xref: /netbsd-src/sys/arch/arm/xscale/i80321_icu.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: i80321_icu.c,v 1.14 2006/11/24 21:20:05 wiz Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.14 2006/11/24 21:20:05 wiz Exp $");
40 
41 #ifndef EVBARM_SPL_NOINLINE
42 #define	EVBARM_SPL_NOINLINE
43 #endif
44 
45 /*
46  * Interrupt support for the Intel i80321 I/O Processor.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57 
58 #include <arm/cpufunc.h>
59 
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62 
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65 
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68 
69 /* Current interrupt priority level. */
70 volatile int current_spl_level;
71 
72 /* Interrupts pending. */
73 volatile int i80321_ipending;
74 
75 /* Software copy of the IRQs we have enabled. */
76 volatile uint32_t intr_enabled;
77 
78 /* Mask if interrupts steered to FIQs. */
79 uint32_t intr_steer;
80 
81 /*
82  * Map a software interrupt queue index (to the unused bits in the
83  * ICU registers -- XXX will need to revisit this if those bits are
84  * ever used in future steppings).
85  */
86 static const uint32_t si_to_irqbit[SI_NQUEUES] = {
87 	ICU_INT_bit26,		/* SI_SOFT */
88 	ICU_INT_bit22,		/* SI_SOFTCLOCK */
89 	ICU_INT_bit5,		/* SI_SOFTNET */
90 	ICU_INT_bit4,		/* SI_SOFTSERIAL */
91 };
92 
93 #define	SI_TO_IRQBIT(si)	(1U << si_to_irqbit[(si)])
94 
95 /*
96  * Map a software interrupt queue to an interrupt priority level.
97  */
98 static const int si_to_ipl[SI_NQUEUES] = {
99 	IPL_SOFT,		/* SI_SOFT */
100 	IPL_SOFTCLOCK,		/* SI_SOFTCLOCK */
101 	IPL_SOFTNET,		/* SI_SOFTNET */
102 	IPL_SOFTSERIAL,		/* SI_SOFTSERIAL */
103 };
104 
105 /*
106  * Interrupt bit names.
107  */
108 const char *i80321_irqnames[] = {
109 	"DMA0 EOT",
110 	"DMA0 EOC",
111 	"DMA1 EOT",
112 	"DMA1 EOC",
113 	"irq 4",
114 	"irq 5",
115 	"AAU EOT",
116 	"AAU EOC",
117 	"core PMU",
118 	"TMR0 (hardclock)",
119 	"TMR1",
120 	"I2C0",
121 	"I2C1",
122 	"MU",
123 	"BIST",
124 	"periph PMU",
125 	"XScale PMU",
126 	"BIU error",
127 	"ATU error",
128 	"MCU error",
129 	"DMA0 error",
130 	"DMA1 error",
131 	"irq 22",
132 	"AAU error",
133 	"MU error",
134 	"SSP",
135 	"irq 26",
136 	"irq 27",
137 	"irq 28",
138 	"irq 29",
139 	"irq 30",
140 	"irq 31",
141 };
142 
143 void	i80321_intr_dispatch(struct clockframe *frame);
144 
145 static inline uint32_t
146 i80321_iintsrc_read(void)
147 {
148 	uint32_t iintsrc;
149 
150 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
151 		: "=r" (iintsrc));
152 
153 	/*
154 	 * The IINTSRC register shows bits that are active even
155 	 * if they are masked in INTCTL, so we have to mask them
156 	 * off with the interrupts we consider enabled.
157 	 */
158 	return (iintsrc & intr_enabled);
159 }
160 
161 static inline void
162 i80321_set_intrsteer(void)
163 {
164 
165 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
166 		:
167 		: "r" (intr_steer & ICU_INT_HWMASK));
168 }
169 
170 static inline void
171 i80321_enable_irq(int irq)
172 {
173 
174 	intr_enabled |= (1U << irq);
175 	i80321_set_intrmask();
176 }
177 
178 static inline void
179 i80321_disable_irq(int irq)
180 {
181 
182 	intr_enabled &= ~(1U << irq);
183 	i80321_set_intrmask();
184 }
185 
186 /*
187  * NOTE: This routine must be called with interrupts disabled in the CPSR.
188  */
189 static void
190 i80321_intr_calculate_masks(void)
191 {
192 	struct intrq *iq;
193 	struct intrhand *ih;
194 	int irq, ipl;
195 
196 	/* First, figure out which IPLs each IRQ has. */
197 	for (irq = 0; irq < NIRQ; irq++) {
198 		int levels = 0;
199 		iq = &intrq[irq];
200 		i80321_disable_irq(irq);
201 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
202 		     ih = TAILQ_NEXT(ih, ih_list))
203 			levels |= (1U << ih->ih_ipl);
204 		iq->iq_levels = levels;
205 	}
206 
207 	/* Next, figure out which IRQs are used by each IPL. */
208 	for (ipl = 0; ipl < NIPL; ipl++) {
209 		int irqs = 0;
210 		for (irq = 0; irq < NIRQ; irq++) {
211 			if (intrq[irq].iq_levels & (1U << ipl))
212 				irqs |= (1U << irq);
213 		}
214 		i80321_imask[ipl] = irqs;
215 	}
216 
217 	i80321_imask[IPL_NONE] = 0;
218 
219 	/*
220 	 * Initialize the soft interrupt masks to block themselves.
221 	 */
222 	i80321_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
223 	i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
224 	i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
225 	i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
226 
227 	/*
228 	 * splsoftclock() is the only interface that users of the
229 	 * generic software interrupt facility have to block their
230 	 * soft intrs, so splsoftclock() must also block IPL_SOFT.
231 	 */
232 	i80321_imask[IPL_SOFTCLOCK] |= i80321_imask[IPL_SOFT];
233 
234 	/*
235 	 * splsoftnet() must also block splsoftclock(), since we don't
236 	 * want timer-driven network events to occur while we're
237 	 * processing incoming packets.
238 	 */
239 	i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTCLOCK];
240 
241 	/*
242 	 * Enforce a hierarchy that gives "slow" device (or devices with
243 	 * limited input buffer space/"real-time" requirements) a better
244 	 * chance at not dropping data.
245 	 */
246 	i80321_imask[IPL_BIO] |= i80321_imask[IPL_SOFTNET];
247 	i80321_imask[IPL_NET] |= i80321_imask[IPL_BIO];
248 	i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_NET];
249 	i80321_imask[IPL_TTY] |= i80321_imask[IPL_SOFTSERIAL];
250 
251 	/*
252 	 * splvm() blocks all interrupts that use the kernel memory
253 	 * allocation facilities.
254 	 */
255 	i80321_imask[IPL_VM] |= i80321_imask[IPL_TTY];
256 
257 	/*
258 	 * Audio devices are not allowed to perform memory allocation
259 	 * in their interrupt routines, and they have fairly "real-time"
260 	 * requirements, so give them a high interrupt priority.
261 	 */
262 	i80321_imask[IPL_AUDIO] |= i80321_imask[IPL_VM];
263 
264 	/*
265 	 * splclock() must block anything that uses the scheduler.
266 	 */
267 	i80321_imask[IPL_CLOCK] |= i80321_imask[IPL_AUDIO];
268 
269 	/*
270 	 * No separate statclock on the IQ80310.
271 	 */
272 	i80321_imask[IPL_STATCLOCK] |= i80321_imask[IPL_CLOCK];
273 
274 	/*
275 	 * splhigh() must block "everything".
276 	 */
277 	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_STATCLOCK];
278 
279 	/*
280 	 * XXX We need serial drivers to run at the absolute highest priority
281 	 * in order to avoid overruns, so serial > high.
282 	 */
283 	i80321_imask[IPL_SERIAL] |= i80321_imask[IPL_HIGH];
284 
285 	/*
286 	 * Now compute which IRQs must be blocked when servicing any
287 	 * given IRQ.
288 	 */
289 	for (irq = 0; irq < NIRQ; irq++) {
290 		int irqs = (1U << irq);
291 		iq = &intrq[irq];
292 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
293 			i80321_enable_irq(irq);
294 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
295 		     ih = TAILQ_NEXT(ih, ih_list))
296 			irqs |= i80321_imask[ih->ih_ipl];
297 		iq->iq_mask = irqs;
298 	}
299 }
300 
301 void
302 i80321_do_pending(void)
303 {
304 	static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
305 	int new, oldirqstate;
306 
307 	if (__cpu_simple_lock_try(&processing) == 0)
308 		return;
309 
310 	new = current_spl_level;
311 
312 	oldirqstate = disable_interrupts(I32_bit);
313 
314 #define	DO_SOFTINT(si)							\
315 	if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) {		\
316 		i80321_ipending &= ~SI_TO_IRQBIT(si);			\
317 		current_spl_level |= i80321_imask[si_to_ipl[(si)]];	\
318 		restore_interrupts(oldirqstate);			\
319 		softintr_dispatch(si);					\
320 		oldirqstate = disable_interrupts(I32_bit);		\
321 		current_spl_level = new;				\
322 	}
323 
324 	DO_SOFTINT(SI_SOFTSERIAL);
325 	DO_SOFTINT(SI_SOFTNET);
326 	DO_SOFTINT(SI_SOFTCLOCK);
327 	DO_SOFTINT(SI_SOFT);
328 
329 	__cpu_simple_unlock(&processing);
330 
331 	restore_interrupts(oldirqstate);
332 }
333 
334 void
335 splx(int new)
336 {
337 
338 	i80321_splx(new);
339 }
340 
341 int
342 _spllower(int ipl)
343 {
344 
345 	return (i80321_spllower(ipl));
346 }
347 
348 int
349 _splraise(int ipl)
350 {
351 
352 	return (i80321_splraise(ipl));
353 }
354 
355 void
356 _setsoftintr(int si)
357 {
358 	int oldirqstate;
359 
360 	oldirqstate = disable_interrupts(I32_bit);
361 	i80321_ipending |= SI_TO_IRQBIT(si);
362 	restore_interrupts(oldirqstate);
363 
364 	/* Process unmasked pending soft interrupts. */
365 	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
366 		i80321_do_pending();
367 }
368 
369 /*
370  * i80321_icu_init:
371  *
372  *	Initialize the i80321 ICU.  Called early in bootstrap
373  *	to make sure the ICU is in a pristine state.
374  */
375 void
376 i80321_icu_init(void)
377 {
378 
379 	intr_enabled = 0;	/* All interrupts disabled */
380 	i80321_set_intrmask();
381 
382 	intr_steer = 0;		/* All interrupts steered to IRQ */
383 	i80321_set_intrsteer();
384 }
385 
386 /*
387  * i80321_intr_init:
388  *
389  *	Initialize the rest of the interrupt subsystem, making it
390  *	ready to handle interrupts from devices.
391  */
392 void
393 i80321_intr_init(void)
394 {
395 	struct intrq *iq;
396 	int i;
397 
398 	intr_enabled = 0;
399 
400 	for (i = 0; i < NIRQ; i++) {
401 		iq = &intrq[i];
402 		TAILQ_INIT(&iq->iq_list);
403 
404 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
405 		    NULL, "iop321", i80321_irqnames[i]);
406 	}
407 
408 	i80321_intr_calculate_masks();
409 
410 	/* Enable IRQs (don't yet use FIQs). */
411 	enable_interrupts(I32_bit);
412 }
413 
414 void *
415 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
416 {
417 	struct intrq *iq;
418 	struct intrhand *ih;
419 	u_int oldirqstate;
420 
421 	if (irq < 0 || irq > NIRQ)
422 		panic("i80321_intr_establish: IRQ %d out of range", irq);
423 
424 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
425 	if (ih == NULL)
426 		return (NULL);
427 
428 	ih->ih_func = func;
429 	ih->ih_arg = arg;
430 	ih->ih_ipl = ipl;
431 	ih->ih_irq = irq;
432 
433 	iq = &intrq[irq];
434 
435 	/* All IOP321 interrupts are level-triggered. */
436 	iq->iq_ist = IST_LEVEL;
437 
438 	oldirqstate = disable_interrupts(I32_bit);
439 
440 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
441 
442 	i80321_intr_calculate_masks();
443 
444 	restore_interrupts(oldirqstate);
445 
446 	return (ih);
447 }
448 
449 void
450 i80321_intr_disestablish(void *cookie)
451 {
452 	struct intrhand *ih = cookie;
453 	struct intrq *iq = &intrq[ih->ih_irq];
454 	int oldirqstate;
455 
456 	oldirqstate = disable_interrupts(I32_bit);
457 
458 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
459 
460 	i80321_intr_calculate_masks();
461 
462 	restore_interrupts(oldirqstate);
463 }
464 
465 /*
466  * Hardware interrupt handler.
467  *
468  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
469  * HPI interrupts as best it can.
470  *
471  * The problem is that HPIs cannot be masked at the interrupt controller;
472  * they can only be masked by disabling IRQs in the XScale core.
473  *
474  * So, if an HPI comes in and we determine that it should be masked at
475  * the current IPL then we mark it pending in the usual way and set
476  * I32_bit in the interrupt frame. This ensures that when we return from
477  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
478  * ensure IRQs are enabled later, i80321_splx() has been modified to do
479  * just that when a pending HPI interrupt is unmasked.) Additionally,
480  * because HPIs are level-triggered, the registered handler for the HPI
481  * interrupt will also be invoked with IRQs disabled. If a masked HPI
482  * occurs at the same time as another unmasked higher priority interrupt,
483  * the higher priority handler will also be invoked with IRQs disabled.
484  * As a result, the system could end up executing a lot of code with IRQs
485  * completely disabled if the HPI's IPL is relatively low.
486  *
487  * At the present time, the only known use of HPI is for the console UART
488  * on a couple of boards. This is probably the least intrusive use of HPI
489  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
490  * code has not been tested with HPI hooked up to a class of device which
491  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
492  * perform very poorly if at all, even though the following code has been
493  * designed (hopefully) to cope with it.
494  */
495 
496 void
497 i80321_intr_dispatch(struct clockframe *frame)
498 {
499 	struct intrq *iq;
500 	struct intrhand *ih;
501 	int oldirqstate, pcpl, irq, ibit, hwpend;
502 #ifdef I80321_HPI_ENABLED
503 	int oldpending;
504 #endif
505 
506 	pcpl = current_spl_level;
507 
508 	hwpend = i80321_iintsrc_read();
509 
510 	/*
511 	 * Disable all the interrupts that are pending.  We will
512 	 * reenable them once they are processed and not masked.
513 	 */
514 	intr_enabled &= ~hwpend;
515 	i80321_set_intrmask();
516 
517 #ifdef I80321_HPI_ENABLED
518 	oldirqstate = 0;	/* XXX: quell gcc warning */
519 #endif
520 
521 	while (hwpend != 0) {
522 #ifdef I80321_HPI_ENABLED
523 		/* Deal with HPI interrupt first */
524 		if (__predict_false(hwpend & INT_HPIMASK))
525 			irq = ICU_INT_HPI;
526 		else
527 #endif
528 		irq = ffs(hwpend) - 1;
529 		ibit = (1U << irq);
530 
531 		hwpend &= ~ibit;
532 
533 		if (pcpl & ibit) {
534 			/*
535 			 * IRQ is masked; mark it as pending and check
536 			 * the next one.  Note: the IRQ is already disabled.
537 			 */
538 #ifdef I80321_HPI_ENABLED
539 			if (__predict_false(irq == ICU_INT_HPI)) {
540 				/*
541 				 * This is an HPI. We *must* disable
542 				 * IRQs in the interrupt frame until
543 				 * INT_HPIMASK is cleared by a later
544 				 * call to splx(). Otherwise the level-
545 				 * triggered interrupt will just keep
546 				 * coming back.
547 				 */
548 				frame->cf_if.if_spsr |= I32_bit;
549 			}
550 #endif
551 			i80321_ipending |= ibit;
552 			continue;
553 		}
554 
555 #ifdef I80321_HPI_ENABLED
556 		oldpending = i80321_ipending | ibit;
557 #endif
558 		i80321_ipending &= ~ibit;
559 
560 		iq = &intrq[irq];
561 		iq->iq_ev.ev_count++;
562 		uvmexp.intrs++;
563 		current_spl_level |= iq->iq_mask;
564 #ifdef I80321_HPI_ENABLED
565 		/*
566 		 * Re-enable interrupts iff an HPI is not pending
567 		 */
568 		if (__predict_true((oldpending & INT_HPIMASK) == 0))
569 #endif
570 		oldirqstate = enable_interrupts(I32_bit);
571 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
572 		     ih = TAILQ_NEXT(ih, ih_list)) {
573 			(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
574 		}
575 #ifdef I80321_HPI_ENABLED
576 		if (__predict_true((oldpending & INT_HPIMASK) == 0))
577 #endif
578 		restore_interrupts(oldirqstate);
579 #ifdef I80321_HPI_ENABLED
580 		else if (irq == ICU_INT_HPI) {
581 			/*
582 			 * We've just handled the HPI. Make sure IRQs
583 			 * are enabled in the interrupt frame.
584 			 * Here's hoping the handler really did clear
585 			 * down the source...
586 			 */
587 			frame->cf_if.if_spsr &= ~I32_bit;
588 		}
589 #endif
590 		current_spl_level = pcpl;
591 
592 		/* Re-enable this interrupt now that's it's cleared. */
593 		intr_enabled |= ibit;
594 		i80321_set_intrmask();
595 
596 		/*
597 		 * Don't forget to include interrupts which may have
598 		 * arrived in the meantime.
599 		 */
600 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~pcpl);
601 	}
602 
603 	/* Check for pendings soft intrs. */
604 	if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
605 #ifdef I80321_HPI_ENABLED
606 		/* XXX: This is only necessary if HPI is < IPL_SOFT* */
607 		if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
608 #endif
609 		oldirqstate = enable_interrupts(I32_bit);
610 		i80321_do_pending();
611 #ifdef I80321_HPI_ENABLED
612 		/* XXX: This is only necessary if HPI is < IPL_NET* */
613 		if (__predict_true((i80321_ipending & INT_HPIMASK) == 0))
614 #endif
615 		restore_interrupts(oldirqstate);
616 	}
617 }
618