xref: /netbsd-src/sys/arch/arm/xscale/i80321_icu.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: i80321_icu.c,v 1.24 2012/08/02 15:56:07 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.24 2012/08/02 15:56:07 skrll Exp $");
40 
41 #ifndef EVBARM_SPL_NOINLINE
42 #define	EVBARM_SPL_NOINLINE
43 #endif
44 
45 /*
46  * Interrupt support for the Intel i80321 I/O Processor.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <sys/bus.h>
56 #include <machine/intr.h>
57 
58 #include <arm/cpufunc.h>
59 
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62 
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65 
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68 
69 /* Interrupts pending. */
70 volatile int i80321_ipending;
71 
72 /* Software copy of the IRQs we have enabled. */
73 volatile uint32_t intr_enabled;
74 
75 /* Mask if interrupts steered to FIQs. */
76 uint32_t intr_steer;
77 
78 /*
79  * Interrupt bit names.
80  */
81 const char * const i80321_irqnames[] = {
82 	"DMA0 EOT",
83 	"DMA0 EOC",
84 	"DMA1 EOT",
85 	"DMA1 EOC",
86 	"irq 4",
87 	"irq 5",
88 	"AAU EOT",
89 	"AAU EOC",
90 	"core PMU",
91 	"TMR0 (hardclock)",
92 	"TMR1",
93 	"I2C0",
94 	"I2C1",
95 	"MU",
96 	"BIST",
97 	"periph PMU",
98 	"XScale PMU",
99 	"BIU error",
100 	"ATU error",
101 	"MCU error",
102 	"DMA0 error",
103 	"DMA1 error",
104 	"irq 22",
105 	"AAU error",
106 	"MU error",
107 	"SSP",
108 	"irq 26",
109 	"irq 27",
110 	"irq 28",
111 	"irq 29",
112 	"irq 30",
113 	"irq 31",
114 };
115 
116 void	i80321_intr_dispatch(struct clockframe *frame);
117 
118 static inline uint32_t
119 i80321_iintsrc_read(void)
120 {
121 	uint32_t iintsrc;
122 
123 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
124 		: "=r" (iintsrc));
125 
126 	/*
127 	 * The IINTSRC register shows bits that are active even
128 	 * if they are masked in INTCTL, so we have to mask them
129 	 * off with the interrupts we consider enabled.
130 	 */
131 	return (iintsrc & intr_enabled);
132 }
133 
134 static inline void
135 i80321_set_intrsteer(void)
136 {
137 
138 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
139 		:
140 		: "r" (intr_steer & ICU_INT_HWMASK));
141 }
142 
143 static inline void
144 i80321_enable_irq(int irq)
145 {
146 
147 	intr_enabled |= (1U << irq);
148 	i80321_set_intrmask();
149 }
150 
151 static inline void
152 i80321_disable_irq(int irq)
153 {
154 
155 	intr_enabled &= ~(1U << irq);
156 	i80321_set_intrmask();
157 }
158 
159 /*
160  * NOTE: This routine must be called with interrupts disabled in the CPSR.
161  */
162 static void
163 i80321_intr_calculate_masks(void)
164 {
165 	struct intrq *iq;
166 	struct intrhand *ih;
167 	int irq, ipl;
168 
169 	/* First, figure out which IPLs each IRQ has. */
170 	for (irq = 0; irq < NIRQ; irq++) {
171 		int levels = 0;
172 		iq = &intrq[irq];
173 		i80321_disable_irq(irq);
174 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
175 		     ih = TAILQ_NEXT(ih, ih_list))
176 			levels |= (1U << ih->ih_ipl);
177 		iq->iq_levels = levels;
178 	}
179 
180 	/* Next, figure out which IRQs are used by each IPL. */
181 	for (ipl = 0; ipl < NIPL; ipl++) {
182 		int irqs = 0;
183 		for (irq = 0; irq < NIRQ; irq++) {
184 			if (intrq[irq].iq_levels & (1U << ipl))
185 				irqs |= (1U << irq);
186 		}
187 		i80321_imask[ipl] = irqs;
188 	}
189 
190 	KASSERT(i80321_imask[IPL_NONE] == 0);
191 	KASSERT(i80321_imask[IPL_SOFTCLOCK] == 0);
192 	KASSERT(i80321_imask[IPL_SOFTBIO] == 0);
193 	KASSERT(i80321_imask[IPL_SOFTNET] == 0);
194 	KASSERT(i80321_imask[IPL_SOFTSERIAL] == 0);
195 
196 	/*
197 	 * Enforce a hierarchy that gives "slow" device (or devices with
198 	 * limited input buffer space/"real-time" requirements) a better
199 	 * chance at not dropping data.
200 	 */
201 
202 #if 0
203 	/*
204 	 * This assert might be useful, but only after some interrupts
205 	 * are configured.  As it stands now, it will always fire early
206 	 * in the initialization phase.  If it's useful enough to re-
207 	 * enable, it should be conditionalized on something else like
208 	 * having at least something in the levels/irqs above.
209 	 */
210 	KASSERT(i80321_imask[IPL_VM] != 0);
211 #endif
212 	i80321_imask[IPL_SCHED] |= i80321_imask[IPL_VM];
213 	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
214 
215 	/*
216 	 * Now compute which IRQs must be blocked when servicing any
217 	 * given IRQ.
218 	 */
219 	for (irq = 0; irq < NIRQ; irq++) {
220 		int irqs = (1U << irq);
221 		iq = &intrq[irq];
222 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
223 			i80321_enable_irq(irq);
224 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
225 		     ih = TAILQ_NEXT(ih, ih_list))
226 			irqs |= i80321_imask[ih->ih_ipl];
227 		iq->iq_mask = irqs;
228 	}
229 }
230 
231 void
232 splx(int new)
233 {
234 	i80321_splx(new);
235 }
236 
237 int
238 _spllower(int ipl)
239 {
240 	return (i80321_spllower(ipl));
241 }
242 
243 int
244 _splraise(int ipl)
245 {
246 	return (i80321_splraise(ipl));
247 }
248 
249 /*
250  * i80321_icu_init:
251  *
252  *	Initialize the i80321 ICU.  Called early in bootstrap
253  *	to make sure the ICU is in a pristine state.
254  */
255 void
256 i80321_icu_init(void)
257 {
258 
259 	intr_enabled = 0;	/* All interrupts disabled */
260 	i80321_set_intrmask();
261 
262 	intr_steer = 0;		/* All interrupts steered to IRQ */
263 	i80321_set_intrsteer();
264 }
265 
266 /*
267  * i80321_intr_init:
268  *
269  *	Initialize the rest of the interrupt subsystem, making it
270  *	ready to handle interrupts from devices.
271  */
272 void
273 i80321_intr_init(void)
274 {
275 	struct intrq *iq;
276 	int i;
277 
278 	intr_enabled = 0;
279 
280 	for (i = 0; i < NIRQ; i++) {
281 		iq = &intrq[i];
282 		TAILQ_INIT(&iq->iq_list);
283 	}
284 
285 	i80321_intr_calculate_masks();
286 
287 	/* Enable IRQs (don't yet use FIQs). */
288 	enable_interrupts(I32_bit);
289 }
290 
291 void
292 i80321_intr_evcnt_attach(void)
293 {
294 	for (u_int i = 0; i < NIRQ; i++) {
295 		struct intrq *iq = &intrq[i];
296 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
297 		    NULL, "iop321", i80321_irqnames[i]);
298 	}
299 
300 }
301 
302 void *
303 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
304 {
305 	struct intrq *iq;
306 	struct intrhand *ih;
307 	u_int oldirqstate;
308 
309 	if (irq < 0 || irq > NIRQ)
310 		panic("i80321_intr_establish: IRQ %d out of range", irq);
311 
312 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
313 	if (ih == NULL)
314 		return (NULL);
315 
316 	ih->ih_func = func;
317 	ih->ih_arg = arg;
318 	ih->ih_ipl = ipl;
319 	ih->ih_irq = irq;
320 
321 	iq = &intrq[irq];
322 
323 	/* All IOP321 interrupts are level-triggered. */
324 	iq->iq_ist = IST_LEVEL;
325 
326 	oldirqstate = disable_interrupts(I32_bit);
327 
328 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
329 
330 	i80321_intr_calculate_masks();
331 
332 	restore_interrupts(oldirqstate);
333 
334 	return (ih);
335 }
336 
337 void
338 i80321_intr_disestablish(void *cookie)
339 {
340 	struct intrhand *ih = cookie;
341 	struct intrq *iq = &intrq[ih->ih_irq];
342 	int oldirqstate;
343 
344 	oldirqstate = disable_interrupts(I32_bit);
345 
346 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
347 
348 	i80321_intr_calculate_masks();
349 
350 	restore_interrupts(oldirqstate);
351 }
352 
353 /*
354  * Hardware interrupt handler.
355  *
356  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
357  * HPI interrupts as best it can.
358  *
359  * The problem is that HPIs cannot be masked at the interrupt controller;
360  * they can only be masked by disabling IRQs in the XScale core.
361  *
362  * So, if an HPI comes in and we determine that it should be masked at
363  * the current IPL then we mark it pending in the usual way and set
364  * I32_bit in the interrupt frame. This ensures that when we return from
365  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
366  * ensure IRQs are enabled later, i80321_splx() has been modified to do
367  * just that when a pending HPI interrupt is unmasked.) Additionally,
368  * because HPIs are level-triggered, the registered handler for the HPI
369  * interrupt will also be invoked with IRQs disabled. If a masked HPI
370  * occurs at the same time as another unmasked higher priority interrupt,
371  * the higher priority handler will also be invoked with IRQs disabled.
372  * As a result, the system could end up executing a lot of code with IRQs
373  * completely disabled if the HPI's IPL is relatively low.
374  *
375  * At the present time, the only known use of HPI is for the console UART
376  * on a couple of boards. This is probably the least intrusive use of HPI
377  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
378  * code has not been tested with HPI hooked up to a class of device which
379  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
380  * perform very poorly if at all, even though the following code has been
381  * designed (hopefully) to cope with it.
382  */
383 
384 void
385 i80321_intr_dispatch(struct clockframe *frame)
386 {
387 	struct intrq *iq;
388 	struct intrhand *ih;
389 	int oldirqstate, irq, ibit, hwpend;
390 #ifdef I80321_HPI_ENABLED
391 	int oldpending;
392 #endif
393 	struct cpu_info * const ci = curcpu();
394 	const int ppl = ci->ci_cpl;
395 	const uint32_t imask = i80321_imask[ppl];
396 
397 	hwpend = i80321_iintsrc_read();
398 
399 	/*
400 	 * Disable all the interrupts that are pending.  We will
401 	 * reenable them once they are processed and not masked.
402 	 */
403 	intr_enabled &= ~hwpend;
404 	i80321_set_intrmask();
405 
406 #ifdef I80321_HPI_ENABLED
407 	oldirqstate = 0;	/* XXX: quell gcc warning */
408 #endif
409 
410 	while (hwpend != 0) {
411 #ifdef I80321_HPI_ENABLED
412 		/* Deal with HPI interrupt first */
413 		if (__predict_false(hwpend & INT_HPIMASK))
414 			irq = ICU_INT_HPI;
415 		else
416 #endif
417 		irq = ffs(hwpend) - 1;
418 		ibit = (1U << irq);
419 
420 		hwpend &= ~ibit;
421 
422 		if (imask & ibit) {
423 			/*
424 			 * IRQ is masked; mark it as pending and check
425 			 * the next one.  Note: the IRQ is already disabled.
426 			 */
427 #ifdef I80321_HPI_ENABLED
428 			if (__predict_false(irq == ICU_INT_HPI)) {
429 				/*
430 				 * This is an HPI. We *must* disable
431 				 * IRQs in the interrupt frame until
432 				 * INT_HPIMASK is cleared by a later
433 				 * call to splx(). Otherwise the level-
434 				 * triggered interrupt will just keep
435 				 * coming back.
436 				 */
437 				frame->cf_tf.tf_spsr |= I32_bit;
438 			}
439 #endif
440 			i80321_ipending |= ibit;
441 			continue;
442 		}
443 
444 #ifdef I80321_HPI_ENABLED
445 		oldpending = i80321_ipending | ibit;
446 #endif
447 		i80321_ipending &= ~ibit;
448 
449 		iq = &intrq[irq];
450 		iq->iq_ev.ev_count++;
451 		ci->ci_data.cpu_nintr++;
452 #ifdef I80321_HPI_ENABLED
453 		/*
454 		 * Re-enable interrupts iff an HPI is not pending
455 		 */
456 		if (__predict_true((oldpending & INT_HPIMASK) == 0)) {
457 #endif
458 			TAILQ_FOREACH (ih, &iq->iq_list, ih_list) {
459 				ci->ci_cpl = ih->ih_ipl;
460 				oldirqstate = enable_interrupts(I32_bit);
461 				(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
462 				restore_interrupts(oldirqstate);
463 			}
464 #ifdef I80321_HPI_ENABLED
465 		} else if (irq == ICU_INT_HPI) {
466 			/*
467 			 * We've just handled the HPI. Make sure IRQs
468 			 * are enabled in the interrupt frame.
469 			 * Here's hoping the handler really did clear
470 			 * down the source...
471 			 */
472 			frame->cf_tf.tf_spsr &= ~I32_bit;
473 		}
474 #endif
475 		ci->ci_cpl = ppl;
476 
477 		/* Re-enable this interrupt now that's it's cleared. */
478 		intr_enabled |= ibit;
479 		i80321_set_intrmask();
480 
481 		/*
482 		 * Don't forget to include interrupts which may have
483 		 * arrived in the meantime.
484 		 */
485 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask);
486 	}
487 
488 #ifdef __HAVE_FAST_SOFTINTS
489 	cpu_dosoftints();
490 #endif
491 }
492