t self, int phy, int reg, int data)
1641 {
1642 	struct npe_softc *sc = device_private(self);
1643 	uint32_t v;
1644 
1645 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1646 		return;
1647 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1648 	  | data | NPE_MII_WRITE
1649 	  | NPE_MII_GO;
1650 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1651 	/* XXX complain about timeout */
1652 	(void) npe_mii_mdio_wait(sc);
1653 }
1654 
1655 static void
1656 npe_miibus_statchg(struct ifnet *ifp)
1657 {
1658 	struct npe_softc *sc = ifp->if_softc;
1659 	uint32_t tx1, rx1;
1660 	uint32_t randoff;
1661 
1662 	/* sync MAC duplex state */
1663 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1664 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1665 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1666 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1667 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1668 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1669 	} else {
1670 		struct timeval now;
1671 		getmicrotime(&now);
1672 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1673 		    & 0x7f;
1674 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1675 		    + randoff);
1676 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
1677 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1678 	}
1679 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1680 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1681 }
1682