xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision e670fd5c413e99c2f6a37901bb21c537fcd322d2)
1 /*      $NetBSD: vfp_init.c,v 1.74 2021/06/01 00:30:22 rin Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_cputypes.h"
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.74 2021/06/01 00:30:22 rin Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/device.h>
41 #include <sys/kthread.h>
42 #include <sys/proc.h>
43 #include <sys/cpu.h>
44 
45 #include <arm/locore.h>
46 #include <arm/pcb.h>
47 #include <arm/undefined.h>
48 #include <arm/vfpreg.h>
49 #include <arm/mcontext.h>
50 #include <arm/fpu.h>
51 
52 #include <uvm/uvm_extern.h>		/* for pmap.h */
53 
54 #include <crypto/aes/aes_impl.h>
55 #include <crypto/aes/arch/arm/aes_neon.h>
56 #include <crypto/chacha/arch/arm/chacha_neon.h>
57 #include <crypto/chacha/chacha_impl.h>
58 
59 #ifdef FPU_VFP
60 
61 #ifdef CPU_CORTEX
62 #define SETFPU __asm(".fpu\tvfpv4")
63 #else
64 #define SETFPU __asm(".fpu\tvfp")
65 #endif
66 SETFPU;
67 
68 /* FLDMD <X>, {d0-d15} */
69 static inline void
70 load_vfpregs_lo(const uint64_t *p)
71 {
72 	SETFPU;
73 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
74 }
75 
76 /* FSTMD <X>, {d0-d15} */
77 static inline void
78 save_vfpregs_lo(uint64_t *p)
79 {
80 	SETFPU;
81 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
82 }
83 
84 #ifdef CPU_CORTEX
85 /* FLDMD <X>, {d16-d31} */
86 static inline void
87 load_vfpregs_hi(const uint64_t *p)
88 {
89 	SETFPU;
90 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
91 }
92 
93 /* FLDMD <X>, {d16-d31} */
94 static inline void
95 save_vfpregs_hi(uint64_t *p)
96 {
97 	SETFPU;
98 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
99 }
100 #endif
101 
102 static inline void
103 load_vfpregs(const struct vfpreg *fregs)
104 {
105 	load_vfpregs_lo(fregs->vfp_regs);
106 #ifdef CPU_CORTEX
107 #ifdef CPU_ARM11
108 	switch (curcpu()->ci_vfp_id) {
109 	case FPU_VFP_CORTEXA5:
110 	case FPU_VFP_CORTEXA7:
111 	case FPU_VFP_CORTEXA8:
112 	case FPU_VFP_CORTEXA9:
113 	case FPU_VFP_CORTEXA15:
114 	case FPU_VFP_CORTEXA15_QEMU:
115 	case FPU_VFP_CORTEXA53:
116 	case FPU_VFP_CORTEXA57:
117 #endif
118 		load_vfpregs_hi(fregs->vfp_regs);
119 #ifdef CPU_ARM11
120 		break;
121 	}
122 #endif
123 #endif
124 }
125 
126 static inline void
127 save_vfpregs(struct vfpreg *fregs)
128 {
129 	save_vfpregs_lo(fregs->vfp_regs);
130 #ifdef CPU_CORTEX
131 #ifdef CPU_ARM11
132 	switch (curcpu()->ci_vfp_id) {
133 	case FPU_VFP_CORTEXA5:
134 	case FPU_VFP_CORTEXA7:
135 	case FPU_VFP_CORTEXA8:
136 	case FPU_VFP_CORTEXA9:
137 	case FPU_VFP_CORTEXA15:
138 	case FPU_VFP_CORTEXA15_QEMU:
139 	case FPU_VFP_CORTEXA53:
140 	case FPU_VFP_CORTEXA57:
141 #endif
142 		save_vfpregs_hi(fregs->vfp_regs);
143 #ifdef CPU_ARM11
144 		break;
145 	}
146 #endif
147 #endif
148 }
149 
150 /* The real handler for VFP bounces.  */
151 static int vfp_handler(u_int, u_int, trapframe_t *, int);
152 #ifdef CPU_CORTEX
153 static int neon_handler(u_int, u_int, trapframe_t *, int);
154 #endif
155 
156 static void vfp_state_load(lwp_t *, u_int);
157 static void vfp_state_save(lwp_t *);
158 static void vfp_state_release(lwp_t *);
159 
160 const pcu_ops_t arm_vfp_ops = {
161 	.pcu_id = PCU_FPU,
162 	.pcu_state_save = vfp_state_save,
163 	.pcu_state_load = vfp_state_load,
164 	.pcu_state_release = vfp_state_release,
165 };
166 
167 /* determine what bits can be changed */
168 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
169 /* default to run fast */
170 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
171 
172 /*
173  * Used to test for a VFP. The following function is installed as a coproc10
174  * handler on the undefined instruction vector and then we issue a VFP
175  * instruction. If undefined_test is non zero then the VFP did not handle
176  * the instruction so must be absent, or disabled.
177  */
178 
179 static int undefined_test;
180 
181 static int
182 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
183 {
184 
185 	frame->tf_pc += INSN_SIZE;
186 	++undefined_test;
187 	return 0;
188 }
189 
190 #else
191 /* determine what bits can be changed */
192 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
193 #endif /* FPU_VFP */
194 
195 static int
196 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
197 {
198 	struct lwp * const l = curlwp;
199 	const u_int regno = (insn >> 12) & 0xf;
200 	/*
201 	 * Only match move to/from the FPSCR register and we
202 	 * can't be using the SP,LR,PC as a source.
203 	 */
204 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
205 		return 1;
206 
207 	struct pcb * const pcb = lwp_getpcb(l);
208 
209 #ifdef FPU_VFP
210 	/*
211 	 * If FPU is valid somewhere, let's just reenable VFP and
212 	 * retry the instruction (only safe thing to do since the
213 	 * pcb has a stale copy).
214 	 */
215 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
216 		return 1;
217 
218 	if (__predict_false(!vfp_used_p(l))) {
219 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
220 	}
221 #endif
222 
223 	/*
224 	 * We now know the pcb has the saved copy.
225 	 */
226 	register_t * const regp = &frame->tf_r0 + regno;
227 	if (insn & 0x00100000) {
228 		*regp = pcb->pcb_vfp.vfp_fpscr;
229 	} else {
230 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
231 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
232 	}
233 
234 	curcpu()->ci_vfp_evs[0].ev_count++;
235 
236 	frame->tf_pc += INSN_SIZE;
237 	return 0;
238 }
239 
240 #ifndef FPU_VFP
241 /*
242  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
243  * instructions.
244  */
245 void
246 vfp_attach(struct cpu_info *ci)
247 {
248 	if (CPU_IS_PRIMARY(ci)) {
249 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
250 	}
251 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
252 	    ci->ci_cpuname, "vfp fpscr traps");
253 }
254 
255 #else
256 void
257 vfp_attach(struct cpu_info *ci)
258 {
259 	const char *model = NULL;
260 
261 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
262 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
263 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
264 #if 0
265 		const uint32_t nsacr = armreg_nsacr_read();
266 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
267 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
268 			aprint_normal_dev(ci->ci_dev,
269 			    "VFP access denied (NSACR=%#x)\n", nsacr);
270 			if (CPU_IS_PRIMARY(ci))
271 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
272 			ci->ci_vfp_id = 0;
273 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
274 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
275 			    "vfp fpscr traps");
276 			return;
277 		}
278 #endif
279 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
280 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
281 
282 		/*
283 		 * We first need to enable access to the coprocessors.
284 		 */
285 		uint32_t cpacr = armreg_cpacr_read();
286 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
287 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
288 		armreg_cpacr_write(cpacr);
289 
290 		isb();
291 
292 		/*
293 		 * If we could enable them, then they exist.
294 		 */
295 		cpacr = armreg_cpacr_read();
296 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
297 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
298 		if (!vfp_p) {
299 			aprint_normal_dev(ci->ci_dev,
300 			    "VFP access denied (CPACR=%#x)\n", cpacr);
301 			if (CPU_IS_PRIMARY(ci))
302 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
303 			ci->ci_vfp_id = 0;
304 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
305 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
306 			    "vfp fpscr traps");
307 			return;
308 		}
309 	}
310 
311 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
312 
313 	undefined_test = 0;
314 
315 	const uint32_t fpsid = armreg_fpsid_read();
316 
317 	remove_coproc_handler(uh);
318 
319 	if (undefined_test != 0) {
320 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
321 		if (CPU_IS_PRIMARY(ci))
322 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
323 		ci->ci_vfp_id = 0;
324 		return;
325 	}
326 
327 	ci->ci_vfp_id = fpsid;
328 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
329 	case FPU_VFP10_ARM10E:
330 		model = "VFP10 R1";
331 		break;
332 	case FPU_VFP11_ARM11:
333 		model = "VFP11";
334 		break;
335 	case FPU_VFP_MV88SV58XX:
336 		model = "VFP3";
337 		break;
338 	case FPU_VFP_CORTEXA5:
339 	case FPU_VFP_CORTEXA7:
340 	case FPU_VFP_CORTEXA8:
341 	case FPU_VFP_CORTEXA9:
342 	case FPU_VFP_CORTEXA12:
343 	case FPU_VFP_CORTEXA15:
344 	case FPU_VFP_CORTEXA15_QEMU:
345 	case FPU_VFP_CORTEXA17:
346 	case FPU_VFP_CORTEXA53:
347 	case FPU_VFP_CORTEXA57:
348 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
349 			model = "VFP 4.0+";
350 		} else {
351 			model = "NEON MPE (VFP 3.0+)";
352 			cpu_neon_present = 1;
353 		}
354 		break;
355 	default:
356 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
357 		    fpsid);
358 		if (CPU_IS_PRIMARY(ci))
359 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
360 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
361 		    |VFP_FPSCR_RMODE;
362 		vfp_fpscr_default = 0;
363 		return;
364 	}
365 
366 	cpu_fpu_present = 1;
367 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
368 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
369 	if (fpsid != 0) {
370 		uint32_t f0 = armreg_mvfr0_read();
371 		uint32_t f1 = armreg_mvfr1_read();
372 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
373 		    device_unit(ci->ci_dev),
374 		    device_xname(ci->ci_dev),
375 		    model,
376 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
377 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
378 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
379 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
380 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
381 		    device_unit(ci->ci_dev), f0, f1);
382 		if (CPU_IS_PRIMARY(ci)) {
383 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
384 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
385 			}
386 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
387 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
388 			}
389 			// If hardware supports propagation of NaNs, select it.
390 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
391 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
392 				vfp_fpscr_changable |= VFP_FPSCR_DN;
393 			}
394 			// If hardware supports denormalized numbers, use it.
395 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
396 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
397 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
398 			}
399 		}
400 	}
401 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
402 	    ci->ci_cpuname, "vfp coproc use");
403 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
404 	    ci->ci_cpuname, "vfp coproc re-use");
405 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
406 	    ci->ci_cpuname, "vfp coproc fault");
407 	if (CPU_IS_PRIMARY(ci)) {
408 		install_coproc_handler(VFP_COPROC, vfp_handler);
409 		install_coproc_handler(VFP_COPROC2, vfp_handler);
410 #ifdef CPU_CORTEX
411 		if (cpu_neon_present) {
412 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
413 			    neon_handler);
414 			aes_md_init(&aes_neon_impl);
415 			chacha_md_init(&chacha_neon_impl);
416 		}
417 #endif
418 	}
419 }
420 
421 /* The real handler for VFP bounces.  */
422 static int
423 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
424 {
425 	struct cpu_info * const ci = curcpu();
426 	uint32_t fpexc;
427 
428 	/* This shouldn't ever happen.  */
429 	if (fault_code != FAULT_USER &&
430 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
431 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
432 
433 	if (ci->ci_vfp_id == 0) {
434 		/* No VFP detected, just fault.  */
435 		return 1;
436 	}
437 
438 	/*
439 	 * If we already own the FPU and it's enabled (and no exception), raise
440 	 * SIGILL.  If there is an exception, raise SIGFPE.
441 	 */
442 	if (curlwp->l_pcu_cpu[PCU_FPU] == ci) {
443 		KASSERT(ci->ci_pcu_curlwp[PCU_FPU] == curlwp);
444 
445 		fpexc = armreg_fpexc_read();
446 		if (fpexc & VFP_FPEXC_EN) {
447 			if ((fpexc & VFP_FPEXC_EX) == 0) {
448 				return 1;	/* SIGILL */
449 			} else {
450 				goto fpe;	/* SIGFPE; skip pcu_load(9) */
451 			}
452 		}
453 	}
454 
455 	/*
456 	 * Make sure we own the FP.
457 	 */
458 	pcu_load(&arm_vfp_ops);
459 
460 	fpexc = armreg_fpexc_read();
461 	if (fpexc & VFP_FPEXC_EX) {
462 		ksiginfo_t ksi;
463 		KASSERT(fpexc & VFP_FPEXC_EN);
464 
465 fpe:
466 		curcpu()->ci_vfp_evs[2].ev_count++;
467 
468 		/*
469 		 * Need the clear the exception condition so any signal
470 		 * and future use can proceed.
471 		 */
472 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
473 
474 		pcu_save(&arm_vfp_ops, curlwp);
475 
476 		/*
477 		 * XXX Need to emulate bounce instructions here to get correct
478 		 * XXX exception codes, etc.
479 		 */
480 		KSI_INIT_TRAP(&ksi);
481 		ksi.ksi_signo = SIGFPE;
482 		if (fpexc & VFP_FPEXC_IXF)
483 			ksi.ksi_code = FPE_FLTRES;
484 		else if (fpexc & VFP_FPEXC_UFF)
485 			ksi.ksi_code = FPE_FLTUND;
486 		else if (fpexc & VFP_FPEXC_OFF)
487 			ksi.ksi_code = FPE_FLTOVF;
488 		else if (fpexc & VFP_FPEXC_DZF)
489 			ksi.ksi_code = FPE_FLTDIV;
490 		else if (fpexc & VFP_FPEXC_IOF)
491 			ksi.ksi_code = FPE_FLTINV;
492 		ksi.ksi_addr = (uint32_t *)address;
493 		ksi.ksi_trap = 0;
494 		trapsignal(curlwp, &ksi);
495 		return 0;
496 	}
497 
498 	/* Need to restart the faulted instruction.  */
499 //	frame->tf_pc -= INSN_SIZE;
500 	return 0;
501 }
502 
503 #ifdef CPU_CORTEX
504 /* The real handler for NEON bounces.  */
505 static int
506 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
507 {
508 	struct cpu_info * const ci = curcpu();
509 
510 	if (ci->ci_vfp_id == 0)
511 		/* No VFP detected, just fault.  */
512 		return 1;
513 
514 	if ((insn & 0xfe000000) != 0xf2000000
515 	    && (insn & 0xfe000000) != 0xf4000000)
516 		/* Not NEON instruction, just fault.  */
517 		return 1;
518 
519 	/* This shouldn't ever happen.  */
520 	if (fault_code != FAULT_USER &&
521 	    (curlwp->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) == LW_SYSTEM)
522 		panic("NEON fault in non-user mode");
523 
524 	/* if we already own the FPU and it's enabled, raise SIGILL */
525 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
526 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
527 		return 1;
528 
529 	pcu_load(&arm_vfp_ops);
530 
531 	/* Need to restart the faulted instruction.  */
532 //	frame->tf_pc -= INSN_SIZE;
533 	return 0;
534 }
535 #endif
536 
537 static void
538 vfp_state_load(lwp_t *l, u_int flags)
539 {
540 	struct pcb * const pcb = lwp_getpcb(l);
541 	struct vfpreg * const fregs = &pcb->pcb_vfp;
542 
543 	/*
544 	 * Instrument VFP usage -- if a process has not previously
545 	 * used the VFP, mark it as having used VFP for the first time,
546 	 * and count this event.
547 	 *
548 	 * If a process has used the VFP, count a "used VFP, and took
549 	 * a trap to use it again" event.
550 	 */
551 	if (__predict_false((flags & PCU_VALID) == 0)) {
552 		curcpu()->ci_vfp_evs[0].ev_count++;
553 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
554 	} else {
555 		curcpu()->ci_vfp_evs[1].ev_count++;
556 	}
557 
558 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
559 	/*
560 	 * If the VFP is already enabled we must be bouncing an instruction.
561 	 */
562 	if (flags & PCU_REENABLE) {
563 		uint32_t fpexc = armreg_fpexc_read();
564 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
565 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
566 		return;
567 	}
568 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
569 
570 	/*
571 	 * Load and Enable the VFP (so that we can write the registers).
572 	 */
573 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
574 	armreg_fpexc_write(fregs->vfp_fpexc);
575 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
576 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
577 
578 	load_vfpregs(fregs);
579 	armreg_fpscr_write(fregs->vfp_fpscr);
580 
581 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
582 		/* Need to restore the exception handling state.  */
583 		armreg_fpinst_write(fregs->vfp_fpinst);
584 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
585 			armreg_fpinst2_write(fregs->vfp_fpinst2);
586 	}
587 }
588 
589 void
590 vfp_state_save(lwp_t *l)
591 {
592 	struct pcb * const pcb = lwp_getpcb(l);
593 	struct vfpreg * const fregs = &pcb->pcb_vfp;
594 	uint32_t fpexc = armreg_fpexc_read();
595 
596 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
597 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
598 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
599 	/*
600 	 * Enable the VFP (so we can read the registers).
601 	 * Make sure the exception bit is cleared so that we can
602 	 * safely dump the registers.
603 	 */
604 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
605 
606 	fregs->vfp_fpexc = fpexc;
607 	if (fpexc & VFP_FPEXC_EX) {
608 		/* Need to save the exception handling state */
609 		fregs->vfp_fpinst = armreg_fpinst_read();
610 		if (fpexc & VFP_FPEXC_FP2V)
611 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
612 	}
613 	fregs->vfp_fpscr = armreg_fpscr_read();
614 	save_vfpregs(fregs);
615 
616 	/* Disable the VFP.  */
617 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
618 }
619 
620 void
621 vfp_state_release(lwp_t *l)
622 {
623 	struct pcb * const pcb = lwp_getpcb(l);
624 
625 	/*
626 	 * Now mark the VFP as disabled (and our state
627 	 * has been already saved or is being discarded).
628 	 */
629 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
630 
631 	/*
632 	 * Turn off the FPU so the next time a VFP instruction is issued
633 	 * an exception happens.  We don't know if this LWP's state was
634 	 * loaded but if we turned off the FPU for some other LWP, when
635 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
636 	 * is still set so it just restore fpexc and return since its
637 	 * contents are still sitting in the VFP.
638 	 */
639 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
640 }
641 
642 void
643 vfp_savecontext(lwp_t *l)
644 {
645 	pcu_save(&arm_vfp_ops, l);
646 }
647 
648 void
649 vfp_discardcontext(lwp_t *l, bool used_p)
650 {
651 	pcu_discard(&arm_vfp_ops, l, used_p);
652 }
653 
654 bool
655 vfp_used_p(const lwp_t *l)
656 {
657 	return pcu_valid_p(&arm_vfp_ops, l);
658 }
659 
660 void
661 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
662 {
663 	if (vfp_used_p(l)) {
664 		const struct pcb * const pcb = lwp_getpcb(l);
665 
666 		pcu_save(&arm_vfp_ops, l);
667 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
668 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
669 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
670 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
671 	}
672 }
673 
674 void
675 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
676 {
677 	struct pcb * const pcb = lwp_getpcb(l);
678 
679 	pcu_discard(&arm_vfp_ops, l, true);
680 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
681 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
682 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
683 }
684 
685 /*
686  * True if this is a system thread with its own private FPU state.
687  */
688 static inline bool
689 lwp_system_fpu_p(struct lwp *l)
690 {
691 
692 	return (l->l_flag & (LW_SYSTEM|LW_SYSTEM_FPU)) ==
693 	    (LW_SYSTEM|LW_SYSTEM_FPU);
694 }
695 
696 static const struct vfpreg zero_vfpreg;
697 
698 void
699 fpu_kern_enter(void)
700 {
701 	struct cpu_info *ci;
702 	uint32_t fpexc;
703 	int s;
704 
705 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
706 		KASSERT(!cpu_softintr_p());
707 		return;
708 	}
709 
710 	/*
711 	 * Block interrupts up to IPL_VM.  We must block preemption
712 	 * since -- if this is a user thread -- there is nowhere to
713 	 * save the kernel fpu state, and if we want this to be usable
714 	 * in interrupts, we can't let interrupts interfere with the
715 	 * fpu state in use since there's nowhere for them to save it.
716 	 */
717 	s = splvm();
718 	ci = curcpu();
719 	KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
720 	KASSERT(ci->ci_kfpu_spl == -1);
721 	ci->ci_kfpu_spl = s;
722 
723 	/* Save any fpu state on the current CPU.  */
724 	pcu_save_all_on_cpu();
725 
726 	/* Enable the fpu.  */
727 	fpexc = armreg_fpexc_read();
728 	fpexc |= VFP_FPEXC_EN;
729 	fpexc &= ~VFP_FPEXC_EX;
730 	armreg_fpexc_write(fpexc);
731 }
732 
733 void
734 fpu_kern_leave(void)
735 {
736 	struct cpu_info *ci = curcpu();
737 	int s;
738 	uint32_t fpexc;
739 
740 	if (lwp_system_fpu_p(curlwp) && !cpu_intr_p()) {
741 		KASSERT(!cpu_softintr_p());
742 		return;
743 	}
744 
745 	KASSERT(ci->ci_cpl == IPL_VM);
746 	KASSERT(ci->ci_kfpu_spl != -1);
747 
748 	/*
749 	 * Zero the fpu registers; otherwise we might leak secrets
750 	 * through Spectre-class attacks to userland, even if there are
751 	 * no bugs in fpu state management.
752 	 */
753 	load_vfpregs(&zero_vfpreg);
754 
755 	/*
756 	 * Disable the fpu so that the kernel can't accidentally use
757 	 * it again.
758 	 */
759 	fpexc = armreg_fpexc_read();
760 	fpexc &= ~VFP_FPEXC_EN;
761 	armreg_fpexc_write(fpexc);
762 
763 	/* Restore interrupts.  */
764 	s = ci->ci_kfpu_spl;
765 	ci->ci_kfpu_spl = -1;
766 	splx(s);
767 }
768 
769 void
770 kthread_fpu_enter_md(void)
771 {
772 
773 	pcu_load(&arm_vfp_ops);
774 }
775 
776 void
777 kthread_fpu_exit_md(void)
778 {
779 
780 	/* XXX Should vfp_state_release zero the registers itself?  */
781 	load_vfpregs(&zero_vfpreg);
782 	vfp_discardcontext(curlwp, 0);
783 }
784 
785 #endif /* FPU_VFP */
786