xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*      $NetBSD: vfp_init.c,v 1.50 2016/03/03 17:01:31 skrll Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38 
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44 
45 #include <uvm/uvm_extern.h>		/* for pmap.h */
46 
47 #ifdef FPU_VFP
48 
49 #ifdef CPU_CORTEX
50 __asm(".fpu\tvfpv4");
51 #else
52 __asm(".fpu\tvfp");
53 #endif
54 
55 /* FLDMD <X>, {d0-d15} */
56 static inline void
57 load_vfpregs_lo(const uint64_t *p)
58 {
59 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 }
61 
62 /* FSTMD <X>, {d0-d15} */
63 static inline void
64 save_vfpregs_lo(uint64_t *p)
65 {
66 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 }
68 
69 #ifdef CPU_CORTEX
70 /* FLDMD <X>, {d16-d31} */
71 static inline void
72 load_vfpregs_hi(const uint64_t *p)
73 {
74 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 }
76 
77 /* FLDMD <X>, {d16-d31} */
78 static inline void
79 save_vfpregs_hi(uint64_t *p)
80 {
81 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 }
83 #endif
84 
85 static inline void
86 load_vfpregs(const struct vfpreg *fregs)
87 {
88 	load_vfpregs_lo(fregs->vfp_regs);
89 #ifdef CPU_CORTEX
90 #ifdef CPU_ARM11
91 	switch (curcpu()->ci_vfp_id) {
92 	case FPU_VFP_CORTEXA5:
93 	case FPU_VFP_CORTEXA7:
94 	case FPU_VFP_CORTEXA8:
95 	case FPU_VFP_CORTEXA9:
96 	case FPU_VFP_CORTEXA15:
97 	case FPU_VFP_CORTEXA15_QEMU:
98 	case FPU_VFP_CORTEXA53:
99 #endif
100 		load_vfpregs_hi(fregs->vfp_regs);
101 #ifdef CPU_ARM11
102 		break;
103 	}
104 #endif
105 #endif
106 }
107 
108 static inline void
109 save_vfpregs(struct vfpreg *fregs)
110 {
111 	save_vfpregs_lo(fregs->vfp_regs);
112 #ifdef CPU_CORTEX
113 #ifdef CPU_ARM11
114 	switch (curcpu()->ci_vfp_id) {
115 	case FPU_VFP_CORTEXA5:
116 	case FPU_VFP_CORTEXA7:
117 	case FPU_VFP_CORTEXA8:
118 	case FPU_VFP_CORTEXA9:
119 	case FPU_VFP_CORTEXA15:
120 	case FPU_VFP_CORTEXA15_QEMU:
121 	case FPU_VFP_CORTEXA53:
122 #endif
123 		save_vfpregs_hi(fregs->vfp_regs);
124 #ifdef CPU_ARM11
125 		break;
126 	}
127 #endif
128 #endif
129 }
130 
131 /* The real handler for VFP bounces.  */
132 static int vfp_handler(u_int, u_int, trapframe_t *, int);
133 #ifdef CPU_CORTEX
134 static int neon_handler(u_int, u_int, trapframe_t *, int);
135 #endif
136 
137 static void vfp_state_load(lwp_t *, u_int);
138 static void vfp_state_save(lwp_t *);
139 static void vfp_state_release(lwp_t *);
140 
141 const pcu_ops_t arm_vfp_ops = {
142 	.pcu_id = PCU_FPU,
143 	.pcu_state_save = vfp_state_save,
144 	.pcu_state_load = vfp_state_load,
145 	.pcu_state_release = vfp_state_release,
146 };
147 
148 /* determine what bits can be changed */
149 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
150 /* default to run fast */
151 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
152 
153 /*
154  * Used to test for a VFP. The following function is installed as a coproc10
155  * handler on the undefined instruction vector and then we issue a VFP
156  * instruction. If undefined_test is non zero then the VFP did not handle
157  * the instruction so must be absent, or disabled.
158  */
159 
160 static int undefined_test;
161 
162 static int
163 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
164 {
165 
166 	frame->tf_pc += INSN_SIZE;
167 	++undefined_test;
168 	return 0;
169 }
170 
171 #else
172 /* determine what bits can be changed */
173 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
174 #endif /* FPU_VFP */
175 
176 static int
177 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
178 {
179 	struct lwp * const l = curlwp;
180 	const u_int regno = (insn >> 12) & 0xf;
181 	/*
182 	 * Only match move to/from the FPSCR register and we
183 	 * can't be using the SP,LR,PC as a source.
184 	 */
185 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
186 		return 1;
187 
188 	struct pcb * const pcb = lwp_getpcb(l);
189 
190 #ifdef FPU_VFP
191 	/*
192 	 * If FPU is valid somewhere, let's just reenable VFP and
193 	 * retry the instruction (only safe thing to do since the
194 	 * pcb has a stale copy).
195 	 */
196 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
197 		return 1;
198 
199 	if (__predict_false(!vfp_used_p())) {
200 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
201 	}
202 #endif
203 
204 	/*
205 	 * We now know the pcb has the saved copy.
206 	 */
207 	register_t * const regp = &frame->tf_r0 + regno;
208 	if (insn & 0x00100000) {
209 		*regp = pcb->pcb_vfp.vfp_fpscr;
210 	} else {
211 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
212 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
213 	}
214 
215 	curcpu()->ci_vfp_evs[0].ev_count++;
216 
217 	frame->tf_pc += INSN_SIZE;
218 	return 0;
219 }
220 
221 #ifndef FPU_VFP
222 /*
223  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
224  * instructions.
225  */
226 void
227 vfp_attach(struct cpu_info *ci)
228 {
229 	if (CPU_IS_PRIMARY(ci)) {
230 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
231 	}
232 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
233 	    ci->ci_cpuname, "vfp fpscr traps");
234 }
235 
236 #else
237 void
238 vfp_attach(struct cpu_info *ci)
239 {
240 	const char *model = NULL;
241 
242 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
243 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
244 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
245 #if 0
246 		const uint32_t nsacr = armreg_nsacr_read();
247 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
248 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
249 			aprint_normal_dev(ci->ci_dev,
250 			    "VFP access denied (NSACR=%#x)\n", nsacr);
251 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
252 			ci->ci_vfp_id = 0;
253 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
254 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
255 			    "vfp fpscr traps");
256 			return;
257 		}
258 #endif
259 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
260 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
261 
262 		/*
263 		 * We first need to enable access to the coprocessors.
264 		 */
265 		uint32_t cpacr = armreg_cpacr_read();
266 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
267 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
268 		armreg_cpacr_write(cpacr);
269 
270 		arm_isb();
271 
272 		/*
273 		 * If we could enable them, then they exist.
274 		 */
275 		cpacr = armreg_cpacr_read();
276 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
277 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
278 		if (!vfp_p) {
279 			aprint_normal_dev(ci->ci_dev,
280 			    "VFP access denied (CPACR=%#x)\n", cpacr);
281 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
282 			ci->ci_vfp_id = 0;
283 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
284 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
285 			    "vfp fpscr traps");
286 			return;
287 		}
288 	}
289 
290 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
291 
292 	undefined_test = 0;
293 
294 	const uint32_t fpsid = armreg_fpsid_read();
295 
296 	remove_coproc_handler(uh);
297 
298 	if (undefined_test != 0) {
299 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
300 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
301 		ci->ci_vfp_id = 0;
302 		return;
303 	}
304 
305 	ci->ci_vfp_id = fpsid;
306 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
307 	case FPU_VFP10_ARM10E:
308 		model = "VFP10 R1";
309 		break;
310 	case FPU_VFP11_ARM11:
311 		model = "VFP11";
312 		break;
313 	case FPU_VFP_MV88SV58XX:
314 		model = "VFP3";
315 		break;
316 	case FPU_VFP_CORTEXA5:
317 	case FPU_VFP_CORTEXA7:
318 	case FPU_VFP_CORTEXA8:
319 	case FPU_VFP_CORTEXA9:
320 	case FPU_VFP_CORTEXA15:
321 	case FPU_VFP_CORTEXA15_QEMU:
322 	case FPU_VFP_CORTEXA53:
323 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
324 			model = "VFP 4.0+";
325 		} else {
326 			model = "NEON MPE (VFP 3.0+)";
327 			cpu_neon_present = 1;
328 		}
329 		break;
330 	default:
331 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
332 		    fpsid);
333 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
334 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
335 		    |VFP_FPSCR_RMODE;
336 		vfp_fpscr_default = 0;
337 		return;
338 	}
339 
340 	cpu_fpu_present = 1;
341 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
342 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
343 	if (fpsid != 0) {
344 		uint32_t f0 = armreg_mvfr0_read();
345 		uint32_t f1 = armreg_mvfr1_read();
346 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
347 		    device_unit(ci->ci_dev),
348 		    device_xname(ci->ci_dev),
349 		    model,
350 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
351 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
352 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
353 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
354 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
355 		    device_unit(ci->ci_dev), f0, f1);
356 		if (CPU_IS_PRIMARY(ci)) {
357 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
358 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
359 			}
360 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
361 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
362 			}
363 			// If hardware supports propagation of NaNs, select it.
364 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
365 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
366 				vfp_fpscr_changable |= VFP_FPSCR_DN;
367 			}
368 			// If hardware supports denormalized numbers, use it.
369 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
370 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
371 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
372 			}
373 		}
374 	}
375 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
376 	    ci->ci_cpuname, "vfp coproc use");
377 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
378 	    ci->ci_cpuname, "vfp coproc re-use");
379 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
380 	    ci->ci_cpuname, "vfp coproc fault");
381 	install_coproc_handler(VFP_COPROC, vfp_handler);
382 	install_coproc_handler(VFP_COPROC2, vfp_handler);
383 #ifdef CPU_CORTEX
384 	if (cpu_neon_present)
385 		install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
386 #endif
387 }
388 
389 /* The real handler for VFP bounces.  */
390 static int
391 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
392 {
393 	struct cpu_info * const ci = curcpu();
394 
395 	/* This shouldn't ever happen.  */
396 	if (fault_code != FAULT_USER)
397 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
398 
399 	if (ci->ci_vfp_id == 0) {
400 		/* No VFP detected, just fault.  */
401 		return 1;
402 	}
403 
404 	/*
405 	 * If we are just changing/fetching FPSCR, don't bother loading it
406 	 * just emulate the instruction.
407 	 */
408 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
409 		return 0;
410 
411 	/*
412 	 * If we already own the FPU and it's enabled (and no exception), raise
413 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
414 	 */
415 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
416 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
417 		return 1;
418 
419 	/*
420 	 * Make sure we own the FP.
421 	 */
422 	pcu_load(&arm_vfp_ops);
423 
424 	uint32_t fpexc = armreg_fpexc_read();
425 	if (fpexc & VFP_FPEXC_EX) {
426 		ksiginfo_t ksi;
427 		KASSERT(fpexc & VFP_FPEXC_EN);
428 
429 		curcpu()->ci_vfp_evs[2].ev_count++;
430 
431 		/*
432 		 * Need the clear the exception condition so any signal
433 		 * and future use can proceed.
434 		 */
435 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
436 
437 		pcu_save(&arm_vfp_ops);
438 
439 		/*
440 		 * XXX Need to emulate bounce instructions here to get correct
441 		 * XXX exception codes, etc.
442 		 */
443 		KSI_INIT_TRAP(&ksi);
444 		ksi.ksi_signo = SIGFPE;
445 		if (fpexc & VFP_FPEXC_IXF)
446 			ksi.ksi_code = FPE_FLTRES;
447 		else if (fpexc & VFP_FPEXC_UFF)
448 			ksi.ksi_code = FPE_FLTUND;
449 		else if (fpexc & VFP_FPEXC_OFF)
450 			ksi.ksi_code = FPE_FLTOVF;
451 		else if (fpexc & VFP_FPEXC_DZF)
452 			ksi.ksi_code = FPE_FLTDIV;
453 		else if (fpexc & VFP_FPEXC_IOF)
454 			ksi.ksi_code = FPE_FLTINV;
455 		ksi.ksi_addr = (uint32_t *)address;
456 		ksi.ksi_trap = 0;
457 		trapsignal(curlwp, &ksi);
458 		return 0;
459 	}
460 
461 	/* Need to restart the faulted instruction.  */
462 //	frame->tf_pc -= INSN_SIZE;
463 	return 0;
464 }
465 
466 #ifdef CPU_CORTEX
467 /* The real handler for NEON bounces.  */
468 static int
469 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
470 {
471 	struct cpu_info * const ci = curcpu();
472 
473 	if (ci->ci_vfp_id == 0)
474 		/* No VFP detected, just fault.  */
475 		return 1;
476 
477 	if ((insn & 0xfe000000) != 0xf2000000
478 	    && (insn & 0xfe000000) != 0xf4000000)
479 		/* Not NEON instruction, just fault.  */
480 		return 1;
481 
482 	/* This shouldn't ever happen.  */
483 	if (fault_code != FAULT_USER)
484 		panic("NEON fault in non-user mode");
485 
486 	/* if we already own the FPU and it's enabled, raise SIGILL */
487 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
488 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
489 		return 1;
490 
491 	pcu_load(&arm_vfp_ops);
492 
493 	/* Need to restart the faulted instruction.  */
494 //	frame->tf_pc -= INSN_SIZE;
495 	return 0;
496 }
497 #endif
498 
499 static void
500 vfp_state_load(lwp_t *l, u_int flags)
501 {
502 	struct pcb * const pcb = lwp_getpcb(l);
503 	struct vfpreg * const fregs = &pcb->pcb_vfp;
504 
505 	/*
506 	 * Instrument VFP usage -- if a process has not previously
507 	 * used the VFP, mark it as having used VFP for the first time,
508 	 * and count this event.
509 	 *
510 	 * If a process has used the VFP, count a "used VFP, and took
511 	 * a trap to use it again" event.
512 	 */
513 	if (__predict_false((flags & PCU_VALID) == 0)) {
514 		curcpu()->ci_vfp_evs[0].ev_count++;
515 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
516 	} else {
517 		curcpu()->ci_vfp_evs[1].ev_count++;
518 	}
519 
520 	/*
521 	 * If the VFP is already enabled we must be bouncing an instruction.
522 	 */
523 	if (flags & PCU_REENABLE) {
524 		uint32_t fpexc = armreg_fpexc_read();
525 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
526 		return;
527 	}
528 
529 	/*
530 	 * Load and Enable the VFP (so that we can write the registers).
531 	 */
532 	bool enabled = fregs->vfp_fpexc & VFP_FPEXC_EN;
533 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
534 	armreg_fpexc_write(fregs->vfp_fpexc);
535 	if (enabled) {
536 		/*
537 		 * If we think the VFP is enabled, it must have be
538 		 * disabled by vfp_state_release for another LWP so
539 		 * we can now just return.
540 		 */
541 		return;
542 	}
543 
544 	load_vfpregs(fregs);
545 	armreg_fpscr_write(fregs->vfp_fpscr);
546 
547 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
548 		/* Need to restore the exception handling state.  */
549 		armreg_fpinst2_write(fregs->vfp_fpinst2);
550 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
551 			armreg_fpinst_write(fregs->vfp_fpinst);
552 	}
553 }
554 
555 void
556 vfp_state_save(lwp_t *l)
557 {
558 	struct pcb * const pcb = lwp_getpcb(l);
559 	struct vfpreg * const fregs = &pcb->pcb_vfp;
560 	uint32_t fpexc = armreg_fpexc_read();
561 
562 	/*
563 	 * Enable the VFP (so we can read the registers).
564 	 * Make sure the exception bit is cleared so that we can
565 	 * safely dump the registers.
566 	 */
567 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
568 
569 	fregs->vfp_fpexc = fpexc;
570 	if (fpexc & VFP_FPEXC_EX) {
571 		/* Need to save the exception handling state */
572 		fregs->vfp_fpinst = armreg_fpinst_read();
573 		if (fpexc & VFP_FPEXC_FP2V)
574 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
575 	}
576 	fregs->vfp_fpscr = armreg_fpscr_read();
577 	save_vfpregs(fregs);
578 
579 	/* Disable the VFP.  */
580 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
581 }
582 
583 void
584 vfp_state_release(lwp_t *l)
585 {
586 	struct pcb * const pcb = lwp_getpcb(l);
587 
588 	/*
589 	 * Now mark the VFP as disabled (and our state
590 	 * has been already saved or is being discarded).
591 	 */
592 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
593 
594 	/*
595 	 * Turn off the FPU so the next time a VFP instruction is issued
596 	 * an exception happens.  We don't know if this LWP's state was
597 	 * loaded but if we turned off the FPU for some other LWP, when
598 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
599 	 * is still set so it just restore fpexc and return since its
600 	 * contents are still sitting in the VFP.
601 	 */
602 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
603 }
604 
605 void
606 vfp_savecontext(void)
607 {
608 	pcu_save(&arm_vfp_ops);
609 }
610 
611 void
612 vfp_discardcontext(bool used_p)
613 {
614 	pcu_discard(&arm_vfp_ops, used_p);
615 }
616 
617 bool
618 vfp_used_p(void)
619 {
620 	return pcu_valid_p(&arm_vfp_ops);
621 }
622 
623 void
624 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
625 {
626 	if (vfp_used_p()) {
627 		const struct pcb * const pcb = lwp_getpcb(l);
628 		pcu_save(&arm_vfp_ops);
629 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
630 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
631 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
632 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
633 	}
634 }
635 
636 void
637 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
638 {
639 	pcu_discard(&arm_vfp_ops, true);
640 	struct pcb * const pcb = lwp_getpcb(l);
641 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
642 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
643 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
644 }
645 
646 #endif /* FPU_VFP */
647