xref: /netbsd-src/sys/arch/arm/xscale/i80321_icu.c (revision 6fc217346bb51c463d3a5a2a7883cb56515cd6d7)
1 /*	$NetBSD: i80321_icu.c,v 1.19 2009/01/05 06:03:39 briggs Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2006 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: i80321_icu.c,v 1.19 2009/01/05 06:03:39 briggs Exp $");
40 
41 #ifndef EVBARM_SPL_NOINLINE
42 #define	EVBARM_SPL_NOINLINE
43 #endif
44 
45 /*
46  * Interrupt support for the Intel i80321 I/O Processor.
47  */
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 
53 #include <uvm/uvm_extern.h>
54 
55 #include <machine/bus.h>
56 #include <machine/intr.h>
57 
58 #include <arm/cpufunc.h>
59 
60 #include <arm/xscale/i80321reg.h>
61 #include <arm/xscale/i80321var.h>
62 
63 /* Interrupt handler queues. */
64 struct intrq intrq[NIRQ];
65 
66 /* Interrupts to mask at each level. */
67 int i80321_imask[NIPL];
68 
69 /* Interrupts pending. */
70 volatile int i80321_ipending;
71 
72 /* Software copy of the IRQs we have enabled. */
73 volatile uint32_t intr_enabled;
74 
75 /* Mask if interrupts steered to FIQs. */
76 uint32_t intr_steer;
77 
78 /*
79  * Interrupt bit names.
80  */
81 const char * const i80321_irqnames[] = {
82 	"DMA0 EOT",
83 	"DMA0 EOC",
84 	"DMA1 EOT",
85 	"DMA1 EOC",
86 	"irq 4",
87 	"irq 5",
88 	"AAU EOT",
89 	"AAU EOC",
90 	"core PMU",
91 	"TMR0 (hardclock)",
92 	"TMR1",
93 	"I2C0",
94 	"I2C1",
95 	"MU",
96 	"BIST",
97 	"periph PMU",
98 	"XScale PMU",
99 	"BIU error",
100 	"ATU error",
101 	"MCU error",
102 	"DMA0 error",
103 	"DMA1 error",
104 	"irq 22",
105 	"AAU error",
106 	"MU error",
107 	"SSP",
108 	"irq 26",
109 	"irq 27",
110 	"irq 28",
111 	"irq 29",
112 	"irq 30",
113 	"irq 31",
114 };
115 
116 void	i80321_intr_dispatch(struct clockframe *frame);
117 
118 static inline uint32_t
119 i80321_iintsrc_read(void)
120 {
121 	uint32_t iintsrc;
122 
123 	__asm volatile("mrc p6, 0, %0, c8, c0, 0"
124 		: "=r" (iintsrc));
125 
126 	/*
127 	 * The IINTSRC register shows bits that are active even
128 	 * if they are masked in INTCTL, so we have to mask them
129 	 * off with the interrupts we consider enabled.
130 	 */
131 	return (iintsrc & intr_enabled);
132 }
133 
134 static inline void
135 i80321_set_intrsteer(void)
136 {
137 
138 	__asm volatile("mcr p6, 0, %0, c4, c0, 0"
139 		:
140 		: "r" (intr_steer & ICU_INT_HWMASK));
141 }
142 
143 static inline void
144 i80321_enable_irq(int irq)
145 {
146 
147 	intr_enabled |= (1U << irq);
148 	i80321_set_intrmask();
149 }
150 
151 static inline void
152 i80321_disable_irq(int irq)
153 {
154 
155 	intr_enabled &= ~(1U << irq);
156 	i80321_set_intrmask();
157 }
158 
159 /*
160  * NOTE: This routine must be called with interrupts disabled in the CPSR.
161  */
162 static void
163 i80321_intr_calculate_masks(void)
164 {
165 	struct intrq *iq;
166 	struct intrhand *ih;
167 	int irq, ipl;
168 
169 	/* First, figure out which IPLs each IRQ has. */
170 	for (irq = 0; irq < NIRQ; irq++) {
171 		int levels = 0;
172 		iq = &intrq[irq];
173 		i80321_disable_irq(irq);
174 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
175 		     ih = TAILQ_NEXT(ih, ih_list))
176 			levels |= (1U << ih->ih_ipl);
177 		iq->iq_levels = levels;
178 	}
179 
180 	/* Next, figure out which IRQs are used by each IPL. */
181 	for (ipl = 0; ipl < NIPL; ipl++) {
182 		int irqs = 0;
183 		for (irq = 0; irq < NIRQ; irq++) {
184 			if (intrq[irq].iq_levels & (1U << ipl))
185 				irqs |= (1U << irq);
186 		}
187 		i80321_imask[ipl] = irqs;
188 	}
189 
190 	i80321_imask[IPL_NONE] = 0;
191 
192 	/*
193 	 * Enforce a hierarchy that gives "slow" device (or devices with
194 	 * limited input buffer space/"real-time" requirements) a better
195 	 * chance at not dropping data.
196 	 */
197 
198 #if 0
199 	/*
200 	 * This assert might be useful, but only after some interrupts
201 	 * are configured.  As it stands now, it will always fire early
202 	 * in the initialization phase.  If it's useful enough to re-
203 	 * enable, it should be conditionalized on something else like
204 	 * having at least something in the levels/irqs above.
205 	 */
206 	KASSERT(i80321_imask[IPL_VM] != 0);
207 #endif
208 	i80321_imask[IPL_SCHED] |= i80321_imask[IPL_VM];
209 	i80321_imask[IPL_HIGH] |= i80321_imask[IPL_SCHED];
210 
211 	/*
212 	 * Now compute which IRQs must be blocked when servicing any
213 	 * given IRQ.
214 	 */
215 	for (irq = 0; irq < NIRQ; irq++) {
216 		int irqs = (1U << irq);
217 		iq = &intrq[irq];
218 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
219 			i80321_enable_irq(irq);
220 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
221 		     ih = TAILQ_NEXT(ih, ih_list))
222 			irqs |= i80321_imask[ih->ih_ipl];
223 		iq->iq_mask = irqs;
224 	}
225 }
226 
227 void
228 splx(int new)
229 {
230 	i80321_splx(new);
231 }
232 
233 int
234 _spllower(int ipl)
235 {
236 	return (i80321_spllower(ipl));
237 }
238 
239 int
240 _splraise(int ipl)
241 {
242 	return (i80321_splraise(ipl));
243 }
244 
245 /*
246  * i80321_icu_init:
247  *
248  *	Initialize the i80321 ICU.  Called early in bootstrap
249  *	to make sure the ICU is in a pristine state.
250  */
251 void
252 i80321_icu_init(void)
253 {
254 
255 	intr_enabled = 0;	/* All interrupts disabled */
256 	i80321_set_intrmask();
257 
258 	intr_steer = 0;		/* All interrupts steered to IRQ */
259 	i80321_set_intrsteer();
260 }
261 
262 /*
263  * i80321_intr_init:
264  *
265  *	Initialize the rest of the interrupt subsystem, making it
266  *	ready to handle interrupts from devices.
267  */
268 void
269 i80321_intr_init(void)
270 {
271 	struct intrq *iq;
272 	int i;
273 
274 	intr_enabled = 0;
275 
276 	for (i = 0; i < NIRQ; i++) {
277 		iq = &intrq[i];
278 		TAILQ_INIT(&iq->iq_list);
279 
280 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
281 		    NULL, "iop321", i80321_irqnames[i]);
282 	}
283 
284 	i80321_intr_calculate_masks();
285 
286 	/* Enable IRQs (don't yet use FIQs). */
287 	enable_interrupts(I32_bit);
288 }
289 
290 void *
291 i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
292 {
293 	struct intrq *iq;
294 	struct intrhand *ih;
295 	u_int oldirqstate;
296 
297 	if (irq < 0 || irq > NIRQ)
298 		panic("i80321_intr_establish: IRQ %d out of range", irq);
299 
300 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
301 	if (ih == NULL)
302 		return (NULL);
303 
304 	ih->ih_func = func;
305 	ih->ih_arg = arg;
306 	ih->ih_ipl = ipl;
307 	ih->ih_irq = irq;
308 
309 	iq = &intrq[irq];
310 
311 	/* All IOP321 interrupts are level-triggered. */
312 	iq->iq_ist = IST_LEVEL;
313 
314 	oldirqstate = disable_interrupts(I32_bit);
315 
316 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
317 
318 	i80321_intr_calculate_masks();
319 
320 	restore_interrupts(oldirqstate);
321 
322 	return (ih);
323 }
324 
325 void
326 i80321_intr_disestablish(void *cookie)
327 {
328 	struct intrhand *ih = cookie;
329 	struct intrq *iq = &intrq[ih->ih_irq];
330 	int oldirqstate;
331 
332 	oldirqstate = disable_interrupts(I32_bit);
333 
334 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
335 
336 	i80321_intr_calculate_masks();
337 
338 	restore_interrupts(oldirqstate);
339 }
340 
341 /*
342  * Hardware interrupt handler.
343  *
344  * If I80321_HPI_ENABLED is defined, this code attempts to deal with
345  * HPI interrupts as best it can.
346  *
347  * The problem is that HPIs cannot be masked at the interrupt controller;
348  * they can only be masked by disabling IRQs in the XScale core.
349  *
350  * So, if an HPI comes in and we determine that it should be masked at
351  * the current IPL then we mark it pending in the usual way and set
352  * I32_bit in the interrupt frame. This ensures that when we return from
353  * i80321_intr_dispatch(), IRQs will be disabled in the XScale core. (To
354  * ensure IRQs are enabled later, i80321_splx() has been modified to do
355  * just that when a pending HPI interrupt is unmasked.) Additionally,
356  * because HPIs are level-triggered, the registered handler for the HPI
357  * interrupt will also be invoked with IRQs disabled. If a masked HPI
358  * occurs at the same time as another unmasked higher priority interrupt,
359  * the higher priority handler will also be invoked with IRQs disabled.
360  * As a result, the system could end up executing a lot of code with IRQs
361  * completely disabled if the HPI's IPL is relatively low.
362  *
363  * At the present time, the only known use of HPI is for the console UART
364  * on a couple of boards. This is probably the least intrusive use of HPI
365  * as IPL_SERIAL is the highest priority IPL in the system anyway. The
366  * code has not been tested with HPI hooked up to a class of device which
367  * interrupts below IPL_SERIAL. Indeed, such a configuration is likely to
368  * perform very poorly if at all, even though the following code has been
369  * designed (hopefully) to cope with it.
370  */
371 
372 void
373 i80321_intr_dispatch(struct clockframe *frame)
374 {
375 	struct intrq *iq;
376 	struct intrhand *ih;
377 	int oldirqstate, irq, ibit, hwpend;
378 #ifdef I80321_HPI_ENABLED
379 	int oldpending;
380 #endif
381 	struct cpu_info * const ci = curcpu();
382 	const int ppl = ci->ci_cpl;
383 	const uint32_t imask = i80321_imask[ppl];
384 
385 	hwpend = i80321_iintsrc_read();
386 
387 	/*
388 	 * Disable all the interrupts that are pending.  We will
389 	 * reenable them once they are processed and not masked.
390 	 */
391 	intr_enabled &= ~hwpend;
392 	i80321_set_intrmask();
393 
394 #ifdef I80321_HPI_ENABLED
395 	oldirqstate = 0;	/* XXX: quell gcc warning */
396 #endif
397 
398 	while (hwpend != 0) {
399 #ifdef I80321_HPI_ENABLED
400 		/* Deal with HPI interrupt first */
401 		if (__predict_false(hwpend & INT_HPIMASK))
402 			irq = ICU_INT_HPI;
403 		else
404 #endif
405 		irq = ffs(hwpend) - 1;
406 		ibit = (1U << irq);
407 
408 		hwpend &= ~ibit;
409 
410 		if (imask & ibit) {
411 			/*
412 			 * IRQ is masked; mark it as pending and check
413 			 * the next one.  Note: the IRQ is already disabled.
414 			 */
415 #ifdef I80321_HPI_ENABLED
416 			if (__predict_false(irq == ICU_INT_HPI)) {
417 				/*
418 				 * This is an HPI. We *must* disable
419 				 * IRQs in the interrupt frame until
420 				 * INT_HPIMASK is cleared by a later
421 				 * call to splx(). Otherwise the level-
422 				 * triggered interrupt will just keep
423 				 * coming back.
424 				 */
425 				frame->cf_if.if_spsr |= I32_bit;
426 			}
427 #endif
428 			i80321_ipending |= ibit;
429 			continue;
430 		}
431 
432 #ifdef I80321_HPI_ENABLED
433 		oldpending = i80321_ipending | ibit;
434 #endif
435 		i80321_ipending &= ~ibit;
436 
437 		iq = &intrq[irq];
438 		iq->iq_ev.ev_count++;
439 		uvmexp.intrs++;
440 #ifdef I80321_HPI_ENABLED
441 		/*
442 		 * Re-enable interrupts iff an HPI is not pending
443 		 */
444 		if (__predict_true((oldpending & INT_HPIMASK) == 0)) {
445 #endif
446 			TAILQ_FOREACH (ih, &iq->iq_list, ih_list) {
447 				ci->ci_cpl = ih->ih_ipl;
448 				oldirqstate = enable_interrupts(I32_bit);
449 				(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
450 				restore_interrupts(oldirqstate);
451 			}
452 #ifdef I80321_HPI_ENABLED
453 		} else if (irq == ICU_INT_HPI) {
454 			/*
455 			 * We've just handled the HPI. Make sure IRQs
456 			 * are enabled in the interrupt frame.
457 			 * Here's hoping the handler really did clear
458 			 * down the source...
459 			 */
460 			frame->cf_if.if_spsr &= ~I32_bit;
461 		}
462 #endif
463 		ci->ci_cpl = ppl;
464 
465 		/* Re-enable this interrupt now that's it's cleared. */
466 		intr_enabled |= ibit;
467 		i80321_set_intrmask();
468 
469 		/*
470 		 * Don't forget to include interrupts which may have
471 		 * arrived in the meantime.
472 		 */
473 		hwpend |= ((i80321_ipending & ICU_INT_HWMASK) & ~imask);
474 	}
475 
476 #ifdef __HAVE_FAST_SOFTINTS
477 	cpu_dosoftints();
478 #endif
479 }
480