xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /*      $NetBSD: vfp_init.c,v 1.68 2020/07/13 16:54:03 riastradh Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "opt_cputypes.h"
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: vfp_init.c,v 1.68 2020/07/13 16:54:03 riastradh Exp $");
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/device.h>
41 #include <sys/proc.h>
42 #include <sys/cpu.h>
43 
44 #include <arm/locore.h>
45 #include <arm/pcb.h>
46 #include <arm/undefined.h>
47 #include <arm/vfpreg.h>
48 #include <arm/mcontext.h>
49 #include <arm/fpu.h>
50 
51 #include <uvm/uvm_extern.h>		/* for pmap.h */
52 
53 #include <crypto/aes/aes.h>
54 #include <crypto/aes/arch/arm/aes_neon.h>
55 
56 #ifdef FPU_VFP
57 
58 #ifdef CPU_CORTEX
59 #define SETFPU __asm(".fpu\tvfpv4")
60 #else
61 #define SETFPU __asm(".fpu\tvfp")
62 #endif
63 SETFPU;
64 
65 /* FLDMD <X>, {d0-d15} */
66 static inline void
67 load_vfpregs_lo(const uint64_t *p)
68 {
69 	SETFPU;
70 	__asm __volatile(".fpu vfp\n vldmia\t%0, {d0-d15}" :: "r" (p) : "memory");
71 }
72 
73 /* FSTMD <X>, {d0-d15} */
74 static inline void
75 save_vfpregs_lo(uint64_t *p)
76 {
77 	SETFPU;
78 	__asm __volatile(".fpu vfp\n vstmia\t%0, {d0-d15}" :: "r" (p) : "memory");
79 }
80 
81 #ifdef CPU_CORTEX
82 /* FLDMD <X>, {d16-d31} */
83 static inline void
84 load_vfpregs_hi(const uint64_t *p)
85 {
86 	SETFPU;
87 	__asm __volatile(".fpu neon-vfpv4\n vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
88 }
89 
90 /* FLDMD <X>, {d16-d31} */
91 static inline void
92 save_vfpregs_hi(uint64_t *p)
93 {
94 	SETFPU;
95 	__asm __volatile(".fpu neon-vfpv4\nvstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
96 }
97 #endif
98 
99 static inline void
100 load_vfpregs(const struct vfpreg *fregs)
101 {
102 	load_vfpregs_lo(fregs->vfp_regs);
103 #ifdef CPU_CORTEX
104 #ifdef CPU_ARM11
105 	switch (curcpu()->ci_vfp_id) {
106 	case FPU_VFP_CORTEXA5:
107 	case FPU_VFP_CORTEXA7:
108 	case FPU_VFP_CORTEXA8:
109 	case FPU_VFP_CORTEXA9:
110 	case FPU_VFP_CORTEXA15:
111 	case FPU_VFP_CORTEXA15_QEMU:
112 	case FPU_VFP_CORTEXA53:
113 	case FPU_VFP_CORTEXA57:
114 #endif
115 		load_vfpregs_hi(fregs->vfp_regs);
116 #ifdef CPU_ARM11
117 		break;
118 	}
119 #endif
120 #endif
121 }
122 
123 static inline void
124 save_vfpregs(struct vfpreg *fregs)
125 {
126 	save_vfpregs_lo(fregs->vfp_regs);
127 #ifdef CPU_CORTEX
128 #ifdef CPU_ARM11
129 	switch (curcpu()->ci_vfp_id) {
130 	case FPU_VFP_CORTEXA5:
131 	case FPU_VFP_CORTEXA7:
132 	case FPU_VFP_CORTEXA8:
133 	case FPU_VFP_CORTEXA9:
134 	case FPU_VFP_CORTEXA15:
135 	case FPU_VFP_CORTEXA15_QEMU:
136 	case FPU_VFP_CORTEXA53:
137 	case FPU_VFP_CORTEXA57:
138 #endif
139 		save_vfpregs_hi(fregs->vfp_regs);
140 #ifdef CPU_ARM11
141 		break;
142 	}
143 #endif
144 #endif
145 }
146 
147 /* The real handler for VFP bounces.  */
148 static int vfp_handler(u_int, u_int, trapframe_t *, int);
149 #ifdef CPU_CORTEX
150 static int neon_handler(u_int, u_int, trapframe_t *, int);
151 #endif
152 
153 static void vfp_state_load(lwp_t *, u_int);
154 static void vfp_state_save(lwp_t *);
155 static void vfp_state_release(lwp_t *);
156 
157 const pcu_ops_t arm_vfp_ops = {
158 	.pcu_id = PCU_FPU,
159 	.pcu_state_save = vfp_state_save,
160 	.pcu_state_load = vfp_state_load,
161 	.pcu_state_release = vfp_state_release,
162 };
163 
164 /* determine what bits can be changed */
165 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
166 /* default to run fast */
167 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
168 
169 /*
170  * Used to test for a VFP. The following function is installed as a coproc10
171  * handler on the undefined instruction vector and then we issue a VFP
172  * instruction. If undefined_test is non zero then the VFP did not handle
173  * the instruction so must be absent, or disabled.
174  */
175 
176 static int undefined_test;
177 
178 static int
179 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180 {
181 
182 	frame->tf_pc += INSN_SIZE;
183 	++undefined_test;
184 	return 0;
185 }
186 
187 #else
188 /* determine what bits can be changed */
189 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
190 #endif /* FPU_VFP */
191 
192 static int
193 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
194 {
195 	struct lwp * const l = curlwp;
196 	const u_int regno = (insn >> 12) & 0xf;
197 	/*
198 	 * Only match move to/from the FPSCR register and we
199 	 * can't be using the SP,LR,PC as a source.
200 	 */
201 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
202 		return 1;
203 
204 	struct pcb * const pcb = lwp_getpcb(l);
205 
206 #ifdef FPU_VFP
207 	/*
208 	 * If FPU is valid somewhere, let's just reenable VFP and
209 	 * retry the instruction (only safe thing to do since the
210 	 * pcb has a stale copy).
211 	 */
212 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
213 		return 1;
214 
215 	if (__predict_false(!vfp_used_p(l))) {
216 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
217 	}
218 #endif
219 
220 	/*
221 	 * We now know the pcb has the saved copy.
222 	 */
223 	register_t * const regp = &frame->tf_r0 + regno;
224 	if (insn & 0x00100000) {
225 		*regp = pcb->pcb_vfp.vfp_fpscr;
226 	} else {
227 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
228 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
229 	}
230 
231 	curcpu()->ci_vfp_evs[0].ev_count++;
232 
233 	frame->tf_pc += INSN_SIZE;
234 	return 0;
235 }
236 
237 #ifndef FPU_VFP
238 /*
239  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
240  * instructions.
241  */
242 void
243 vfp_attach(struct cpu_info *ci)
244 {
245 	if (CPU_IS_PRIMARY(ci)) {
246 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
247 	}
248 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
249 	    ci->ci_cpuname, "vfp fpscr traps");
250 }
251 
252 #else
253 void
254 vfp_attach(struct cpu_info *ci)
255 {
256 	const char *model = NULL;
257 
258 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
259 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
260 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
261 #if 0
262 		const uint32_t nsacr = armreg_nsacr_read();
263 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
264 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
265 			aprint_normal_dev(ci->ci_dev,
266 			    "VFP access denied (NSACR=%#x)\n", nsacr);
267 			if (CPU_IS_PRIMARY(ci))
268 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
269 			ci->ci_vfp_id = 0;
270 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
271 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
272 			    "vfp fpscr traps");
273 			return;
274 		}
275 #endif
276 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
277 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
278 
279 		/*
280 		 * We first need to enable access to the coprocessors.
281 		 */
282 		uint32_t cpacr = armreg_cpacr_read();
283 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
284 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
285 		armreg_cpacr_write(cpacr);
286 
287 		arm_isb();
288 
289 		/*
290 		 * If we could enable them, then they exist.
291 		 */
292 		cpacr = armreg_cpacr_read();
293 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
294 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
295 		if (!vfp_p) {
296 			aprint_normal_dev(ci->ci_dev,
297 			    "VFP access denied (CPACR=%#x)\n", cpacr);
298 			if (CPU_IS_PRIMARY(ci))
299 				install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
300 			ci->ci_vfp_id = 0;
301 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
302 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
303 			    "vfp fpscr traps");
304 			return;
305 		}
306 	}
307 
308 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
309 
310 	undefined_test = 0;
311 
312 	const uint32_t fpsid = armreg_fpsid_read();
313 
314 	remove_coproc_handler(uh);
315 
316 	if (undefined_test != 0) {
317 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
318 		if (CPU_IS_PRIMARY(ci))
319 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
320 		ci->ci_vfp_id = 0;
321 		return;
322 	}
323 
324 	ci->ci_vfp_id = fpsid;
325 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
326 	case FPU_VFP10_ARM10E:
327 		model = "VFP10 R1";
328 		break;
329 	case FPU_VFP11_ARM11:
330 		model = "VFP11";
331 		break;
332 	case FPU_VFP_MV88SV58XX:
333 		model = "VFP3";
334 		break;
335 	case FPU_VFP_CORTEXA5:
336 	case FPU_VFP_CORTEXA7:
337 	case FPU_VFP_CORTEXA8:
338 	case FPU_VFP_CORTEXA9:
339 	case FPU_VFP_CORTEXA12:
340 	case FPU_VFP_CORTEXA15:
341 	case FPU_VFP_CORTEXA15_QEMU:
342 	case FPU_VFP_CORTEXA17:
343 	case FPU_VFP_CORTEXA53:
344 	case FPU_VFP_CORTEXA57:
345 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
346 			model = "VFP 4.0+";
347 		} else {
348 			model = "NEON MPE (VFP 3.0+)";
349 			cpu_neon_present = 1;
350 		}
351 		break;
352 	default:
353 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
354 		    fpsid);
355 		if (CPU_IS_PRIMARY(ci))
356 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
357 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
358 		    |VFP_FPSCR_RMODE;
359 		vfp_fpscr_default = 0;
360 		return;
361 	}
362 
363 	cpu_fpu_present = 1;
364 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
365 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
366 	if (fpsid != 0) {
367 		uint32_t f0 = armreg_mvfr0_read();
368 		uint32_t f1 = armreg_mvfr1_read();
369 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
370 		    device_unit(ci->ci_dev),
371 		    device_xname(ci->ci_dev),
372 		    model,
373 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
374 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
375 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
376 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
377 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
378 		    device_unit(ci->ci_dev), f0, f1);
379 		if (CPU_IS_PRIMARY(ci)) {
380 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
381 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
382 			}
383 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
384 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
385 			}
386 			// If hardware supports propagation of NaNs, select it.
387 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
388 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
389 				vfp_fpscr_changable |= VFP_FPSCR_DN;
390 			}
391 			// If hardware supports denormalized numbers, use it.
392 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
393 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
394 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
395 			}
396 		}
397 	}
398 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
399 	    ci->ci_cpuname, "vfp coproc use");
400 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
401 	    ci->ci_cpuname, "vfp coproc re-use");
402 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
403 	    ci->ci_cpuname, "vfp coproc fault");
404 	if (CPU_IS_PRIMARY(ci)) {
405 		install_coproc_handler(VFP_COPROC, vfp_handler);
406 		install_coproc_handler(VFP_COPROC2, vfp_handler);
407 #ifdef CPU_CORTEX
408 		if (cpu_neon_present) {
409 			install_coproc_handler(CORE_UNKNOWN_HANDLER,
410 			    neon_handler);
411 			aes_md_init(&aes_neon_impl);
412 		}
413 #endif
414 	}
415 }
416 
417 /* The real handler for VFP bounces.  */
418 static int
419 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
420 {
421 	struct cpu_info * const ci = curcpu();
422 
423 	/* This shouldn't ever happen.  */
424 	if (fault_code != FAULT_USER)
425 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
426 
427 	if (ci->ci_vfp_id == 0) {
428 		/* No VFP detected, just fault.  */
429 		return 1;
430 	}
431 
432 	/*
433 	 * If we already own the FPU and it's enabled (and no exception), raise
434 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
435 	 */
436 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
437 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
438 		return 1;
439 
440 	/*
441 	 * Make sure we own the FP.
442 	 */
443 	pcu_load(&arm_vfp_ops);
444 
445 	uint32_t fpexc = armreg_fpexc_read();
446 	if (fpexc & VFP_FPEXC_EX) {
447 		ksiginfo_t ksi;
448 		KASSERT(fpexc & VFP_FPEXC_EN);
449 
450 		curcpu()->ci_vfp_evs[2].ev_count++;
451 
452 		/*
453 		 * Need the clear the exception condition so any signal
454 		 * and future use can proceed.
455 		 */
456 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
457 
458 		pcu_save(&arm_vfp_ops, curlwp);
459 
460 		/*
461 		 * XXX Need to emulate bounce instructions here to get correct
462 		 * XXX exception codes, etc.
463 		 */
464 		KSI_INIT_TRAP(&ksi);
465 		ksi.ksi_signo = SIGFPE;
466 		if (fpexc & VFP_FPEXC_IXF)
467 			ksi.ksi_code = FPE_FLTRES;
468 		else if (fpexc & VFP_FPEXC_UFF)
469 			ksi.ksi_code = FPE_FLTUND;
470 		else if (fpexc & VFP_FPEXC_OFF)
471 			ksi.ksi_code = FPE_FLTOVF;
472 		else if (fpexc & VFP_FPEXC_DZF)
473 			ksi.ksi_code = FPE_FLTDIV;
474 		else if (fpexc & VFP_FPEXC_IOF)
475 			ksi.ksi_code = FPE_FLTINV;
476 		ksi.ksi_addr = (uint32_t *)address;
477 		ksi.ksi_trap = 0;
478 		trapsignal(curlwp, &ksi);
479 		return 0;
480 	}
481 
482 	/* Need to restart the faulted instruction.  */
483 //	frame->tf_pc -= INSN_SIZE;
484 	return 0;
485 }
486 
487 #ifdef CPU_CORTEX
488 /* The real handler for NEON bounces.  */
489 static int
490 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
491 {
492 	struct cpu_info * const ci = curcpu();
493 
494 	if (ci->ci_vfp_id == 0)
495 		/* No VFP detected, just fault.  */
496 		return 1;
497 
498 	if ((insn & 0xfe000000) != 0xf2000000
499 	    && (insn & 0xfe000000) != 0xf4000000)
500 		/* Not NEON instruction, just fault.  */
501 		return 1;
502 
503 	/* This shouldn't ever happen.  */
504 	if (fault_code != FAULT_USER)
505 		panic("NEON fault in non-user mode");
506 
507 	/* if we already own the FPU and it's enabled, raise SIGILL */
508 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
509 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
510 		return 1;
511 
512 	pcu_load(&arm_vfp_ops);
513 
514 	/* Need to restart the faulted instruction.  */
515 //	frame->tf_pc -= INSN_SIZE;
516 	return 0;
517 }
518 #endif
519 
520 static void
521 vfp_state_load(lwp_t *l, u_int flags)
522 {
523 	struct pcb * const pcb = lwp_getpcb(l);
524 	struct vfpreg * const fregs = &pcb->pcb_vfp;
525 
526 	/*
527 	 * Instrument VFP usage -- if a process has not previously
528 	 * used the VFP, mark it as having used VFP for the first time,
529 	 * and count this event.
530 	 *
531 	 * If a process has used the VFP, count a "used VFP, and took
532 	 * a trap to use it again" event.
533 	 */
534 	if (__predict_false((flags & PCU_VALID) == 0)) {
535 		curcpu()->ci_vfp_evs[0].ev_count++;
536 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
537 	} else {
538 		curcpu()->ci_vfp_evs[1].ev_count++;
539 	}
540 
541 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
542 	/*
543 	 * If the VFP is already enabled we must be bouncing an instruction.
544 	 */
545 	if (flags & PCU_REENABLE) {
546 		uint32_t fpexc = armreg_fpexc_read();
547 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
548 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
549 		return;
550 	}
551 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
552 
553 	/*
554 	 * Load and Enable the VFP (so that we can write the registers).
555 	 */
556 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
557 	armreg_fpexc_write(fregs->vfp_fpexc);
558 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
559 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
560 
561 	load_vfpregs(fregs);
562 	armreg_fpscr_write(fregs->vfp_fpscr);
563 
564 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
565 		/* Need to restore the exception handling state.  */
566 		armreg_fpinst_write(fregs->vfp_fpinst);
567 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
568 			armreg_fpinst2_write(fregs->vfp_fpinst2);
569 	}
570 }
571 
572 void
573 vfp_state_save(lwp_t *l)
574 {
575 	struct pcb * const pcb = lwp_getpcb(l);
576 	struct vfpreg * const fregs = &pcb->pcb_vfp;
577 	uint32_t fpexc = armreg_fpexc_read();
578 
579 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
580 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
581 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
582 	/*
583 	 * Enable the VFP (so we can read the registers).
584 	 * Make sure the exception bit is cleared so that we can
585 	 * safely dump the registers.
586 	 */
587 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
588 
589 	fregs->vfp_fpexc = fpexc;
590 	if (fpexc & VFP_FPEXC_EX) {
591 		/* Need to save the exception handling state */
592 		fregs->vfp_fpinst = armreg_fpinst_read();
593 		if (fpexc & VFP_FPEXC_FP2V)
594 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
595 	}
596 	fregs->vfp_fpscr = armreg_fpscr_read();
597 	save_vfpregs(fregs);
598 
599 	/* Disable the VFP.  */
600 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
601 }
602 
603 void
604 vfp_state_release(lwp_t *l)
605 {
606 	struct pcb * const pcb = lwp_getpcb(l);
607 
608 	/*
609 	 * Now mark the VFP as disabled (and our state
610 	 * has been already saved or is being discarded).
611 	 */
612 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
613 
614 	/*
615 	 * Turn off the FPU so the next time a VFP instruction is issued
616 	 * an exception happens.  We don't know if this LWP's state was
617 	 * loaded but if we turned off the FPU for some other LWP, when
618 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
619 	 * is still set so it just restore fpexc and return since its
620 	 * contents are still sitting in the VFP.
621 	 */
622 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
623 }
624 
625 void
626 vfp_savecontext(lwp_t *l)
627 {
628 	pcu_save(&arm_vfp_ops, l);
629 }
630 
631 void
632 vfp_discardcontext(lwp_t *l, bool used_p)
633 {
634 	pcu_discard(&arm_vfp_ops, l, used_p);
635 }
636 
637 bool
638 vfp_used_p(const lwp_t *l)
639 {
640 	return pcu_valid_p(&arm_vfp_ops, l);
641 }
642 
643 void
644 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
645 {
646 	if (vfp_used_p(l)) {
647 		const struct pcb * const pcb = lwp_getpcb(l);
648 
649 		pcu_save(&arm_vfp_ops, l);
650 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
651 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
652 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
653 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
654 	}
655 }
656 
657 void
658 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
659 {
660 	struct pcb * const pcb = lwp_getpcb(l);
661 
662 	pcu_discard(&arm_vfp_ops, l, true);
663 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
664 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
665 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
666 }
667 
668 void
669 fpu_kern_enter(void)
670 {
671 	struct cpu_info *ci;
672 	uint32_t fpexc;
673 	int s;
674 
675 	/*
676 	 * Block interrupts up to IPL_VM.  We must block preemption
677 	 * since -- if this is a user thread -- there is nowhere to
678 	 * save the kernel fpu state, and if we want this to be usable
679 	 * in interrupts, we can't let interrupts interfere with the
680 	 * fpu state in use since there's nowhere for them to save it.
681 	 */
682 	s = splvm();
683 	ci = curcpu();
684 	KASSERTMSG(ci->ci_cpl <= IPL_VM, "cpl=%d", ci->ci_cpl);
685 	KASSERT(ci->ci_kfpu_spl == -1);
686 	ci->ci_kfpu_spl = s;
687 
688 	/* Save any fpu state on the current CPU.  */
689 	pcu_save_all_on_cpu();
690 
691 	/* Enable the fpu.  */
692 	fpexc = armreg_fpexc_read();
693 	fpexc |= VFP_FPEXC_EN;
694 	fpexc &= ~VFP_FPEXC_EX;
695 	armreg_fpexc_write(fpexc);
696 }
697 
698 void
699 fpu_kern_leave(void)
700 {
701 	static const struct vfpreg zero_vfpreg;
702 	struct cpu_info *ci = curcpu();
703 	int s;
704 	uint32_t fpexc;
705 
706 	KASSERT(ci->ci_cpl == IPL_VM);
707 	KASSERT(ci->ci_kfpu_spl != -1);
708 
709 	/*
710 	 * Zero the fpu registers; otherwise we might leak secrets
711 	 * through Spectre-class attacks to userland, even if there are
712 	 * no bugs in fpu state management.
713 	 */
714 	load_vfpregs(&zero_vfpreg);
715 
716 	/*
717 	 * Disable the fpu so that the kernel can't accidentally use
718 	 * it again.
719 	 */
720 	fpexc = armreg_fpexc_read();
721 	fpexc &= ~VFP_FPEXC_EN;
722 	armreg_fpexc_write(fpexc);
723 
724 	/* Restore interrupts.  */
725 	s = ci->ci_kfpu_spl;
726 	ci->ci_kfpu_spl = -1;
727 	splx(s);
728 }
729 
730 #endif /* FPU_VFP */
731