1 /* $NetBSD: i80321_icu.c,v 1.18 2008/04/27 18:58:45 matt Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.18 2008/04/27 18:58:45 matt Exp $"); 40 41 #ifndef EVBARM_SPL_NOINLINE 42 #define EVBARM_SPL_NOINLINE 43 #endif 44 45 /* 46 * Interrupt support for the Intel i80321 I/O Processor. 47 */ 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/malloc.h> 52 53 #include <uvm/uvm_extern.h> 54 55 #include <machine/bus.h> 56 #include <machine/intr.h> 57 58 #include <arm/cpufunc.h> 59 60 #include <arm/xscale/i80321reg.h> 61 #include <arm/xscale/i80321var.h> 62 63 /* Interrupt handler queues. */ 64 struct intrq intrq[NIRQ]; 65 66 /* Interrupts to mask at each level. */ 67 int i80321_imask[NIPL]; 68 69 /* Interrupts pending. */ 70 volatile int i80321_ipending; 71 72 /* Software copy of the IRQs we have enabled. */ 73 volatile uint32_t intr_enabled; 74 75 /* Mask if interrupts steered to FIQs. */ 76 uint32_t intr_steer; 77 78 /* 79 * Interrupt bit names. 80 */ 81 const char * const i80321_irqnames[] = { 82 "DMA0 EOT", 83 "DMA0 EOC", 84 "DMA1 EOT", 85 "DMA1 EOC", 86 "irq 4", 87 "irq 5", 88 "AAU EOT", 89 "AAU EOC", 90 "core PMU", 91 "TMR0 (hardclock)", 92 "TMR1", 93 "I2C0", 94 "I2C1", 95 "MU", 96 "BIST", 97 "periph PMU", 98 "XScale PMU", 99 "BIU error", 100 "ATU error", 101 "MCU error", 102 "DMA0 error", 103 "DMA1 error", 104 "irq 22", 105 "AAU error", 106 "MU error", 107 "SSP", 108 "irq 26", 109 "irq 27", 110 "irq 28", 111 "irq 29", 112 "irq 30", 113 "irq 31", 114 }; 115 116 void i80321_intr_dispatch(struct clockframe *frame); 117 118 static inline uint32_t 119 i80321_iintsrc_read(void) 120 { 121 uint32_t iintsrc; 122 123 __asm volatile("mrc p6, 0, %0, c8, c0, 0" 124 : "=r" (iintsrc)); 125 126 /* 127 * The IINTSRC register shows bits that are active even 128 * if they are masked in INTCTL, so we have to mask them 129 * off with the interrupts we consider enabled. 130 */ 131 return (iintsrc & intr_enabled); 132 } 133 134 static inline void 135 i80321_set_intrsteer(void) 136 { 137 138 __asm volatile("mcr p6, 0, %0, c4, c0, 0" 139 : 140 : "r" (intr_steer & ICU_INT_HWMASK)); 141 } 142 143 static inline void 144 i80321_enable_irq(int irq) 145 { 146 147 intr_enabled |= (1U << irq); 148 i80321_set_intrmask(); 149 } 150 151 static inline void 152 i80321_disable_irq(int irq) 153 { 154 155 intr_enabled &= ~(1U << irq); 156 i80321_set_intrmask(); 157 } 158 159 /* 160 * NOTE: This routine must be called with interrupts disabled in the CPSR. 161 */ 162 static void 163 i80321_intr_calculate_masks(void) 164 { 165 struct intrq *iq; 166 struct intrhand *ih; 167 int irq, ipl; 168 169 /* First, figure out which IPLs each IRQ has. */ 170 for (irq = 0; irq < NIRQ; irq++) { 171 int levels = 0; 172 iq = &intrq[irq]; 173 i80321_disable_irq(irq); 174 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; 175 ih = TAILQ_NEXT(ih, ih_list)) 176 levels |= (1U << ih->ih_ipl); 177 iq->iq_levels = levels; 178 } 179 180 /* Next, figure out which IRQs are used by each IPL. */ 181 for (ipl = 0; ipl < NIPL; ipl++) { 182 int irqs = 0; 183 for (irq = 0; irq < NIRQ; irq++) { 184 if (intrq[irq].iq_levels & (1U << ipl)) 185 irqs |= (1U << irq); 186 } 187 i80321_imask[ipl] = irqs; 188 } 189 190 i80321_imask[IPL_NONE] = 0; 191 192 /* 193 * Enforce a hierarchy that gives "slow" device (or devices with 194 * limited input buffer space/"real-time" requirements) a better 195 * chance at not dropping data. 196 */ 197 198 KASSERT(i80321_imask[IPL_VM] != 0); 199 i80321_imask[IPL_SCHED] |= i80321_imask[IPL_VM]; 200 i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED]; 201 202 /* 203 * Now compute which IRQs must be blocked when servicing any 204 * given IRQ. 205 */ 206 for (irq = 0; irq < NIRQ; irq++) { 207 int irqs = (1U << irq); 208 iq = &intrq[irq]; 209 if (TAILQ_FIRST(&iq->iq_list) != NULL) 210 i80321_enable_irq(irq); 211 for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL; 212 ih = TAILQ_NEXT(ih, ih_list)) 213 irqs |= i80321_imask[ih->ih_ipl]; 214 iq->iq_mask = irqs; 215 } 216 } 217 218 void 219 splx(int new) 220 { 221 i80321_splx(new); 222 } 223 224 int 225 _spllower(int ipl) 226 { 227 return (i80321_spllower(ipl)); 228 } 229 230 int 231 _splraise(int ipl) 232 { 233 return (i80321_splraise(ipl)); 234 } 235 236 /* 237 * i80321_icu_init: 238 * 239 * Initialize the i80321 ICU. Called early in bootstrap 240 * to make sure the ICU is in a pristine state. 241 */ 242 void 243 i80321_icu_init(void) 244 { 245 246 intr_enabled = 0; /* All interrupts disabled */ 247 i80321_set_intrmask(); 248 249 intr_steer = 0; /* All interrupts steered to IRQ */ 250 i80321_set_intrsteer(); 251 } 252 253 /* 254 * i80321_intr_init: 255 * 256 * Initialize the rest of the interrupt subsystem, making it 257 * ready to handle interrupts from devices. 258 */ 259 void 260 i80321_intr_init(void) 261 { 262 struct intrq *iq; 263 int i; 264 265 intr_enabled = 0; 266 267 for (i = 0; i < NIRQ; i++) { 268 iq = &intrq[i]; 269 TAILQ_INIT(&iq->iq_list); 270 271 evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR, 272 NULL, "iop321", i80321_irqnames[i]); 273 } 274 275 i80321_intr_calculate_masks(); 276 277 /* Enable IRQs (don't yet use FIQs). */ 278 enable_interrupts(I32_bit); 279 } 280 281 void * 282 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg) 283 { 284 struct intrq *iq; 285 struct intrhand *ih; 286 u_int oldirqstate; 287 288 if (irq < 0 || irq > NIRQ) 289 panic("i80321_intr_establish: IRQ %d out of range", irq); 290 291 ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT); 292 if (ih == NULL) 293 return (NULL); 294 295 ih->ih_func = func; 296 ih->ih_arg = arg; 297 ih->ih_ipl = ipl; 298 ih->ih_irq = irq; 299 300 iq = &intrq[irq]; 301 302 /* All IOP321 interrupts are level-triggered. */ 303 iq->iq_ist = IST_LEVEL; 304 305 oldirqstate = disable_interrupts(I32_bit); 306 307 TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list); 308 309 i80321_intr_calculate_masks(); 310 311 restore_interrupts(oldirqstate); 312 313 return (ih); 314 } 315 316 void 317 i80321_intr_disestablish(void *cookie) 318 { 319 struct intrhand *ih = cookie; 320 struct intrq *iq = &intrq[ih->ih_irq]; 321 int oldirqstate; 322 323 oldirqstate = disable_interrupts(I32_bit); 324 325 TAILQ_REMOVE(&iq->iq_list, ih, ih_list); 326 327 i80321_intr_calculate_masks(); 328 329 restore_interrupts(oldirqstate); 330 } 331 332 /* 333 * Hardware interrupt handler. 334 * 335 * If I80321_HPI_ENABLED is defined, this code attempts to deal with 336 * HPI interrupts as best it can. 337 * 338 * The problem is that HPIs cannot be masked at the interrupt controller; 339 * they can only be masked by disabling IRQs in the XScale core. 340 * 341 * So, if an HPI comes in and we determine that it should be masked at 342 * the current IPL then we mark it pending in the usual way and set 343 * I32_bit in the interrupt frame. This ensures that when we return from 344 * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To 345 * ensure IRQs are enabled later, i80321_splx() has been modified to do 346 * just that when a pending HPI interrupt is unmasked.) Additionally, 347 * because HPIs are level-triggered, the registered handler for the HPI 348 * interrupt will also be invoked with IRQs disabled. If a masked HPI 349 * occurs at the same time as another unmasked higher priority interrupt, 350 * the higher priority handler will also be invoked with IRQs disabled. 351 * As a result, the system could end up executing a lot of code with IRQs 352 * completely disabled if the HPI's IPL is relatively low. 353 * 354 * At the present time, the only known use of HPI is for the console UART 355 * on a couple of boards. This is probably the least intrusive use of HPI 356 * as IPL_SERIAL is the highest priority IPL in the system anyway. The 357 * code has not been tested with HPI hooked up to a class of device which 358 * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to 359 * perform very poorly if at all, even though the following code has been 360 * designed (hopefully) to cope with it. 361 */ 362 363 void 364 i80321_intr_dispatch(struct clockframe *frame) 365 { 366 struct intrq *iq; 367 struct intrhand *ih; 368 int oldirqstate, irq, ibit, hwpend; 369 #ifdef I80321_HPI_ENABLED 370 int oldpending; 371 #endif 372 struct cpu_info * const ci = curcpu(); 373 const int ppl = ci->ci_cpl; 374 const uint32_t imask = i80321_imask[ppl]; 375 376 hwpend = i80321_iintsrc_read(); 377 378 /* 379 * Disable all the interrupts that are pending. We will 380 * reenable them once they are processed and not masked. 381 */ 382 intr_enabled &= ~hwpend; 383 i80321_set_intrmask(); 384 385 #ifdef I80321_HPI_ENABLED 386 oldirqstate = 0; /* XXX: quell gcc warning */ 387 #endif 388 389 while (hwpend != 0) { 390 #ifdef I80321_HPI_ENABLED 391 /* Deal with HPI interrupt first */ 392 if (__predict_false(hwpend & INT_HPIMASK)) 393 irq = ICU_INT_HPI; 394 else 395 #endif 396 irq = ffs(hwpend) - 1; 397 ibit = (1U << irq); 398 399 hwpend &= ~ibit; 400 401 if (imask & ibit) { 402 /* 403 * IRQ is masked; mark it as pending and check 404 * the next one. Note: the IRQ is already disabled. 405 */ 406 #ifdef I80321_HPI_ENABLED 407 if (__predict_false(irq == ICU_INT_HPI)) { 408 /* 409 * This is an HPI. We *must* disable 410 * IRQs in the interrupt frame until 411 * INT_HPIMASK is cleared by a later 412 * call to splx(). Otherwise the level- 413 * triggered interrupt will just keep 414 * coming back. 415 */ 416 frame->cf_if.if_spsr |= I32_bit; 417 } 418 #endif 419 i80321_ipending |= ibit; 420 continue; 421 } 422 423 #ifdef I80321_HPI_ENABLED 424 oldpending = i80321_ipending | ibit; 425 #endif 426 i80321_ipending &= ~ibit; 427 428 iq = &intrq[irq]; 429 iq->iq_ev.ev_count++; 430 uvmexp.intrs++; 431 #ifdef I80321_HPI_ENABLED 432 /* 433 * Re-enable interrupts iff an HPI is not pending 434 */ 435 if (__predict_true((oldpending & INT_HPIMASK) == 0)) { 436 #endif 437 TAILQ_FOREACH (ih, &iq->iq_list, ih_list) { 438 ci->ci_cpl = ih->ih_ipl; 439 oldirqstate = enable_interrupts(I32_bit); 440 (void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame); 441 restore_interrupts(oldirqstate); 442 } 443 #ifdef I80321_HPI_ENABLED 444 } else if (irq == ICU_INT_HPI) { 445 /* 446 * We've just handled the HPI. Make sure IRQs 447 * are enabled in the interrupt frame. 448 * Here's hoping the handler really did clear 449 * down the source... 450 */ 451 frame->cf_if.if_spsr &= ~I32_bit; 452 } 453 #endif 454 ci->ci_cpl = ppl; 455 456 /* Re-enable this interrupt now that's it's cleared. */ 457 intr_enabled |= ibit; 458 i80321_set_intrmask(); 459 460 /* 461 * Don't forget to include interrupts which may have 462 * arrived in the meantime. 463 */ 464 hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask); 465 } 466 467 #ifdef __HAVE_FAST_SOFTINTS 468 cpu_dosoftints(); 469 #endif 470 } 471