xref: /netbsd-src/sys/arch/arm/xscale/ixp425_if_npe.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: ixp425_if_npe.c,v 1.17 2009/03/12 13:15:13 msaitoh Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Sam Leffler.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 #if 0
29 __FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/if_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
30 #endif
31 __KERNEL_RCSID(0, "$NetBSD: ixp425_if_npe.c,v 1.17 2009/03/12 13:15:13 msaitoh Exp $");
32 
33 /*
34  * Intel XScale NPE Ethernet driver.
35  *
36  * This driver handles the two ports present on the IXP425.
37  * Packet processing is done by the Network Processing Engines
38  * (NPE's) that work together with a MAC and PHY. The MAC
39  * is also mapped to the XScale cpu; the PHY is accessed via
40  * the MAC. NPE-XScale communication happens through h/w
41  * queues managed by the Q Manager block.
42  *
43  * The code here replaces the ethAcc, ethMii, and ethDB classes
44  * in the Intel Access Library (IAL) and the OS-specific driver.
45  *
46  * XXX add vlan support
47  * XXX NPE-C port doesn't work yet
48  */
49 
50 #include "bpfilter.h"
51 #include "rnd.h"
52 
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/kernel.h>
56 #include <sys/device.h>
57 #include <sys/callout.h>
58 #include <sys/mbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/socket.h>
61 #include <sys/endian.h>
62 #include <sys/ioctl.h>
63 #include <sys/syslog.h>
64 
65 #include <machine/bus.h>
66 
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71 
72 #if NBPFILTER > 0
73 #include <net/bpf.h>
74 #endif
75 
76 #if NRND > 0
77 #include <sys/rnd.h>
78 #endif
79 
80 #include <arm/xscale/ixp425reg.h>
81 #include <arm/xscale/ixp425var.h>
82 #include <arm/xscale/ixp425_qmgr.h>
83 #include <arm/xscale/ixp425_npevar.h>
84 #include <arm/xscale/ixp425_if_npereg.h>
85 
86 #include <dev/mii/miivar.h>
87 
88 #include "locators.h"
89 
90 struct npebuf {
91 	struct npebuf	*ix_next;	/* chain to next buffer */
92 	void		*ix_m;		/* backpointer to mbuf */
93 	bus_dmamap_t	ix_map;		/* bus dma map for associated data */
94 	struct npehwbuf	*ix_hw;		/* associated h/w block */
95 	uint32_t	ix_neaddr;	/* phys address of ix_hw */
96 };
97 
98 struct npedma {
99 	const char*	name;
100 	int		nbuf;		/* # npebuf's allocated */
101 	bus_dmamap_t	m_map;
102 	struct npehwbuf	*hwbuf;		/* NPE h/w buffers */
103 	bus_dmamap_t	buf_map;
104 	bus_addr_t	buf_phys;	/* phys addr of buffers */
105 	struct npebuf	*buf;		/* s/w buffers (1-1 w/ h/w) */
106 };
107 
108 struct npe_softc {
109 	struct device	sc_dev;
110 	struct ethercom	sc_ethercom;
111 	uint8_t		sc_enaddr[ETHER_ADDR_LEN];
112 	struct mii_data	sc_mii;
113 	bus_space_tag_t	sc_iot;
114 	bus_dma_tag_t	sc_dt;
115 	bus_space_handle_t sc_ioh;	/* MAC register window */
116 	bus_space_handle_t sc_miih;	/* MII register window */
117 	struct ixpnpe_softc *sc_npe;	/* NPE support */
118 	int		sc_unit;
119 	int		sc_phy;
120 	struct callout	sc_tick_ch;	/* Tick callout */
121 	struct npedma	txdma;
122 	struct npebuf	*tx_free;	/* list of free tx buffers */
123 	struct npedma	rxdma;
124 	int		rx_qid;		/* rx qid */
125 	int		rx_freeqid;	/* rx free buffers qid */
126 	int		tx_qid;		/* tx qid */
127 	int		tx_doneqid;	/* tx completed qid */
128 	struct npestats	*sc_stats;
129 	bus_dmamap_t	sc_stats_map;
130 	bus_addr_t	sc_stats_phys;	/* phys addr of sc_stats */
131 	int		sc_if_flags;	/* keep last if_flags */
132 #if NRND > 0
133 	rndsource_element_t rnd_source; /* random source */
134 #endif
135 };
136 
137 /*
138  * Per-unit static configuration for IXP425.  The tx and
139  * rx free Q id's are fixed by the NPE microcode.  The
140  * rx Q id's are programmed to be separate to simplify
141  * multi-port processing.  It may be better to handle
142  * all traffic through one Q (as done by the Intel drivers).
143  *
144  * Note that the PHY's are accessible only from MAC A
145  * on the IXP425.  This and other platform-specific
146  * assumptions probably need to be handled through hints.
147  */
148 static const struct {
149 	const char	*desc;		/* device description */
150 	int		npeid;		/* NPE assignment */
151 	int		macport;	/* Port number of the MAC */
152 	uint32_t	imageid;	/* NPE firmware image id */
153 	uint32_t	regbase;
154 	int		regsize;
155 	uint32_t	miibase;
156 	int		miisize;
157 	uint8_t		rx_qid;
158 	uint8_t		rx_freeqid;
159 	uint8_t		tx_qid;
160 	uint8_t		tx_doneqid;
161 } npeconfig[NPE_PORTS_MAX] = {
162 	{ .desc		= "IXP NPE-B",
163 	  .npeid	= NPE_B,
164 	  .macport	= 0x10,
165 	  .imageid	= IXP425_NPE_B_IMAGEID,
166 	  .regbase	= IXP425_MAC_A_HWBASE,
167 	  .regsize	= IXP425_MAC_A_SIZE,
168 	  .miibase	= IXP425_MAC_A_HWBASE,
169 	  .miisize	= IXP425_MAC_A_SIZE,
170 	  .rx_qid	= 4,
171 	  .rx_freeqid	= 27,
172 	  .tx_qid	= 24,
173 	  .tx_doneqid	= 31
174 	},
175 	{ .desc		= "IXP NPE-C",
176 	  .npeid	= NPE_C,
177 	  .macport	= 0x20,
178 	  .imageid	= IXP425_NPE_C_IMAGEID,
179 	  .regbase	= IXP425_MAC_B_HWBASE,
180 	  .regsize	= IXP425_MAC_B_SIZE,
181 	  .miibase	= IXP425_MAC_A_HWBASE,
182 	  .miisize	= IXP425_MAC_A_SIZE,
183 	  .rx_qid	= 12,
184 	  .rx_freeqid	= 28,
185 	  .tx_qid	= 25,
186 	  .tx_doneqid	= 31
187 	},
188 };
189 static struct npe_softc *npes[NPE_MAX];	/* NB: indexed by npeid */
190 
191 static __inline uint32_t
192 RD4(struct npe_softc *sc, bus_size_t off)
193 {
194 	return bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
195 }
196 
197 static __inline void
198 WR4(struct npe_softc *sc, bus_size_t off, uint32_t val)
199 {
200 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
201 }
202 
203 static int	npe_activate(struct npe_softc *);
204 #if 0
205 static void	npe_deactivate(struct npe_softc *);
206 #endif
207 static void	npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr);
208 static void	npe_setmac(struct npe_softc *sc, const u_char *eaddr);
209 static void	npe_getmac(struct npe_softc *sc);
210 static void	npe_txdone(int qid, void *arg);
211 static int	npe_rxbuf_init(struct npe_softc *, struct npebuf *,
212 			struct mbuf *);
213 static void	npe_rxdone(int qid, void *arg);
214 static void	npeinit_macreg(struct npe_softc *);
215 static int	npeinit(struct ifnet *);
216 static void	npeinit_resetcb(void *);
217 static void	npeinit_locked(void *);
218 static void	npestart(struct ifnet *);
219 static void	npestop(struct ifnet *, int);
220 static void	npewatchdog(struct ifnet *);
221 static int	npeioctl(struct ifnet * ifp, u_long, void *);
222 
223 static int	npe_setrxqosentry(struct npe_softc *, int classix,
224 			int trafclass, int qid);
225 static int	npe_updatestats(struct npe_softc *);
226 #if 0
227 static int	npe_getstats(struct npe_softc *);
228 static uint32_t	npe_getimageid(struct npe_softc *);
229 static int	npe_setloopback(struct npe_softc *, int ena);
230 #endif
231 
232 static int	npe_miibus_readreg(struct device *, int, int);
233 static void	npe_miibus_writereg(struct device *, int, int, int);
234 static void	npe_miibus_statchg(struct device *);
235 
236 static int	npe_debug;
237 #define DPRINTF(sc, fmt, ...) do {			\
238 	if (npe_debug) printf(fmt, __VA_ARGS__);	\
239 } while (0)
240 #define DPRINTFn(n, sc, fmt, ...) do {			\
241 	if (npe_debug >= n) printf(fmt, __VA_ARGS__);	\
242 } while (0)
243 
244 #define	NPE_TXBUF	128
245 #define	NPE_RXBUF	64
246 
247 #ifndef ETHER_ALIGN
248 #define	ETHER_ALIGN	2	/* XXX: Ditch this */
249 #endif
250 
251 #define MAC2UINT64(addr)	(((uint64_t)addr[0] << 40)	\
252 				    + ((uint64_t)addr[1] << 32)	\
253 				    + ((uint64_t)addr[2] << 24)	\
254 				    + ((uint64_t)addr[3] << 16)	\
255 				    + ((uint64_t)addr[4] << 8)	\
256 				    + (uint64_t)addr[5])
257 
258 /* NB: all tx done processing goes through one queue */
259 static int tx_doneqid = -1;
260 
261 void (*npe_getmac_md)(int, uint8_t *);
262 
263 static int npe_match(struct device *, struct cfdata *, void *);
264 static void npe_attach(struct device *, struct device *, void *);
265 
266 CFATTACH_DECL(npe, sizeof(struct npe_softc),
267     npe_match, npe_attach, NULL, NULL);
268 
269 static int
270 npe_match(struct device *parent, struct cfdata *cf, void *arg)
271 {
272 	struct ixpnpe_attach_args *na = arg;
273 
274 	return (na->na_unit == NPE_B || na->na_unit == NPE_C);
275 }
276 
277 static void
278 npe_attach(struct device *parent, struct device *self, void *arg)
279 {
280 	struct npe_softc *sc = (void *)self;
281 	struct ixpnpe_attach_args *na = arg;
282 	struct ixpnpe_softc *isc = (struct ixpnpe_softc *)parent;
283 	struct ifnet *ifp;
284 
285 	aprint_naive("\n");
286 	aprint_normal(": Ethernet co-processor\n");
287 
288 	sc->sc_iot = na->na_iot;
289 	sc->sc_dt = na->na_dt;
290 	sc->sc_npe = na->na_npe;
291 	sc->sc_unit = (na->na_unit == NPE_B) ? 0 : 1;
292 	sc->sc_phy = na->na_phy;
293 
294 	memset(&sc->sc_ethercom, 0, sizeof(sc->sc_ethercom));
295 	memset(&sc->sc_mii, 0, sizeof(sc->sc_mii));
296 
297 	callout_init(&sc->sc_tick_ch, 0);
298 
299 	if (npe_activate(sc)) {
300 		aprint_error("%s: Failed to activate NPE (missing "
301 		    "microcode?)\n", sc->sc_dev.dv_xname);
302 		return;
303 	}
304 
305 	npe_getmac(sc);
306 	npeinit_macreg(sc);
307 
308 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
309 	    ether_sprintf(sc->sc_enaddr));
310 
311 	ifp = &sc->sc_ethercom.ec_if;
312 	sc->sc_mii.mii_ifp = ifp;
313 	sc->sc_mii.mii_readreg = npe_miibus_readreg;
314 	sc->sc_mii.mii_writereg = npe_miibus_writereg;
315 	sc->sc_mii.mii_statchg = npe_miibus_statchg;
316 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
317 
318 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
319 	    npe_ifmedia_status);
320 
321 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
322 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
323 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
324 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
325 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
326 	} else
327 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
328 
329 	ifp->if_softc = sc;
330 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
331 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
332 	ifp->if_start = npestart;
333 	ifp->if_ioctl = npeioctl;
334 	ifp->if_watchdog = npewatchdog;
335 	ifp->if_init = npeinit;
336 	ifp->if_stop = npestop;
337 	IFQ_SET_READY(&ifp->if_snd);
338 
339 	/* VLAN capable */
340 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
341 
342 	if_attach(ifp);
343 	ether_ifattach(ifp, sc->sc_enaddr);
344 #if NRND > 0
345 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
346 	    RND_TYPE_NET, 0);
347 #endif
348 
349 	/* callback function to reset MAC */
350 	isc->macresetcbfunc = npeinit_resetcb;
351 	isc->macresetcbarg = sc;
352 }
353 
354 /*
355  * Compute and install the multicast filter.
356  */
357 static void
358 npe_setmcast(struct npe_softc *sc)
359 {
360 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
361 	uint8_t mask[ETHER_ADDR_LEN], addr[ETHER_ADDR_LEN];
362 	uint32_t reg;
363 	uint32_t msg[2];
364 	int i;
365 
366 	/* Always use filter. Is here a correct position? */
367 	reg = RD4(sc, NPE_MAC_RX_CNTRL1);
368 	WR4(sc, NPE_MAC_RX_CNTRL1, reg | NPE_RX_CNTRL1_ADDR_FLTR_EN);
369 
370 	if (ifp->if_flags & IFF_PROMISC) {
371 		memset(mask, 0, ETHER_ADDR_LEN);
372 		memset(addr, 0, ETHER_ADDR_LEN);
373 	} else if (ifp->if_flags & IFF_ALLMULTI) {
374 		static const uint8_t allmulti[ETHER_ADDR_LEN] =
375 		    { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 };
376  all_multi:
377 		memcpy(mask, allmulti, ETHER_ADDR_LEN);
378 		memcpy(addr, allmulti, ETHER_ADDR_LEN);
379 	} else {
380 		uint8_t clr[ETHER_ADDR_LEN], set[ETHER_ADDR_LEN];
381 		struct ether_multistep step;
382 		struct ether_multi *enm;
383 
384 		memset(clr, 0, ETHER_ADDR_LEN);
385 		memset(set, 0xff, ETHER_ADDR_LEN);
386 
387 		ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
388 		while (enm != NULL) {
389 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
390 				ifp->if_flags |= IFF_ALLMULTI;
391 				goto all_multi;
392 			}
393 
394 			for (i = 0; i < ETHER_ADDR_LEN; i++) {
395 				clr[i] |= enm->enm_addrlo[i];
396 				set[i] &= enm->enm_addrlo[i];
397 			}
398 
399 			ETHER_NEXT_MULTI(step, enm);
400 		}
401 
402 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
403 			mask[i] = set[i] | ~clr[i];
404 			addr[i] = set[i];
405 		}
406 	}
407 
408 	/*
409 	 * Write the mask and address registers.
410 	 */
411 	for (i = 0; i < ETHER_ADDR_LEN; i++) {
412 		WR4(sc, NPE_MAC_ADDR_MASK(i), mask[i]);
413 		WR4(sc, NPE_MAC_ADDR(i), addr[i]);
414 	}
415 
416 	msg[0] = NPE_ADDRESSFILTERCONFIG << NPE_MAC_MSGID_SHL
417 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
418 	msg[1] = ((ifp->if_flags & IFF_PROMISC) ? 1 : 0) << 24
419 	    | ((RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff) << 16)
420 	    | (addr[5] << 8) | mask[5];
421 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
422 }
423 
424 static int
425 npe_dma_setup(struct npe_softc *sc, struct npedma *dma,
426 	const char *name, int nbuf, int maxseg)
427 {
428 	bus_dma_segment_t seg;
429 	int rseg, error, i;
430 	void *hwbuf;
431 	size_t size;
432 
433 	memset(dma, 0, sizeof(*dma));
434 
435 	dma->name = name;
436 	dma->nbuf = nbuf;
437 
438 	size = nbuf * sizeof(struct npehwbuf);
439 
440 	/* XXX COHERENT for now */
441 	error = bus_dmamem_alloc(sc->sc_dt, size, sizeof(uint32_t), 0, &seg,
442 	    1, &rseg, BUS_DMA_NOWAIT);
443 	if (error) {
444 		printf("%s: unable to allocate memory for %s h/w buffers, "
445 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
446 	}
447 
448 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, size, &hwbuf,
449 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT | BUS_DMA_NOCACHE);
450 	if (error) {
451 		printf("%s: unable to map memory for %s h/w buffers, "
452 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
453  free_dmamem:
454 		bus_dmamem_free(sc->sc_dt, &seg, rseg);
455 		return error;
456 	}
457 	dma->hwbuf = (void *)hwbuf;
458 
459 	error = bus_dmamap_create(sc->sc_dt, size, 1, size, 0,
460 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &dma->buf_map);
461 	if (error) {
462 		printf("%s: unable to create map for %s h/w buffers, "
463 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
464  unmap_dmamem:
465 		dma->hwbuf = NULL;
466 		bus_dmamem_unmap(sc->sc_dt, hwbuf, size);
467 		goto free_dmamem;
468 	}
469 
470 	error = bus_dmamap_load(sc->sc_dt, dma->buf_map, hwbuf, size, NULL,
471 	    BUS_DMA_NOWAIT);
472 	if (error) {
473 		printf("%s: unable to load map for %s h/w buffers, "
474 		    "error %u\n", sc->sc_dev.dv_xname, dma->name, error);
475  destroy_dmamap:
476 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
477 		goto unmap_dmamem;
478 	}
479 
480 	/* XXX M_TEMP */
481 	dma->buf = malloc(nbuf * sizeof(struct npebuf), M_TEMP, M_NOWAIT | M_ZERO);
482 	if (dma->buf == NULL) {
483 		printf("%s: unable to allocate memory for %s s/w buffers\n",
484 		    sc->sc_dev.dv_xname, dma->name);
485 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
486 		error = ENOMEM;
487 		goto destroy_dmamap;
488 	}
489 
490 	dma->buf_phys = dma->buf_map->dm_segs[0].ds_addr;
491 	for (i = 0; i < dma->nbuf; i++) {
492 		struct npebuf *npe = &dma->buf[i];
493 		struct npehwbuf *hw = &dma->hwbuf[i];
494 
495 		/* calculate offset to shared area */
496 		npe->ix_neaddr = dma->buf_phys +
497 			((uintptr_t)hw - (uintptr_t)dma->hwbuf);
498 		KASSERT((npe->ix_neaddr & 0x1f) == 0);
499 		error = bus_dmamap_create(sc->sc_dt, MCLBYTES, maxseg,
500 		    MCLBYTES, 0, 0, &npe->ix_map);
501 		if (error != 0) {
502 			printf("%s: unable to create dmamap for %s buffer %u, "
503 			    "error %u\n", sc->sc_dev.dv_xname, dma->name, i,
504 			    error);
505 			/* XXXSCW: Free up maps... */
506 			return error;
507 		}
508 		npe->ix_hw = hw;
509 	}
510 	bus_dmamap_sync(sc->sc_dt, dma->buf_map, 0, dma->buf_map->dm_mapsize,
511 	    BUS_DMASYNC_PREWRITE);
512 	return 0;
513 }
514 
515 #if 0
516 static void
517 npe_dma_destroy(struct npe_softc *sc, struct npedma *dma)
518 {
519 	int i;
520 
521 /* XXXSCW: Clean this up */
522 
523 	if (dma->hwbuf != NULL) {
524 		for (i = 0; i < dma->nbuf; i++) {
525 			struct npebuf *npe = &dma->buf[i];
526 			bus_dmamap_destroy(sc->sc_dt, npe->ix_map);
527 		}
528 		bus_dmamap_unload(sc->sc_dt, dma->buf_map);
529 		bus_dmamem_free(sc->sc_dt, (void *)dma->hwbuf, dma->buf_map);
530 		bus_dmamap_destroy(sc->sc_dt, dma->buf_map);
531 	}
532 	if (dma->buf != NULL)
533 		free(dma->buf, M_TEMP);
534 	memset(dma, 0, sizeof(*dma));
535 }
536 #endif
537 
538 static int
539 npe_activate(struct npe_softc *sc)
540 {
541 	bus_dma_segment_t seg;
542 	int unit = sc->sc_unit;
543 	int error, i, rseg;
544 	void *statbuf;
545 
546 	/* load NPE firmware and start it running */
547 	error = ixpnpe_init(sc->sc_npe, "npe_fw", npeconfig[unit].imageid);
548 	if (error != 0)
549 		return error;
550 
551 	if (bus_space_map(sc->sc_iot, npeconfig[unit].regbase,
552 	    npeconfig[unit].regsize, 0, &sc->sc_ioh)) {
553 		printf("%s: Cannot map registers 0x%x:0x%x\n",
554 		    sc->sc_dev.dv_xname, npeconfig[unit].regbase,
555 		    npeconfig[unit].regsize);
556 		return ENOMEM;
557 	}
558 
559 	if (npeconfig[unit].miibase != npeconfig[unit].regbase) {
560 		/*
561 		 * The PHY's are only accessible from one MAC (it appears)
562 		 * so for other MAC's setup an additional mapping for
563 		 * frobbing the PHY registers.
564 		 */
565 		if (bus_space_map(sc->sc_iot, npeconfig[unit].miibase,
566 		    npeconfig[unit].miisize, 0, &sc->sc_miih)) {
567 			printf("%s: Cannot map MII registers 0x%x:0x%x\n",
568 			    sc->sc_dev.dv_xname, npeconfig[unit].miibase,
569 			    npeconfig[unit].miisize);
570 			return ENOMEM;
571 		}
572 	} else
573 		sc->sc_miih = sc->sc_ioh;
574 	error = npe_dma_setup(sc, &sc->txdma, "tx", NPE_TXBUF, NPE_MAXSEG);
575 	if (error != 0)
576 		return error;
577 	error = npe_dma_setup(sc, &sc->rxdma, "rx", NPE_RXBUF, 1);
578 	if (error != 0)
579 		return error;
580 
581 	/* setup statistics block */
582 	error = bus_dmamem_alloc(sc->sc_dt, sizeof(struct npestats),
583 	    sizeof(uint32_t), 0, &seg, 1, &rseg, BUS_DMA_NOWAIT);
584 	if (error) {
585 		printf("%s: unable to allocate memory for stats block, "
586 		    "error %u\n", sc->sc_dev.dv_xname, error);
587 		return error;
588 	}
589 
590 	error = bus_dmamem_map(sc->sc_dt, &seg, 1, sizeof(struct npestats),
591 	    &statbuf, BUS_DMA_NOWAIT);
592 	if (error) {
593 		printf("%s: unable to map memory for stats block, "
594 		    "error %u\n", sc->sc_dev.dv_xname, error);
595 		return error;
596 	}
597 	sc->sc_stats = (void *)statbuf;
598 
599 	error = bus_dmamap_create(sc->sc_dt, sizeof(struct npestats), 1,
600 	    sizeof(struct npestats), 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
601 	    &sc->sc_stats_map);
602 	if (error) {
603 		printf("%s: unable to create map for stats block, "
604 		    "error %u\n", sc->sc_dev.dv_xname, error);
605 		return error;
606 	}
607 
608 	if (bus_dmamap_load(sc->sc_dt, sc->sc_stats_map, sc->sc_stats,
609 	    sizeof(struct npestats), NULL, BUS_DMA_NOWAIT) != 0) {
610 		printf("%s: unable to load memory for stats block, error %u\n",
611 		    sc->sc_dev.dv_xname, error);
612 		return error;
613 	}
614 	sc->sc_stats_phys = sc->sc_stats_map->dm_segs[0].ds_addr;
615 
616 	/* XXX disable half-bridge LEARNING+FILTERING feature */
617 
618 	/*
619 	 * Setup h/w rx/tx queues.  There are four q's:
620 	 *   rx		inbound q of rx'd frames
621 	 *   rx_free	pool of ixpbuf's for receiving frames
622 	 *   tx		outbound q of frames to send
623 	 *   tx_done	q of tx frames that have been processed
624 	 *
625 	 * The NPE handles the actual tx/rx process and the q manager
626 	 * handles the queues.  The driver just writes entries to the
627 	 * q manager mailbox's and gets callbacks when there are rx'd
628 	 * frames to process or tx'd frames to reap.  These callbacks
629 	 * are controlled by the q configurations; e.g. we get a
630 	 * callback when tx_done has 2 or more frames to process and
631 	 * when the rx q has at least one frame.  These setings can
632 	 * changed at the time the q is configured.
633 	 */
634 	sc->rx_qid = npeconfig[unit].rx_qid;
635 	ixpqmgr_qconfig(sc->rx_qid, NPE_RXBUF, 0,  1,
636 		IX_QMGR_Q_SOURCE_ID_NOT_E, npe_rxdone, sc);
637 	sc->rx_freeqid = npeconfig[unit].rx_freeqid;
638 	ixpqmgr_qconfig(sc->rx_freeqid,	NPE_RXBUF, 0, NPE_RXBUF/2, 0, NULL, sc);
639 	/* tell the NPE to direct all traffic to rx_qid */
640 #if 0
641 	for (i = 0; i < 8; i++)
642 #else
643 printf("%s: remember to fix rx q setup\n", sc->sc_dev.dv_xname);
644 	for (i = 0; i < 4; i++)
645 #endif
646 		npe_setrxqosentry(sc, i, 0, sc->rx_qid);
647 
648 	sc->tx_qid = npeconfig[unit].tx_qid;
649 	sc->tx_doneqid = npeconfig[unit].tx_doneqid;
650 	ixpqmgr_qconfig(sc->tx_qid, NPE_TXBUF, 0, NPE_TXBUF, 0, NULL, sc);
651 	if (tx_doneqid == -1) {
652 		ixpqmgr_qconfig(sc->tx_doneqid,	NPE_TXBUF, 0,  2,
653 			IX_QMGR_Q_SOURCE_ID_NOT_E, npe_txdone, sc);
654 		tx_doneqid = sc->tx_doneqid;
655 	}
656 
657 	KASSERT(npes[npeconfig[unit].npeid] == NULL);
658 	npes[npeconfig[unit].npeid] = sc;
659 
660 	return 0;
661 }
662 
663 #if 0
664 static void
665 npe_deactivate(struct npe_softc *sc);
666 {
667 	int unit = sc->sc_unit;
668 
669 	npes[npeconfig[unit].npeid] = NULL;
670 
671 	/* XXX disable q's */
672 	if (sc->sc_npe != NULL)
673 		ixpnpe_stop(sc->sc_npe);
674 	if (sc->sc_stats != NULL) {
675 		bus_dmamap_unload(sc->sc_stats_tag, sc->sc_stats_map);
676 		bus_dmamem_free(sc->sc_stats_tag, sc->sc_stats,
677 			sc->sc_stats_map);
678 		bus_dmamap_destroy(sc->sc_stats_tag, sc->sc_stats_map);
679 	}
680 	if (sc->sc_stats_tag != NULL)
681 		bus_dma_tag_destroy(sc->sc_stats_tag);
682 	npe_dma_destroy(sc, &sc->txdma);
683 	npe_dma_destroy(sc, &sc->rxdma);
684 	bus_generic_detach(sc->sc_dev);
685 	if (sc->sc_mii)
686 		device_delete_child(sc->sc_dev, sc->sc_mii);
687 #if 0
688 	/* XXX sc_ioh and sc_miih */
689 	if (sc->mem_res)
690 		bus_release_resource(dev, SYS_RES_IOPORT,
691 		    rman_get_rid(sc->mem_res), sc->mem_res);
692 	sc->mem_res = 0;
693 #endif
694 }
695 #endif
696 
697 /*
698  * Notify the world which media we're using.
699  */
700 static void
701 npe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
702 {
703 	struct npe_softc *sc = ifp->if_softc;
704 
705 	mii_pollstat(&sc->sc_mii);
706 
707 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
708 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
709 }
710 
711 static void
712 npe_addstats(struct npe_softc *sc)
713 {
714 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
715 	struct npestats *ns = sc->sc_stats;
716 
717 	ifp->if_oerrors +=
718 		  be32toh(ns->dot3StatsInternalMacTransmitErrors)
719 		+ be32toh(ns->dot3StatsCarrierSenseErrors)
720 		+ be32toh(ns->TxVLANIdFilterDiscards)
721 		;
722 	ifp->if_ierrors += be32toh(ns->dot3StatsFCSErrors)
723 		+ be32toh(ns->dot3StatsInternalMacReceiveErrors)
724 		+ be32toh(ns->RxOverrunDiscards)
725 		+ be32toh(ns->RxUnderflowEntryDiscards)
726 		;
727 	ifp->if_collisions +=
728 		  be32toh(ns->dot3StatsSingleCollisionFrames)
729 		+ be32toh(ns->dot3StatsMultipleCollisionFrames)
730 		;
731 }
732 
733 static void
734 npe_tick(void *xsc)
735 {
736 #define	ACK	(NPE_RESETSTATS << NPE_MAC_MSGID_SHL)
737 	struct npe_softc *sc = xsc;
738 	uint32_t msg[2];
739 
740 	/*
741 	 * NB: to avoid sleeping with the softc lock held we
742 	 * split the NPE msg processing into two parts.  The
743 	 * request for statistics is sent w/o waiting for a
744 	 * reply and then on the next tick we retrieve the
745 	 * results.  This works because npe_tick is the only
746 	 * code that talks via the mailbox's (except at setup).
747 	 * This likely can be handled better.
748 	 */
749 	if (ixpnpe_recvmsg(sc->sc_npe, msg) == 0 && msg[0] == ACK) {
750 		bus_dmamap_sync(sc->sc_dt, sc->sc_stats_map, 0,
751 		    sizeof(struct npestats), BUS_DMASYNC_POSTREAD);
752 		npe_addstats(sc);
753 	}
754 	npe_updatestats(sc);
755 	mii_tick(&sc->sc_mii);
756 
757 	/* schedule next poll */
758 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
759 #undef ACK
760 }
761 
762 static void
763 npe_setmac(struct npe_softc *sc, const u_char *eaddr)
764 {
765 
766 	WR4(sc, NPE_MAC_UNI_ADDR_1, eaddr[0]);
767 	WR4(sc, NPE_MAC_UNI_ADDR_2, eaddr[1]);
768 	WR4(sc, NPE_MAC_UNI_ADDR_3, eaddr[2]);
769 	WR4(sc, NPE_MAC_UNI_ADDR_4, eaddr[3]);
770 	WR4(sc, NPE_MAC_UNI_ADDR_5, eaddr[4]);
771 	WR4(sc, NPE_MAC_UNI_ADDR_6, eaddr[5]);
772 }
773 
774 static void
775 npe_getmac(struct npe_softc *sc)
776 {
777 	uint8_t *eaddr = sc->sc_enaddr;
778 
779 	if (npe_getmac_md != NULL) {
780 		(*npe_getmac_md)(sc->sc_dev.dv_unit, eaddr);
781 	} else {
782 		/*
783 		 * Some system's unicast address appears to be loaded from
784 		 * EEPROM on reset
785 		 */
786 		eaddr[0] = RD4(sc, NPE_MAC_UNI_ADDR_1) & 0xff;
787 		eaddr[1] = RD4(sc, NPE_MAC_UNI_ADDR_2) & 0xff;
788 		eaddr[2] = RD4(sc, NPE_MAC_UNI_ADDR_3) & 0xff;
789 		eaddr[3] = RD4(sc, NPE_MAC_UNI_ADDR_4) & 0xff;
790 		eaddr[4] = RD4(sc, NPE_MAC_UNI_ADDR_5) & 0xff;
791 		eaddr[5] = RD4(sc, NPE_MAC_UNI_ADDR_6) & 0xff;
792 	}
793 }
794 
795 struct txdone {
796 	struct npebuf *head;
797 	struct npebuf **tail;
798 	int count;
799 };
800 
801 static __inline void
802 npe_txdone_finish(struct npe_softc *sc, const struct txdone *td)
803 {
804 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
805 
806 	*td->tail = sc->tx_free;
807 	sc->tx_free = td->head;
808 	/*
809 	 * We're no longer busy, so clear the busy flag and call the
810 	 * start routine to xmit more packets.
811 	 */
812 	ifp->if_opackets += td->count;
813 	ifp->if_flags &= ~IFF_OACTIVE;
814 	ifp->if_timer = 0;
815 	npestart(ifp);
816 }
817 
818 /*
819  * Q manager callback on tx done queue.  Reap mbufs
820  * and return tx buffers to the free list.  Finally
821  * restart output.  Note the microcode has only one
822  * txdone q wired into it so we must use the NPE ID
823  * returned with each npehwbuf to decide where to
824  * send buffers.
825  */
826 static void
827 npe_txdone(int qid, void *arg)
828 {
829 #define	P2V(a, dma) \
830 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
831 	struct npe_softc *sc;
832 	struct npebuf *npe;
833 	struct txdone *td, q[NPE_MAX];
834 	uint32_t entry;
835 
836 	/* XXX no NPE-A support */
837 	q[NPE_B].tail = &q[NPE_B].head; q[NPE_B].count = 0;
838 	q[NPE_C].tail = &q[NPE_C].head; q[NPE_C].count = 0;
839 	/* XXX max # at a time? */
840 	while (ixpqmgr_qread(qid, &entry) == 0) {
841 		sc = npes[NPE_QM_Q_NPE(entry)];
842 		DPRINTF(sc, "%s: entry 0x%x NPE %u port %u\n",
843 		    __func__, entry, NPE_QM_Q_NPE(entry), NPE_QM_Q_PORT(entry));
844 #if NRND > 0
845 		if (RND_ENABLED(&sc->rnd_source))
846 			rnd_add_uint32(&sc->rnd_source, entry);
847 #endif
848 
849 		npe = P2V(NPE_QM_Q_ADDR(entry), &sc->txdma);
850 		m_freem(npe->ix_m);
851 		npe->ix_m = NULL;
852 
853 		td = &q[NPE_QM_Q_NPE(entry)];
854 		*td->tail = npe;
855 		td->tail = &npe->ix_next;
856 		td->count++;
857 	}
858 
859 	if (q[NPE_B].count)
860 		npe_txdone_finish(npes[NPE_B], &q[NPE_B]);
861 	if (q[NPE_C].count)
862 		npe_txdone_finish(npes[NPE_C], &q[NPE_C]);
863 #undef P2V
864 }
865 
866 static __inline struct mbuf *
867 npe_getcl(void)
868 {
869 	struct mbuf *m;
870 
871 	MGETHDR(m, M_DONTWAIT, MT_DATA);
872 	if (m != NULL) {
873 		MCLGET(m, M_DONTWAIT);
874 		if ((m->m_flags & M_EXT) == 0) {
875 			m_freem(m);
876 			m = NULL;
877 		}
878 	}
879 	return (m);
880 }
881 
882 static int
883 npe_rxbuf_init(struct npe_softc *sc, struct npebuf *npe, struct mbuf *m)
884 {
885 	struct npehwbuf *hw;
886 	int error;
887 
888 	if (m == NULL) {
889 		m = npe_getcl();
890 		if (m == NULL)
891 			return ENOBUFS;
892 	}
893 	KASSERT(m->m_ext.ext_size >= (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
894 	m->m_pkthdr.len = m->m_len = NPE_FRAME_SIZE_DEFAULT;
895 	/* backload payload and align ip hdr */
896 	m->m_data = m->m_ext.ext_buf + (m->m_ext.ext_size
897 	    - (NPE_FRAME_SIZE_DEFAULT + ETHER_ALIGN));
898 	error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
899 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
900 	if (error != 0) {
901 		m_freem(m);
902 		return error;
903 	}
904 	hw = npe->ix_hw;
905 	hw->ix_ne[0].data = htobe32(npe->ix_map->dm_segs[0].ds_addr);
906 	/* NB: NPE requires length be a multiple of 64 */
907 	/* NB: buffer length is shifted in word */
908 	hw->ix_ne[0].len = htobe32(npe->ix_map->dm_segs[0].ds_len << 16);
909 	hw->ix_ne[0].next = 0;
910 	npe->ix_m = m;
911 	/* Flush the memory in the mbuf */
912 	bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0, npe->ix_map->dm_mapsize,
913 	    BUS_DMASYNC_PREREAD);
914 	return 0;
915 }
916 
917 /*
918  * RX q processing for a specific NPE.  Claim entries
919  * from the hardware queue and pass the frames up the
920  * stack. Pass the rx buffers to the free list.
921  */
922 static void
923 npe_rxdone(int qid, void *arg)
924 {
925 #define	P2V(a, dma) \
926 	&(dma)->buf[((a) - (dma)->buf_phys) / sizeof(struct npehwbuf)]
927 	struct npe_softc *sc = arg;
928 	struct npedma *dma = &sc->rxdma;
929 	uint32_t entry;
930 
931 	while (ixpqmgr_qread(qid, &entry) == 0) {
932 		struct npebuf *npe = P2V(NPE_QM_Q_ADDR(entry), dma);
933 		struct mbuf *m;
934 
935 		DPRINTF(sc, "%s: entry 0x%x neaddr 0x%x ne_len 0x%x\n",
936 		    __func__, entry, npe->ix_neaddr, npe->ix_hw->ix_ne[0].len);
937 #if NRND > 0
938 		if (RND_ENABLED(&sc->rnd_source))
939 			rnd_add_uint32(&sc->rnd_source, entry);
940 #endif
941 		/*
942 		 * Allocate a new mbuf to replenish the rx buffer.
943 		 * If doing so fails we drop the rx'd frame so we
944 		 * can reuse the previous mbuf.  When we're able to
945 		 * allocate a new mbuf dispatch the mbuf w/ rx'd
946 		 * data up the stack and replace it with the newly
947 		 * allocated one.
948 		 */
949 		m = npe_getcl();
950 		if (m != NULL) {
951 			struct mbuf *mrx = npe->ix_m;
952 			struct npehwbuf *hw = npe->ix_hw;
953 			struct ifnet *ifp = &sc->sc_ethercom.ec_if;
954 
955 			/* Flush mbuf memory for rx'd data */
956 			bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
957 			    npe->ix_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
958 
959 			/* XXX flush hw buffer; works now 'cuz coherent */
960 			/* set m_len etc. per rx frame size */
961 			mrx->m_len = be32toh(hw->ix_ne[0].len) & 0xffff;
962 			mrx->m_pkthdr.len = mrx->m_len;
963 			mrx->m_pkthdr.rcvif = ifp;
964 			/* Don't add M_HASFCS. See below */
965 
966 #if 1
967 			if (mrx->m_pkthdr.len < sizeof(struct ether_header)) {
968 				log(LOG_INFO, "%s: too short frame (len=%d)\n",
969 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
970 				/* Back out "newly allocated" mbuf. */
971 				m_freem(m);
972 				ifp->if_ierrors++;
973 				goto fail;
974 			}
975 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
976 				struct ether_header *eh;
977 
978 				/*
979 				 * Workaround for "Non-Intel XScale Technology
980 				 * Eratta" No. 29. AA:BB:CC:DD:EE:xF's packet
981 				 * matches the filter (both unicast and
982 				 * multicast).
983 				 */
984 				eh = mtod(mrx, struct ether_header *);
985 				if (ETHER_IS_MULTICAST(eh->ether_dhost) == 0) {
986 					/* unicast */
987 
988 					if (sc->sc_enaddr[5] != eh->ether_dhost[5]) {
989 						/* discard it */
990 #if 0
991 						printf("discard it\n");
992 #endif
993 						/*
994 						 * Back out "newly allocated"
995 						 * mbuf.
996 						 */
997 						m_freem(m);
998 						goto fail;
999 					}
1000 				} else if (memcmp(eh->ether_dhost,
1001 					etherbroadcastaddr, 6) == 0) {
1002 					/* Always accept broadcast packet*/
1003 				} else {
1004 					struct ethercom *ec = &sc->sc_ethercom;
1005 					struct ether_multi *enm;
1006 					struct ether_multistep step;
1007 					int match = 0;
1008 
1009 					/* multicast */
1010 
1011 					ETHER_FIRST_MULTI(step, ec, enm);
1012 					while (enm != NULL) {
1013 						uint64_t lowint, highint, dest;
1014 
1015 						lowint = MAC2UINT64(enm->enm_addrlo);
1016 						highint = MAC2UINT64(enm->enm_addrhi);
1017 						dest = MAC2UINT64(eh->ether_dhost);
1018 #if 0
1019 						printf("%llx\n", lowint);
1020 						printf("%llx\n", dest);
1021 						printf("%llx\n", highint);
1022 #endif
1023 						if ((lowint <= dest) && (dest <= highint)) {
1024 							match = 1;
1025 							break;
1026 						}
1027 						ETHER_NEXT_MULTI(step, enm);
1028 					}
1029 					if (match == 0) {
1030 						/* discard it */
1031 #if 0
1032 						printf("discard it(M)\n");
1033 #endif
1034 						/*
1035 						 * Back out "newly allocated"
1036 						 * mbuf.
1037 						 */
1038 						m_freem(m);
1039 						goto fail;
1040 					}
1041 				}
1042 			}
1043 			if (mrx->m_pkthdr.len > NPE_FRAME_SIZE_DEFAULT) {
1044 				log(LOG_INFO, "%s: oversized frame (len=%d)\n",
1045 				    sc->sc_dev.dv_xname, mrx->m_pkthdr.len);
1046 				/* Back out "newly allocated" mbuf. */
1047 				m_freem(m);
1048 				ifp->if_ierrors++;
1049 				goto fail;
1050 			}
1051 #endif
1052 
1053 			/*
1054 			 * Trim FCS!
1055 			 * NPE always adds the FCS by this driver's setting,
1056 			 * so we always trim it here and not add M_HASFCS.
1057 			 */
1058 			m_adj(mrx, -ETHER_CRC_LEN);
1059 
1060 			ifp->if_ipackets++;
1061 #if NBPFILTER > 0
1062 			/*
1063 			 * Tap off here if there is a bpf listener.
1064 			 */
1065 			if (__predict_false(ifp->if_bpf))
1066 				bpf_mtap(ifp->if_bpf, mrx);
1067 #endif
1068 			ifp->if_input(ifp, mrx);
1069 		} else {
1070 fail:
1071 			/* discard frame and re-use mbuf */
1072 			m = npe->ix_m;
1073 		}
1074 		if (npe_rxbuf_init(sc, npe, m) == 0) {
1075 			/* return npe buf to rx free list */
1076 			ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1077 		} else {
1078 			/* XXX should not happen */
1079 		}
1080 	}
1081 #undef P2V
1082 }
1083 
1084 static void
1085 npe_startxmit(struct npe_softc *sc)
1086 {
1087 	struct npedma *dma = &sc->txdma;
1088 	int i;
1089 
1090 	sc->tx_free = NULL;
1091 	for (i = 0; i < dma->nbuf; i++) {
1092 		struct npebuf *npe = &dma->buf[i];
1093 		if (npe->ix_m != NULL) {
1094 			/* NB: should not happen */
1095 			printf("%s: %s: free mbuf at entry %u\n",
1096 			    sc->sc_dev.dv_xname, __func__, i);
1097 			m_freem(npe->ix_m);
1098 		}
1099 		npe->ix_m = NULL;
1100 		npe->ix_next = sc->tx_free;
1101 		sc->tx_free = npe;
1102 	}
1103 }
1104 
1105 static void
1106 npe_startrecv(struct npe_softc *sc)
1107 {
1108 	struct npedma *dma = &sc->rxdma;
1109 	struct npebuf *npe;
1110 	int i;
1111 
1112 	for (i = 0; i < dma->nbuf; i++) {
1113 		npe = &dma->buf[i];
1114 		npe_rxbuf_init(sc, npe, npe->ix_m);
1115 		/* set npe buf on rx free list */
1116 		ixpqmgr_qwrite(sc->rx_freeqid, npe->ix_neaddr);
1117 	}
1118 }
1119 
1120 static void
1121 npeinit_macreg(struct npe_softc *sc)
1122 {
1123 
1124 	/*
1125 	 * Reset MAC core.
1126 	 */
1127 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1128 	DELAY(NPE_MAC_RESET_DELAY);
1129 	/* configure MAC to generate MDC clock */
1130 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1131 
1132 	/* disable transmitter and reciver in the MAC */
1133  	WR4(sc, NPE_MAC_RX_CNTRL1,
1134 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1135  	WR4(sc, NPE_MAC_TX_CNTRL1,
1136 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1137 
1138 	/*
1139 	 * Set the MAC core registers.
1140 	 */
1141 	WR4(sc, NPE_MAC_INT_CLK_THRESH, 0x1);	/* clock ratio: for ipx4xx */
1142 	WR4(sc, NPE_MAC_TX_CNTRL2,	0xf);	/* max retries */
1143 	WR4(sc, NPE_MAC_RANDOM_SEED,	0x8);	/* LFSR back-off seed */
1144 	/* thresholds determined by NPE firmware FS */
1145 	WR4(sc, NPE_MAC_THRESH_P_EMPTY,	0x12);
1146 	WR4(sc, NPE_MAC_THRESH_P_FULL,	0x30);
1147 	WR4(sc, NPE_MAC_BUF_SIZE_TX, NPE_MAC_BUF_SIZE_TX_DEFAULT);
1148 						/* tx fifo threshold (bytes) */
1149 	WR4(sc, NPE_MAC_TX_DEFER,	0x15);	/* for single deferral */
1150 	WR4(sc, NPE_MAC_RX_DEFER,	0x16);	/* deferral on inter-frame gap*/
1151 	WR4(sc, NPE_MAC_TX_TWO_DEFER_1,	0x8);	/* for 2-part deferral */
1152 	WR4(sc, NPE_MAC_TX_TWO_DEFER_2,	0x7);	/* for 2-part deferral */
1153 	WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1154 						/* assumes MII mode */
1155 	WR4(sc, NPE_MAC_TX_CNTRL1,
1156 		  NPE_TX_CNTRL1_RETRY		/* retry failed xmits */
1157 		| NPE_TX_CNTRL1_FCS_EN		/* append FCS */
1158 		| NPE_TX_CNTRL1_2DEFER		/* 2-part deferal */
1159 		| NPE_TX_CNTRL1_PAD_EN);	/* pad runt frames */
1160 	/* XXX pad strip? */
1161 	WR4(sc, NPE_MAC_RX_CNTRL1,
1162 		  NPE_RX_CNTRL1_CRC_EN		/* include CRC/FCS */
1163 		| NPE_RX_CNTRL1_PAUSE_EN);	/* ena pause frame handling */
1164 	WR4(sc, NPE_MAC_RX_CNTRL2, 0);
1165 }
1166 
1167 static void
1168 npeinit_resetcb(void *xsc)
1169 {
1170 	struct npe_softc *sc = xsc;
1171 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 	uint32_t msg[2];
1173 
1174 	ifp->if_oerrors++;
1175 	npeinit_locked(sc);
1176 
1177 	msg[0] = NPE_NOTIFYMACRECOVERYDONE << NPE_MAC_MSGID_SHL
1178 	    | (npeconfig[sc->sc_unit].macport << NPE_MAC_PORTID_SHL);
1179 	msg[1] = 0;
1180 	ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1181 }
1182 
1183 /*
1184  * Reset and initialize the chip
1185  */
1186 static void
1187 npeinit_locked(void *xsc)
1188 {
1189 	struct npe_softc *sc = xsc;
1190 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1191 
1192 	/* Cancel any pending I/O. */
1193 	npestop(ifp, 0);
1194 
1195 	/* Reset the chip to a known state. */
1196 	npeinit_macreg(sc);
1197 	npe_setmac(sc, CLLADDR(ifp->if_sadl));
1198 	ether_mediachange(ifp);
1199 	npe_setmcast(sc);
1200 
1201 	npe_startxmit(sc);
1202 	npe_startrecv(sc);
1203 
1204 	ifp->if_flags |= IFF_RUNNING;
1205 	ifp->if_flags &= ~IFF_OACTIVE;
1206 	ifp->if_timer = 0;		/* just in case */
1207 
1208 	/* enable transmitter and reciver in the MAC */
1209  	WR4(sc, NPE_MAC_RX_CNTRL1,
1210 	    RD4(sc, NPE_MAC_RX_CNTRL1) | NPE_RX_CNTRL1_RX_EN);
1211  	WR4(sc, NPE_MAC_TX_CNTRL1,
1212 	    RD4(sc, NPE_MAC_TX_CNTRL1) | NPE_TX_CNTRL1_TX_EN);
1213 
1214 	callout_reset(&sc->sc_tick_ch, hz, npe_tick, sc);
1215 }
1216 
1217 static int
1218 npeinit(struct ifnet *ifp)
1219 {
1220 	struct npe_softc *sc = ifp->if_softc;
1221 	int s;
1222 
1223 	s = splnet();
1224 	npeinit_locked(sc);
1225 	splx(s);
1226 
1227 	return (0);
1228 }
1229 
1230 /*
1231  * Defragment an mbuf chain, returning at most maxfrags separate
1232  * mbufs+clusters.  If this is not possible NULL is returned and
1233  * the original mbuf chain is left in it's present (potentially
1234  * modified) state.  We use two techniques: collapsing consecutive
1235  * mbufs and replacing consecutive mbufs by a cluster.
1236  */
1237 static __inline struct mbuf *
1238 npe_defrag(struct mbuf *m0)
1239 {
1240 	struct mbuf *m;
1241 
1242 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1243 	if (m == NULL)
1244 		return (NULL);
1245 	M_COPY_PKTHDR(m, m0);
1246 
1247 	if ((m->m_len = m0->m_pkthdr.len) > MHLEN) {
1248 		MCLGET(m, M_DONTWAIT);
1249 		if ((m->m_flags & M_EXT) == 0) {
1250 			m_freem(m);
1251 			return (NULL);
1252 		}
1253 	}
1254 
1255 	m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1256 	m_freem(m0);
1257 
1258 	return (m);
1259 }
1260 
1261 /*
1262  * Dequeue packets and place on the h/w transmit queue.
1263  */
1264 static void
1265 npestart(struct ifnet *ifp)
1266 {
1267 	struct npe_softc *sc = ifp->if_softc;
1268 	struct npebuf *npe;
1269 	struct npehwbuf *hw;
1270 	struct mbuf *m, *n;
1271 	bus_dma_segment_t *segs;
1272 	int nseg, len, error, i;
1273 	uint32_t next;
1274 
1275 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1276 		return;
1277 
1278 	while (sc->tx_free != NULL) {
1279 		IFQ_DEQUEUE(&ifp->if_snd, m);
1280 		if (m == NULL)
1281 			break;
1282 		npe = sc->tx_free;
1283 		error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map, m,
1284 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1285 		if (error == EFBIG) {
1286 			n = npe_defrag(m);
1287 			if (n == NULL) {
1288 				printf("%s: %s: too many fragments\n",
1289 				    sc->sc_dev.dv_xname, __func__);
1290 				m_freem(m);
1291 				return;	/* XXX? */
1292 			}
1293 			m = n;
1294 			error = bus_dmamap_load_mbuf(sc->sc_dt, npe->ix_map,
1295 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1296 		}
1297 		if (error != 0) {
1298 			printf("%s: %s: error %u\n",
1299 			    sc->sc_dev.dv_xname, __func__, error);
1300 			m_freem(m);
1301 			return;	/* XXX? */
1302 		}
1303 		sc->tx_free = npe->ix_next;
1304 
1305 #if NBPFILTER > 0
1306 		/*
1307 		 * Tap off here if there is a bpf listener.
1308 		 */
1309 		if (__predict_false(ifp->if_bpf))
1310 			bpf_mtap(ifp->if_bpf, m);
1311 #endif
1312 
1313 		bus_dmamap_sync(sc->sc_dt, npe->ix_map, 0,
1314 		    npe->ix_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1315 
1316 		npe->ix_m = m;
1317 		hw = npe->ix_hw;
1318 		len = m->m_pkthdr.len;
1319 		nseg = npe->ix_map->dm_nsegs;
1320 		segs = npe->ix_map->dm_segs;
1321 		next = npe->ix_neaddr + sizeof(hw->ix_ne[0]);
1322 		for (i = 0; i < nseg; i++) {
1323 			hw->ix_ne[i].data = htobe32(segs[i].ds_addr);
1324 			hw->ix_ne[i].len = htobe32((segs[i].ds_len<<16) | len);
1325 			hw->ix_ne[i].next = htobe32(next);
1326 
1327 			len = 0;		/* zero for segments > 1 */
1328 			next += sizeof(hw->ix_ne[0]);
1329 		}
1330 		hw->ix_ne[i-1].next = 0;	/* zero last in chain */
1331 		/* XXX flush descriptor instead of using uncached memory */
1332 
1333 		DPRINTF(sc, "%s: qwrite(%u, 0x%x) ne_data %x ne_len 0x%x\n",
1334 		    __func__, sc->tx_qid, npe->ix_neaddr,
1335 		    hw->ix_ne[0].data, hw->ix_ne[0].len);
1336 		/* stick it on the tx q */
1337 		/* XXX add vlan priority */
1338 		ixpqmgr_qwrite(sc->tx_qid, npe->ix_neaddr);
1339 
1340 		ifp->if_timer = 5;
1341 	}
1342 	if (sc->tx_free == NULL)
1343 		ifp->if_flags |= IFF_OACTIVE;
1344 }
1345 
1346 static void
1347 npe_stopxmit(struct npe_softc *sc)
1348 {
1349 	struct npedma *dma = &sc->txdma;
1350 	int i;
1351 
1352 	/* XXX qmgr */
1353 	for (i = 0; i < dma->nbuf; i++) {
1354 		struct npebuf *npe = &dma->buf[i];
1355 
1356 		if (npe->ix_m != NULL) {
1357 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1358 			m_freem(npe->ix_m);
1359 			npe->ix_m = NULL;
1360 		}
1361 	}
1362 }
1363 
1364 static void
1365 npe_stoprecv(struct npe_softc *sc)
1366 {
1367 	struct npedma *dma = &sc->rxdma;
1368 	int i;
1369 
1370 	/* XXX qmgr */
1371 	for (i = 0; i < dma->nbuf; i++) {
1372 		struct npebuf *npe = &dma->buf[i];
1373 
1374 		if (npe->ix_m != NULL) {
1375 			bus_dmamap_unload(sc->sc_dt, npe->ix_map);
1376 			m_freem(npe->ix_m);
1377 			npe->ix_m = NULL;
1378 		}
1379 	}
1380 }
1381 
1382 /*
1383  * Turn off interrupts, and stop the nic.
1384  */
1385 void
1386 npestop(struct ifnet *ifp, int disable)
1387 {
1388 	struct npe_softc *sc = ifp->if_softc;
1389 
1390 	/*  disable transmitter and reciver in the MAC  */
1391  	WR4(sc, NPE_MAC_RX_CNTRL1,
1392 	    RD4(sc, NPE_MAC_RX_CNTRL1) &~ NPE_RX_CNTRL1_RX_EN);
1393  	WR4(sc, NPE_MAC_TX_CNTRL1,
1394 	    RD4(sc, NPE_MAC_TX_CNTRL1) &~ NPE_TX_CNTRL1_TX_EN);
1395 
1396 	callout_stop(&sc->sc_tick_ch);
1397 
1398 	npe_stopxmit(sc);
1399 	npe_stoprecv(sc);
1400 	/* XXX go into loopback & drain q's? */
1401 	/* XXX but beware of disabling tx above */
1402 
1403 	/*
1404 	 * The MAC core rx/tx disable may leave the MAC hardware in an
1405 	 * unpredictable state. A hw reset is executed before resetting
1406 	 * all the MAC parameters to a known value.
1407 	 */
1408 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_RESET);
1409 	DELAY(NPE_MAC_RESET_DELAY);
1410 	WR4(sc, NPE_MAC_INT_CLK_THRESH, NPE_MAC_INT_CLK_THRESH_DEFAULT);
1411 	WR4(sc, NPE_MAC_CORE_CNTRL, NPE_CORE_MDC_EN);
1412 
1413 	ifp->if_timer = 0;
1414 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1415 }
1416 
1417 void
1418 npewatchdog(struct ifnet *ifp)
1419 {
1420 	struct npe_softc *sc = ifp->if_softc;
1421 	int s;
1422 
1423 	printf("%s: device timeout\n", sc->sc_dev.dv_xname);
1424 	s = splnet();
1425 	ifp->if_oerrors++;
1426 	npeinit_locked(sc);
1427 	splx(s);
1428 }
1429 
1430 static int
1431 npeioctl(struct ifnet *ifp, u_long cmd, void *data)
1432 {
1433 	struct npe_softc *sc = ifp->if_softc;
1434 	struct ifreq *ifr = (struct ifreq *) data;
1435 	int s, error = 0;
1436 
1437 	s = splnet();
1438 
1439 	switch (cmd) {
1440 	case SIOCSIFMEDIA:
1441 	case SIOCGIFMEDIA:
1442 #if 0 /* not yet */
1443 		/* Flow control requires full-duplex mode. */
1444 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1445 		    (ifr->ifr_media & IFM_FDX) == 0)
1446 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1447 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1448 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1449 				/* We can do both TXPAUSE and RXPAUSE. */
1450 				ifr->ifr_media |=
1451 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1452 			}
1453 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1454 		}
1455 #endif
1456 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1457 		break;
1458 	case SIOCSIFFLAGS:
1459 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_RUNNING) {
1460 			/*
1461 			 * If interface is marked down and it is running,
1462 			 * then stop and disable it.
1463 			 */
1464 			(*ifp->if_stop)(ifp, 1);
1465 		} else if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == IFF_UP) {
1466 			/*
1467 			 * If interface is marked up and it is stopped, then
1468 			 * start it.
1469 			 */
1470 			error = (*ifp->if_init)(ifp);
1471 		} else if ((ifp->if_flags & IFF_UP) != 0) {
1472 			int diff;
1473 
1474 			/* Up (AND RUNNING). */
1475 
1476 			diff = (ifp->if_flags ^ sc->sc_if_flags)
1477 			    & (IFF_PROMISC|IFF_ALLMULTI);
1478 			if ((diff & (IFF_PROMISC|IFF_ALLMULTI)) != 0) {
1479 				/*
1480 				 * If the difference bettween last flag and
1481 				 * new flag only IFF_PROMISC or IFF_ALLMULTI,
1482 				 * set multicast filter only (don't reset to
1483 				 * prevent link down).
1484 				 */
1485 				npe_setmcast(sc);
1486 			} else {
1487 				/*
1488 				 * Reset the interface to pick up changes in
1489 				 * any other flags that affect the hardware
1490 				 * state.
1491 				 */
1492 				error = (*ifp->if_init)(ifp);
1493 			}
1494 		}
1495 		sc->sc_if_flags = ifp->if_flags;
1496 		break;
1497 	default:
1498 		error = ether_ioctl(ifp, cmd, data);
1499 		if (error == ENETRESET) {
1500 			/*
1501 			 * Multicast list has changed; set the hardware filter
1502 			 * accordingly.
1503 			 */
1504 			npe_setmcast(sc);
1505 			error = 0;
1506 		}
1507 	}
1508 
1509 	npestart(ifp);
1510 
1511 	splx(s);
1512 	return error;
1513 }
1514 
1515 /*
1516  * Setup a traffic class -> rx queue mapping.
1517  */
1518 static int
1519 npe_setrxqosentry(struct npe_softc *sc, int classix, int trafclass, int qid)
1520 {
1521 	int npeid = npeconfig[sc->sc_unit].npeid;
1522 	uint32_t msg[2];
1523 
1524 	msg[0] = (NPE_SETRXQOSENTRY << NPE_MAC_MSGID_SHL) | (npeid << 20)
1525 	    | classix;
1526 	msg[1] = (trafclass << 24) | (1 << 23) | (qid << 16) | (qid << 4);
1527 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1528 }
1529 
1530 /*
1531  * Update and reset the statistics in the NPE.
1532  */
1533 static int
1534 npe_updatestats(struct npe_softc *sc)
1535 {
1536 	uint32_t msg[2];
1537 
1538 	msg[0] = NPE_RESETSTATS << NPE_MAC_MSGID_SHL;
1539 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1540 	return ixpnpe_sendmsg(sc->sc_npe, msg);		/* NB: no recv */
1541 }
1542 
1543 #if 0
1544 /*
1545  * Get the current statistics block.
1546  */
1547 static int
1548 npe_getstats(struct npe_softc *sc)
1549 {
1550 	uint32_t msg[2];
1551 
1552 	msg[0] = NPE_GETSTATS << NPE_MAC_MSGID_SHL;
1553 	msg[1] = sc->sc_stats_phys;	/* physical address of stat block */
1554 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1555 }
1556 
1557 /*
1558  * Query the image id of the loaded firmware.
1559  */
1560 static uint32_t
1561 npe_getimageid(struct npe_softc *sc)
1562 {
1563 	uint32_t msg[2];
1564 
1565 	msg[0] = NPE_GETSTATUS << NPE_MAC_MSGID_SHL;
1566 	msg[1] = 0;
1567 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg) == 0 ? msg[1] : 0;
1568 }
1569 
1570 /*
1571  * Enable/disable loopback.
1572  */
1573 static int
1574 npe_setloopback(struct npe_softc *sc, int ena)
1575 {
1576 	uint32_t msg[2];
1577 
1578 	msg[0] = (NPE_SETLOOPBACK << NPE_MAC_MSGID_SHL) | (ena != 0);
1579 	msg[1] = 0;
1580 	return ixpnpe_sendandrecvmsg(sc->sc_npe, msg, msg);
1581 }
1582 #endif
1583 
1584 /*
1585  * MII bus support routines.
1586  *
1587  * NB: ixp425 has one PHY per NPE
1588  */
1589 static uint32_t
1590 npe_mii_mdio_read(struct npe_softc *sc, int reg)
1591 {
1592 #define	MII_RD4(sc, reg)	bus_space_read_4(sc->sc_iot, sc->sc_miih, reg)
1593 	uint32_t v;
1594 
1595 	/* NB: registers are known to be sequential */
1596 	v =  (MII_RD4(sc, reg+0) & 0xff) << 0;
1597 	v |= (MII_RD4(sc, reg+4) & 0xff) << 8;
1598 	v |= (MII_RD4(sc, reg+8) & 0xff) << 16;
1599 	v |= (MII_RD4(sc, reg+12) & 0xff) << 24;
1600 	return v;
1601 #undef MII_RD4
1602 }
1603 
1604 static void
1605 npe_mii_mdio_write(struct npe_softc *sc, int reg, uint32_t cmd)
1606 {
1607 #define	MII_WR4(sc, reg, v) \
1608 	bus_space_write_4(sc->sc_iot, sc->sc_miih, reg, v)
1609 
1610 	/* NB: registers are known to be sequential */
1611 	MII_WR4(sc, reg+0, cmd & 0xff);
1612 	MII_WR4(sc, reg+4, (cmd >> 8) & 0xff);
1613 	MII_WR4(sc, reg+8, (cmd >> 16) & 0xff);
1614 	MII_WR4(sc, reg+12, (cmd >> 24) & 0xff);
1615 #undef MII_WR4
1616 }
1617 
1618 static int
1619 npe_mii_mdio_wait(struct npe_softc *sc)
1620 {
1621 #define	MAXTRIES	100	/* XXX */
1622 	uint32_t v;
1623 	int i;
1624 
1625 	for (i = 0; i < MAXTRIES; i++) {
1626 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_CMD);
1627 		if ((v & NPE_MII_GO) == 0)
1628 			return 1;
1629 	}
1630 	return 0;		/* NB: timeout */
1631 #undef MAXTRIES
1632 }
1633 
1634 static int
1635 npe_miibus_readreg(struct device *self, int phy, int reg)
1636 {
1637 	struct npe_softc *sc = (void *)self;
1638 	uint32_t v;
1639 
1640 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1641 		return 0xffff;
1642 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1643 	  | NPE_MII_GO;
1644 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1645 	if (npe_mii_mdio_wait(sc))
1646 		v = npe_mii_mdio_read(sc, NPE_MAC_MDIO_STS);
1647 	else
1648 		v = 0xffff | NPE_MII_READ_FAIL;
1649 	return (v & NPE_MII_READ_FAIL) ? 0xffff : (v & 0xffff);
1650 #undef MAXTRIES
1651 }
1652 
1653 static void
1654 npe_miibus_writereg(struct device *self, int phy, int reg, int data)
1655 {
1656 	struct npe_softc *sc = (void *)self;
1657 	uint32_t v;
1658 
1659 	if (sc->sc_phy > IXPNPECF_PHY_DEFAULT && phy != sc->sc_phy)
1660 		return;
1661 	v = (phy << NPE_MII_ADDR_SHL) | (reg << NPE_MII_REG_SHL)
1662 	  | data | NPE_MII_WRITE
1663 	  | NPE_MII_GO;
1664 	npe_mii_mdio_write(sc, NPE_MAC_MDIO_CMD, v);
1665 	/* XXX complain about timeout */
1666 	(void) npe_mii_mdio_wait(sc);
1667 }
1668 
1669 static void
1670 npe_miibus_statchg(struct device *self)
1671 {
1672 	struct npe_softc *sc = (void *)self;
1673 	uint32_t tx1, rx1;
1674 	uint32_t randoff;
1675 
1676 	/* sync MAC duplex state */
1677 	tx1 = RD4(sc, NPE_MAC_TX_CNTRL1);
1678 	rx1 = RD4(sc, NPE_MAC_RX_CNTRL1);
1679 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
1680 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT);
1681 		tx1 &= ~NPE_TX_CNTRL1_DUPLEX;
1682 		rx1 |= NPE_RX_CNTRL1_PAUSE_EN;
1683 	} else {
1684 		struct timeval now;
1685 		getmicrotime(&now);
1686 		randoff = (RD4(sc, NPE_MAC_UNI_ADDR_6) ^ now.tv_usec)
1687 		    & 0x7f;
1688 		WR4(sc, NPE_MAC_SLOT_TIME, NPE_MAC_SLOT_TIME_MII_DEFAULT
1689 		    + randoff);
1690 		tx1 |= NPE_TX_CNTRL1_DUPLEX;
1691 		rx1 &= ~NPE_RX_CNTRL1_PAUSE_EN;
1692 	}
1693 	WR4(sc, NPE_MAC_RX_CNTRL1, rx1);
1694 	WR4(sc, NPE_MAC_TX_CNTRL1, tx1);
1695 }
1696