xref: /netbsd-src/sys/arch/arm/xscale/i80321_icu.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: i80321_icu.c,v 1.16 2007/12/11 17:12:27 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.16 2007/12/11 17:12:27 ad Exp $");
40 
41 #ifndef EVBARM_SPL_NOINLINE
42 #define	EVBARM_SPL_NOINLINE
43 #endif
44 
45 /*
46  * Interrupt support for the Intel i80321 I/O Processor.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57 
58 #include <arm/cpufunc.h>
59 
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62 
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65 
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68 
69 /* Current interrupt priority level. */
70 volatile int current_spl_level;
71 
72 /* Interrupts pending. */
73 volatile int i80321_ipending;
74 
75 /* Software copy of the IRQs we have enabled. */
76 volatile uint32_t intr_enabled;
77 
78 /* Mask if interrupts steered to FIQs. */
79 uint32_t intr_steer;
80 
81 /*
82  * Map a software interrupt queue index (to the unused bits in the
83  * ICU registers -- XXX will need to revisit this if those bits are
84  * ever used in future steppings).
85  */
86 static const uint32_t si_to_irqbit[4] = {
87 	ICU_INT_bit26,		/* SI_SOFTCLOCK */
88 	ICU_INT_bit22,		/* SI_SOFTBIO */
89 	ICU_INT_bit5,		/* SI_SOFTNET */
90 	ICU_INT_bit4,		/* SI_SOFTSERIAL */
91 };
92 
93 #define	SI_TO_IRQBIT(si)	(1U << si_to_irqbit[(si)])
94 
95 /*
96  * Map a software interrupt queue to an interrupt priority level.
97  */
98 static const int si_to_ipl[4] = {
99 	IPL_SOFTCLOCK,		/* SI_SOFTCLOCK */
100 	IPL_SOFTBIO,		/* SI_SOFTBIO */
101 	IPL_SOFTNET,		/* SI_SOFTNET */
102 	IPL_SOFTSERIAL,		/* SI_SOFTSERIAL */
103 };
104 
105 /*
106  * Interrupt bit names.
107  */
108 const char *i80321_irqnames[] = {
109 	"DMA0 EOT",
110 	"DMA0 EOC",
111 	"DMA1 EOT",
112 	"DMA1 EOC",
113 	"irq 4",
114 	"irq 5",
115 	"AAU EOT",
116 	"AAU EOC",
117 	"core PMU",
118 	"TMR0 (hardclock)",
119 	"TMR1",
120 	"I2C0",
121 	"I2C1",
122 	"MU",
123 	"BIST",
124 	"periph PMU",
125 	"XScale PMU",
126 	"BIU error",
127 	"ATU error",
128 	"MCU error",
129 	"DMA0 error",
130 	"DMA1 error",
131 	"irq 22",
132 	"AAU error",
133 	"MU error",
134 	"SSP",
135 	"irq 26",
136 	"irq 27",
137 	"irq 28",
138 	"irq 29",
139 	"irq 30",
140 	"irq 31",
141 };
142 
143 void	i80321_intr_dispatch(struct clockframe *frame);
144 
145 static inline uint32_t
146 i80321_iintsrc_read(void)
147 {
148 	uint32_t iintsrc;
149 
150 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 		: "=r" (iintsrc));
152 
153 	/*
154 	 * The IINTSRC register shows bits that are active even
155 	 * if they are masked in INTCTL, so we have to mask them
156 	 * off with the interrupts we consider enabled.
157 	 */
158 	return (iintsrc & intr_enabled);
159 }
160 
161 static inline void
162 i80321_set_intrsteer(void)
163 {
164 
165 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 		:
167 		: "r" (intr_steer & ICU_INT_HWMASK));
168 }
169 
170 static inline void
171 i80321_enable_irq(int irq)
172 {
173 
174 	intr_enabled |= (1U << irq);
175 	i80321_set_intrmask();
176 }
177 
178 static inline void
179 i80321_disable_irq(int irq)
180 {
181 
182 	intr_enabled &= ~(1U << irq);
183 	i80321_set_intrmask();
184 }
185 
186 /*
187  * NOTE: This routine must be called with interrupts disabled in the CPSR.
188  */
189 static void
190 i80321_intr_calculate_masks(void)
191 {
192 	struct intrq *iq;
193 	struct intrhand *ih;
194 	int irq, ipl;
195 
196 	/* First, figure out which IPLs each IRQ has. */
197 	for (irq = 0; irq < NIRQ; irq++) {
198 		int levels = 0;
199 		iq = &intrq[irq];
200 		i80321_disable_irq(irq);
201 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 		     ih = TAILQ_NEXT(ih, ih_list))
203 			levels |= (1U << ih->ih_ipl);
204 		iq->iq_levels = levels;
205 	}
206 
207 	/* Next, figure out which IRQs are used by each IPL. */
208 	for (ipl = 0; ipl < NIPL; ipl++) {
209 		int irqs = 0;
210 		for (irq = 0; irq < NIRQ; irq++) {
211 			if (intrq[irq].iq_levels & (1U << ipl))
212 				irqs |= (1U << irq);
213 		}
214 		i80321_imask[ipl] = irqs;
215 	}
216 
217 	i80321_imask[IPL_NONE] = 0;
218 
219 	/*
220 	 * Enforce a hierarchy that gives "slow" device (or devices with
221 	 * limited input buffer space/"real-time" requirements) a better
222 	 * chance at not dropping data.
223 	 */
224 	i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
225 	i80321_imask[IPL_SOFTBIO] = SI_TO_IRQBIT(SI_SOFTBIO);
226 	i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
227 	i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
228 
229 	i80321_imask[IPL_SOFTBIO] |= i80321_imask[IPL_SOFTCLOCK];
230 	i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTBIO];
231 	i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_SOFTNET];
232 	i80321_imask[IPL_VM] |= i80321_imask[IPL_SOFTSERIAL];
233 	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
234 
235 	/*
236 	 * Now compute which IRQs must be blocked when servicing any
237 	 * given IRQ.
238 	 */
239 	for (irq = 0; irq < NIRQ; irq++) {
240 		int irqs = (1U << irq);
241 		iq = &intrq[irq];
242 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
243 			i80321_enable_irq(irq);
244 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
245 		     ih = TAILQ_NEXT(ih, ih_list))
246 			irqs |= i80321_imask[ih->ih_ipl];
247 		iq->iq_mask = irqs;
248 	}
249 }
250 
251 void
252 i80321_do_pending(void)
253 {
254 #ifdef __HAVE_FAST_SOFTINTS
255 	static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
256 	int new, oldirqstate;
257 
258 	if (__cpu_simple_lock_try(&processing) == 0)
259 		return;
260 
261 	new = current_spl_level;
262 
263 	oldirqstate = disable_interrupts(I32_bit);
264 
265 #define	DO_SOFTINT(si)							\
266 	if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) {		\
267 		i80321_ipending &= ~SI_TO_IRQBIT(si);			\
268 		current_spl_level |= i80321_imask[si_to_ipl[(si)]];	\
269 		restore_interrupts(oldirqstate);			\
270 		softintr_dispatch(si);					\
271 		oldirqstate = disable_interrupts(I32_bit);		\
272 		current_spl_level = new;				\
273 	}
274 
275 	DO_SOFTINT(SI_SOFTSERIAL);
276 	DO_SOFTINT(SI_SOFTNET);
277 	DO_SOFTINT(SI_SOFTCLOCK);
278 	DO_SOFTINT(SI_SOFT);
279 
280 	__cpu_simple_unlock(&processing);
281 
282 	restore_interrupts(oldirqstate);
283 #endif
284 }
285 
286 void
287 splx(int new)
288 {
289 
290 	i80321_splx(new);
291 }
292 
293 int
294 _spllower(int ipl)
295 {
296 
297 	return (i80321_spllower(ipl));
298 }
299 
300 int
301 _splraise(int ipl)
302 {
303 
304 	return (i80321_splraise(ipl));
305 }
306 
307 void
308 _setsoftintr(int si)
309 {
310 	int oldirqstate;
311 
312 	oldirqstate = disable_interrupts(I32_bit);
313 	i80321_ipending |= SI_TO_IRQBIT(si);
314 	restore_interrupts(oldirqstate);
315 
316 	/* Process unmasked pending soft interrupts. */
317 	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
318 		i80321_do_pending();
319 }
320 
321 /*
322  * i80321_icu_init:
323  *
324  *	Initialize the i80321 ICU.  Called early in bootstrap
325  *	to make sure the ICU is in a pristine state.
326  */
327 void
328 i80321_icu_init(void)
329 {
330 
331 	intr_enabled = 0;	/* All interrupts disabled */
332 	i80321_set_intrmask();
333 
334 	intr_steer = 0;		/* All interrupts steered to IRQ */
335 	i80321_set_intrsteer();
336 }
337 
338 /*
339  * i80321_intr_init:
340  *
341  *	Initialize the rest of the interrupt subsystem, making it
342  *	ready to handle interrupts from devices.
343  */
344 void
345 i80321_intr_init(void)
346 {
347 	struct intrq *iq;
348 	int i;
349 
350 	intr_enabled = 0;
351 
352 	for (i = 0; i < NIRQ; i++) {
353 		iq = &intrq[i];
354 		TAILQ_INIT(&iq->iq_list);
355 
356 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
357 		    NULL, "iop321", i80321_irqnames[i]);
358 	}
359 
360 	i80321_intr_calculate_masks();
361 
362 	/* Enable IRQs (don't yet use FIQs). */
363 	enable_interrupts(I32_bit);
364 }
365 
366 void *
367 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
368 {
369 	struct intrq *iq;
370 	struct intrhand *ih;
371 	u_int oldirqstate;
372 
373 	if (irq < 0 || irq > NIRQ)
374 		panic("i80321_intr_establish: IRQ %d out of range", irq);
375 
376 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
377 	if (ih == NULL)
378 		return (NULL);
379 
380 	ih->ih_func = func;
381 	ih->ih_arg = arg;
382 	ih->ih_ipl = ipl;
383 	ih->ih_irq = irq;
384 
385 	iq = &intrq[irq];
386 
387 	/* All IOP321 interrupts are level-triggered. */
388 	iq->iq_ist = IST_LEVEL;
389 
390 	oldirqstate = disable_interrupts(I32_bit);
391 
392 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
393 
394 	i80321_intr_calculate_masks();
395 
396 	restore_interrupts(oldirqstate);
397 
398 	return (ih);
399 }
400 
401 void
402 i80321_intr_disestablish(void *cookie)
403 {
404 	struct intrhand *ih = cookie;
405 	struct intrq *iq = &intrq[ih->ih_irq];
406 	int oldirqstate;
407 
408 	oldirqstate = disable_interrupts(I32_bit);
409 
410 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
411 
412 	i80321_intr_calculate_masks();
413 
414 	restore_interrupts(oldirqstate);
415 }
416 
417 /*
418  * Hardware interrupt handler.
419  *
420  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
421  * HPI interrupts as best it can.
422  *
423  * The problem is that HPIs cannot be masked at the interrupt controller;
424  * they can only be masked by disabling IRQs in the XScale core.
425  *
426  * So, if an HPI comes in and we determine that it should be masked at
427  * the current IPL then we mark it pending in the usual way and set
428  * I32_bit in the interrupt frame. This ensures that when we return from
429  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
430  * ensure IRQs are enabled later, i80321_splx() has been modified to do
431  * just that when a pending HPI interrupt is unmasked.) Additionally,
432  * because HPIs are level-triggered, the registered handler for the HPI
433  * interrupt will also be invoked with IRQs disabled. If a masked HPI
434  * occurs at the same time as another unmasked higher priority interrupt,
435  * the higher priority handler will also be invoked with IRQs disabled.
436  * As a result, the system could end up executing a lot of code with IRQs
437  * completely disabled if the HPI's IPL is relatively low.
438  *
439  * At the present time, the only known use of HPI is for the console UART
440  * on a couple of boards. This is probably the least intrusive use of HPI
441  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
442  * code has not been tested with HPI hooked up to a class of device which
443  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
444  * perform very poorly if at all, even though the following code has been
445  * designed (hopefully) to cope with it.
446  */
447 
448 void
449 i80321_intr_dispatch(struct clockframe *frame)
450 {
451 	struct intrq *iq;
452 	struct intrhand *ih;
453 	int oldirqstate, pcpl, irq, ibit, hwpend;
454 	struct cpu_info *ci;
455 #ifdef I80321_HPI_ENABLED
456 	int oldpending;
457 #endif
458 
459 	ci = curcpu();
460 	ci->ci_idepth++;
461 	pcpl = current_spl_level;
462 	hwpend = i80321_iintsrc_read();
463 
464 	/*
465 	 * Disable all the interrupts that are pending.  We will
466 	 * reenable them once they are processed and not masked.
467 	 */
468 	intr_enabled &= ~hwpend;
469 	i80321_set_intrmask();
470 
471 #ifdef I80321_HPI_ENABLED
472 	oldirqstate = 0;	/* XXX: quell gcc warning */
473 #endif
474 
475 	while (hwpend != 0) {
476 #ifdef I80321_HPI_ENABLED
477 		/* Deal with HPI interrupt first */
478 		if (__predict_false(hwpend & INT_HPIMASK))
479 			irq = ICU_INT_HPI;
480 		else
481 #endif
482 		irq = ffs(hwpend) - 1;
483 		ibit = (1U << irq);
484 
485 		hwpend &= ~ibit;
486 
487 		if (pcpl & ibit) {
488 			/*
489 			 * IRQ is masked; mark it as pending and check
490 			 * the next one.  Note: the IRQ is already disabled.
491 			 */
492 #ifdef I80321_HPI_ENABLED
493 			if (__predict_false(irq == ICU_INT_HPI)) {
494 				/*
495 				 * This is an HPI. We *must* disable
496 				 * IRQs in the interrupt frame until
497 				 * INT_HPIMASK is cleared by a later
498 				 * call to splx(). Otherwise the level-
499 				 * triggered interrupt will just keep
500 				 * coming back.
501 				 */
502 				frame->cf_if.if_spsr |= I32_bit;
503 			}
504 #endif
505 			i80321_ipending |= ibit;
506 			continue;
507 		}
508 
509 #ifdef I80321_HPI_ENABLED
510 		oldpending = i80321_ipending | ibit;
511 #endif
512 		i80321_ipending &= ~ibit;
513 
514 		iq = &intrq[irq];
515 		iq->iq_ev.ev_count++;
516 		uvmexp.intrs++;
517 		current_spl_level |= iq->iq_mask;
518 #ifdef I80321_HPI_ENABLED
519 		/*
520 		 * Re-enable interrupts iff an HPI is not pending
521 		 */
522 		if (__predict_true((oldpending & INT_HPIMASK) == 0))
523 #endif
524 		oldirqstate = enable_interrupts(I32_bit);
525 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
526 		     ih = TAILQ_NEXT(ih, ih_list)) {
527 			(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
528 		}
529 #ifdef I80321_HPI_ENABLED
530 		if (__predict_true((oldpending & INT_HPIMASK) == 0))
531 #endif
532 		restore_interrupts(oldirqstate);
533 #ifdef I80321_HPI_ENABLED
534 		else if (irq == ICU_INT_HPI) {
535 			/*
536 			 * We've just handled the HPI. Make sure IRQs
537 			 * are enabled in the interrupt frame.
538 			 * Here's hoping the handler really did clear
539 			 * down the source...
540 			 */
541 			frame->cf_if.if_spsr &= ~I32_bit;
542 		}
543 #endif
544 		current_spl_level = pcpl;
545 
546 		/* Re-enable this interrupt now that's it's cleared. */
547 		intr_enabled |= ibit;
548 		i80321_set_intrmask();
549 
550 		/*
551 		 * Don't forget to include interrupts which may have
552 		 * arrived in the meantime.
553 		 */
554 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
555 	}
556 	ci->ci_idepth--;
557 
558 	/* Check for pendings soft intrs. */
559 	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
560 #ifdef I80321_HPI_ENABLED
561 		/* XXX: This is only necessary if HPI is < IPL_SOFT* */
562 		if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
563 #endif
564 		oldirqstate = enable_interrupts(I32_bit);
565 		i80321_do_pending();
566 #ifdef I80321_HPI_ENABLED
567 		/* XXX: This is only necessary if HPI is < IPL_NET* */
568 		if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
569 #endif
570 		restore_interrupts(oldirqstate);
571 	}
572 }
573