xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*      $NetBSD: vfp_init.c,v 1.55 2017/10/16 15:13:00 bouyer Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38 
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44 
45 #include <uvm/uvm_extern.h>		/* for pmap.h */
46 
47 #ifdef FPU_VFP
48 
49 #ifdef CPU_CORTEX
50 __asm(".fpu\tvfpv4");
51 #else
52 __asm(".fpu\tvfp");
53 #endif
54 
55 /* FLDMD <X>, {d0-d15} */
56 static inline void
57 load_vfpregs_lo(const uint64_t *p)
58 {
59 	__asm __volatile("vldmia %0, {d0-d15}" :: "r" (p) : "memory");
60 }
61 
62 /* FSTMD <X>, {d0-d15} */
63 static inline void
64 save_vfpregs_lo(uint64_t *p)
65 {
66 	__asm __volatile("vstmia %0, {d0-d15}" :: "r" (p) : "memory");
67 }
68 
69 #ifdef CPU_CORTEX
70 /* FLDMD <X>, {d16-d31} */
71 static inline void
72 load_vfpregs_hi(const uint64_t *p)
73 {
74 	__asm __volatile("vldmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
75 }
76 
77 /* FLDMD <X>, {d16-d31} */
78 static inline void
79 save_vfpregs_hi(uint64_t *p)
80 {
81 	__asm __volatile("vstmia\t%0, {d16-d31}" :: "r" (&p[16]) : "memory");
82 }
83 #endif
84 
85 static inline void
86 load_vfpregs(const struct vfpreg *fregs)
87 {
88 	load_vfpregs_lo(fregs->vfp_regs);
89 #ifdef CPU_CORTEX
90 #ifdef CPU_ARM11
91 	switch (curcpu()->ci_vfp_id) {
92 	case FPU_VFP_CORTEXA5:
93 	case FPU_VFP_CORTEXA7:
94 	case FPU_VFP_CORTEXA8:
95 	case FPU_VFP_CORTEXA9:
96 	case FPU_VFP_CORTEXA15:
97 	case FPU_VFP_CORTEXA15_QEMU:
98 	case FPU_VFP_CORTEXA53:
99 	case FPU_VFP_CORTEXA57:
100 #endif
101 		load_vfpregs_hi(fregs->vfp_regs);
102 #ifdef CPU_ARM11
103 		break;
104 	}
105 #endif
106 #endif
107 }
108 
109 static inline void
110 save_vfpregs(struct vfpreg *fregs)
111 {
112 	save_vfpregs_lo(fregs->vfp_regs);
113 #ifdef CPU_CORTEX
114 #ifdef CPU_ARM11
115 	switch (curcpu()->ci_vfp_id) {
116 	case FPU_VFP_CORTEXA5:
117 	case FPU_VFP_CORTEXA7:
118 	case FPU_VFP_CORTEXA8:
119 	case FPU_VFP_CORTEXA9:
120 	case FPU_VFP_CORTEXA15:
121 	case FPU_VFP_CORTEXA15_QEMU:
122 	case FPU_VFP_CORTEXA53:
123 	case FPU_VFP_CORTEXA57:
124 #endif
125 		save_vfpregs_hi(fregs->vfp_regs);
126 #ifdef CPU_ARM11
127 		break;
128 	}
129 #endif
130 #endif
131 }
132 
133 /* The real handler for VFP bounces.  */
134 static int vfp_handler(u_int, u_int, trapframe_t *, int);
135 #ifdef CPU_CORTEX
136 static int neon_handler(u_int, u_int, trapframe_t *, int);
137 #endif
138 
139 static void vfp_state_load(lwp_t *, u_int);
140 static void vfp_state_save(lwp_t *);
141 static void vfp_state_release(lwp_t *);
142 
143 const pcu_ops_t arm_vfp_ops = {
144 	.pcu_id = PCU_FPU,
145 	.pcu_state_save = vfp_state_save,
146 	.pcu_state_load = vfp_state_load,
147 	.pcu_state_release = vfp_state_release,
148 };
149 
150 /* determine what bits can be changed */
151 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM;
152 /* default to run fast */
153 uint32_t vfp_fpscr_default = (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
154 
155 /*
156  * Used to test for a VFP. The following function is installed as a coproc10
157  * handler on the undefined instruction vector and then we issue a VFP
158  * instruction. If undefined_test is non zero then the VFP did not handle
159  * the instruction so must be absent, or disabled.
160  */
161 
162 static int undefined_test;
163 
164 static int
165 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
166 {
167 
168 	frame->tf_pc += INSN_SIZE;
169 	++undefined_test;
170 	return 0;
171 }
172 
173 #else
174 /* determine what bits can be changed */
175 uint32_t vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM|VFP_FPSCR_RMODE;
176 #endif /* FPU_VFP */
177 
178 static int
179 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
180 {
181 	struct lwp * const l = curlwp;
182 	const u_int regno = (insn >> 12) & 0xf;
183 	/*
184 	 * Only match move to/from the FPSCR register and we
185 	 * can't be using the SP,LR,PC as a source.
186 	 */
187 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
188 		return 1;
189 
190 	struct pcb * const pcb = lwp_getpcb(l);
191 
192 #ifdef FPU_VFP
193 	/*
194 	 * If FPU is valid somewhere, let's just reenable VFP and
195 	 * retry the instruction (only safe thing to do since the
196 	 * pcb has a stale copy).
197 	 */
198 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
199 		return 1;
200 
201 	if (__predict_false(!vfp_used_p(l))) {
202 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
203 	}
204 #endif
205 
206 	/*
207 	 * We now know the pcb has the saved copy.
208 	 */
209 	register_t * const regp = &frame->tf_r0 + regno;
210 	if (insn & 0x00100000) {
211 		*regp = pcb->pcb_vfp.vfp_fpscr;
212 	} else {
213 		pcb->pcb_vfp.vfp_fpscr &= ~vfp_fpscr_changable;
214 		pcb->pcb_vfp.vfp_fpscr |= *regp & vfp_fpscr_changable;
215 	}
216 
217 	curcpu()->ci_vfp_evs[0].ev_count++;
218 
219 	frame->tf_pc += INSN_SIZE;
220 	return 0;
221 }
222 
223 #ifndef FPU_VFP
224 /*
225  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
226  * instructions.
227  */
228 void
229 vfp_attach(struct cpu_info *ci)
230 {
231 	if (CPU_IS_PRIMARY(ci)) {
232 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
233 	}
234 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_TRAP, NULL,
235 	    ci->ci_cpuname, "vfp fpscr traps");
236 }
237 
238 #else
239 void
240 vfp_attach(struct cpu_info *ci)
241 {
242 	const char *model = NULL;
243 
244 	if (CPU_ID_ARM11_P(ci->ci_arm_cpuid)
245 	    || CPU_ID_MV88SV58XX_P(ci->ci_arm_cpuid)
246 	    || CPU_ID_CORTEX_P(ci->ci_arm_cpuid)) {
247 #if 0
248 		const uint32_t nsacr = armreg_nsacr_read();
249 		const uint32_t nsacr_vfp = __BITS(VFP_COPROC,VFP_COPROC2);
250 		if ((nsacr & nsacr_vfp) != nsacr_vfp) {
251 			aprint_normal_dev(ci->ci_dev,
252 			    "VFP access denied (NSACR=%#x)\n", nsacr);
253 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
254 			ci->ci_vfp_id = 0;
255 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
256 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
257 			    "vfp fpscr traps");
258 			return;
259 		}
260 #endif
261 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
262 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
263 
264 		/*
265 		 * We first need to enable access to the coprocessors.
266 		 */
267 		uint32_t cpacr = armreg_cpacr_read();
268 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
269 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
270 		armreg_cpacr_write(cpacr);
271 
272 		arm_isb();
273 
274 		/*
275 		 * If we could enable them, then they exist.
276 		 */
277 		cpacr = armreg_cpacr_read();
278 		bool vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) == CPACR_ALL
279 		    && __SHIFTOUT(cpacr, cpacr_vfp) == CPACR_ALL;
280 		if (!vfp_p) {
281 			aprint_normal_dev(ci->ci_dev,
282 			    "VFP access denied (CPACR=%#x)\n", cpacr);
283 			install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
284 			ci->ci_vfp_id = 0;
285 			evcnt_attach_dynamic(&ci->ci_vfp_evs[0],
286 			    EVCNT_TYPE_TRAP, NULL, ci->ci_cpuname,
287 			    "vfp fpscr traps");
288 			return;
289 		}
290 	}
291 
292 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
293 
294 	undefined_test = 0;
295 
296 	const uint32_t fpsid = armreg_fpsid_read();
297 
298 	remove_coproc_handler(uh);
299 
300 	if (undefined_test != 0) {
301 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
302 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
303 		ci->ci_vfp_id = 0;
304 		return;
305 	}
306 
307 	ci->ci_vfp_id = fpsid;
308 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
309 	case FPU_VFP10_ARM10E:
310 		model = "VFP10 R1";
311 		break;
312 	case FPU_VFP11_ARM11:
313 		model = "VFP11";
314 		break;
315 	case FPU_VFP_MV88SV58XX:
316 		model = "VFP3";
317 		break;
318 	case FPU_VFP_CORTEXA5:
319 	case FPU_VFP_CORTEXA7:
320 	case FPU_VFP_CORTEXA8:
321 	case FPU_VFP_CORTEXA9:
322 	case FPU_VFP_CORTEXA15:
323 	case FPU_VFP_CORTEXA15_QEMU:
324 	case FPU_VFP_CORTEXA53:
325 	case FPU_VFP_CORTEXA57:
326 		if (armreg_cpacr_read() & CPACR_V7_ASEDIS) {
327 			model = "VFP 4.0+";
328 		} else {
329 			model = "NEON MPE (VFP 3.0+)";
330 			cpu_neon_present = 1;
331 		}
332 		break;
333 	default:
334 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %#x\n",
335 		    fpsid);
336 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
337 		vfp_fpscr_changable = VFP_FPSCR_CSUM|VFP_FPSCR_ESUM
338 		    |VFP_FPSCR_RMODE;
339 		vfp_fpscr_default = 0;
340 		return;
341 	}
342 
343 	cpu_fpu_present = 1;
344 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
345 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
346 	if (fpsid != 0) {
347 		uint32_t f0 = armreg_mvfr0_read();
348 		uint32_t f1 = armreg_mvfr1_read();
349 		aprint_normal("vfp%d at %s: %s%s%s%s%s\n",
350 		    device_unit(ci->ci_dev),
351 		    device_xname(ci->ci_dev),
352 		    model,
353 		    ((f0 & ARM_MVFR0_ROUNDING_MASK) ? ", rounding" : ""),
354 		    ((f0 & ARM_MVFR0_EXCEPT_MASK) ? ", exceptions" : ""),
355 		    ((f1 & ARM_MVFR1_D_NAN_MASK) ? ", NaN propagation" : ""),
356 		    ((f1 & ARM_MVFR1_FTZ_MASK) ? ", denormals" : ""));
357 		aprint_debug("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
358 		    device_unit(ci->ci_dev), f0, f1);
359 		if (CPU_IS_PRIMARY(ci)) {
360 			if (f0 & ARM_MVFR0_ROUNDING_MASK) {
361 				vfp_fpscr_changable |= VFP_FPSCR_RMODE;
362 			}
363 			if (f1 & ARM_MVFR0_EXCEPT_MASK) {
364 				vfp_fpscr_changable |= VFP_FPSCR_ESUM;
365 			}
366 			// If hardware supports propagation of NaNs, select it.
367 			if (f1 & ARM_MVFR1_D_NAN_MASK) {
368 				vfp_fpscr_default &= ~VFP_FPSCR_DN;
369 				vfp_fpscr_changable |= VFP_FPSCR_DN;
370 			}
371 			// If hardware supports denormalized numbers, use it.
372 			if (cpu_media_and_vfp_features[1] & ARM_MVFR1_FTZ_MASK) {
373 				vfp_fpscr_default &= ~VFP_FPSCR_FZ;
374 				vfp_fpscr_changable |= VFP_FPSCR_FZ;
375 			}
376 		}
377 	}
378 	evcnt_attach_dynamic(&ci->ci_vfp_evs[0], EVCNT_TYPE_MISC, NULL,
379 	    ci->ci_cpuname, "vfp coproc use");
380 	evcnt_attach_dynamic(&ci->ci_vfp_evs[1], EVCNT_TYPE_MISC, NULL,
381 	    ci->ci_cpuname, "vfp coproc re-use");
382 	evcnt_attach_dynamic(&ci->ci_vfp_evs[2], EVCNT_TYPE_TRAP, NULL,
383 	    ci->ci_cpuname, "vfp coproc fault");
384 	install_coproc_handler(VFP_COPROC, vfp_handler);
385 	install_coproc_handler(VFP_COPROC2, vfp_handler);
386 #ifdef CPU_CORTEX
387 	if (cpu_neon_present)
388 		install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
389 #endif
390 }
391 
392 /* The real handler for VFP bounces.  */
393 static int
394 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
395 {
396 	struct cpu_info * const ci = curcpu();
397 
398 	/* This shouldn't ever happen.  */
399 	if (fault_code != FAULT_USER)
400 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
401 
402 	if (ci->ci_vfp_id == 0) {
403 		/* No VFP detected, just fault.  */
404 		return 1;
405 	}
406 
407 	/*
408 	 * If we are just changing/fetching FPSCR, don't bother loading it
409 	 * just emulate the instruction.
410 	 */
411 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
412 		return 0;
413 
414 	/*
415 	 * If we already own the FPU and it's enabled (and no exception), raise
416 	 * SIGILL.  If there is an exception, drop through to raise a SIGFPE.
417 	 */
418 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
419 	    && (armreg_fpexc_read() & (VFP_FPEXC_EX|VFP_FPEXC_EN)) == VFP_FPEXC_EN)
420 		return 1;
421 
422 	/*
423 	 * Make sure we own the FP.
424 	 */
425 	pcu_load(&arm_vfp_ops);
426 
427 	uint32_t fpexc = armreg_fpexc_read();
428 	if (fpexc & VFP_FPEXC_EX) {
429 		ksiginfo_t ksi;
430 		KASSERT(fpexc & VFP_FPEXC_EN);
431 
432 		curcpu()->ci_vfp_evs[2].ev_count++;
433 
434 		/*
435 		 * Need the clear the exception condition so any signal
436 		 * and future use can proceed.
437 		 */
438 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXC_FSUM));
439 
440 		pcu_save(&arm_vfp_ops, curlwp);
441 
442 		/*
443 		 * XXX Need to emulate bounce instructions here to get correct
444 		 * XXX exception codes, etc.
445 		 */
446 		KSI_INIT_TRAP(&ksi);
447 		ksi.ksi_signo = SIGFPE;
448 		if (fpexc & VFP_FPEXC_IXF)
449 			ksi.ksi_code = FPE_FLTRES;
450 		else if (fpexc & VFP_FPEXC_UFF)
451 			ksi.ksi_code = FPE_FLTUND;
452 		else if (fpexc & VFP_FPEXC_OFF)
453 			ksi.ksi_code = FPE_FLTOVF;
454 		else if (fpexc & VFP_FPEXC_DZF)
455 			ksi.ksi_code = FPE_FLTDIV;
456 		else if (fpexc & VFP_FPEXC_IOF)
457 			ksi.ksi_code = FPE_FLTINV;
458 		ksi.ksi_addr = (uint32_t *)address;
459 		ksi.ksi_trap = 0;
460 		trapsignal(curlwp, &ksi);
461 		return 0;
462 	}
463 
464 	/* Need to restart the faulted instruction.  */
465 //	frame->tf_pc -= INSN_SIZE;
466 	return 0;
467 }
468 
469 #ifdef CPU_CORTEX
470 /* The real handler for NEON bounces.  */
471 static int
472 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
473 {
474 	struct cpu_info * const ci = curcpu();
475 
476 	if (ci->ci_vfp_id == 0)
477 		/* No VFP detected, just fault.  */
478 		return 1;
479 
480 	if ((insn & 0xfe000000) != 0xf2000000
481 	    && (insn & 0xfe000000) != 0xf4000000)
482 		/* Not NEON instruction, just fault.  */
483 		return 1;
484 
485 	/* This shouldn't ever happen.  */
486 	if (fault_code != FAULT_USER)
487 		panic("NEON fault in non-user mode");
488 
489 	/* if we already own the FPU and it's enabled, raise SIGILL */
490 	if (curcpu()->ci_pcu_curlwp[PCU_FPU] == curlwp
491 	    && (armreg_fpexc_read() & VFP_FPEXC_EN) != 0)
492 		return 1;
493 
494 	pcu_load(&arm_vfp_ops);
495 
496 	/* Need to restart the faulted instruction.  */
497 //	frame->tf_pc -= INSN_SIZE;
498 	return 0;
499 }
500 #endif
501 
502 static void
503 vfp_state_load(lwp_t *l, u_int flags)
504 {
505 	struct pcb * const pcb = lwp_getpcb(l);
506 	struct vfpreg * const fregs = &pcb->pcb_vfp;
507 
508 	/*
509 	 * Instrument VFP usage -- if a process has not previously
510 	 * used the VFP, mark it as having used VFP for the first time,
511 	 * and count this event.
512 	 *
513 	 * If a process has used the VFP, count a "used VFP, and took
514 	 * a trap to use it again" event.
515 	 */
516 	if (__predict_false((flags & PCU_VALID) == 0)) {
517 		curcpu()->ci_vfp_evs[0].ev_count++;
518 		pcb->pcb_vfp.vfp_fpscr = vfp_fpscr_default;
519 	} else {
520 		curcpu()->ci_vfp_evs[1].ev_count++;
521 	}
522 
523 	KASSERT((armreg_fpexc_read() & VFP_FPEXC_EN) == 0);
524 	/*
525 	 * If the VFP is already enabled we must be bouncing an instruction.
526 	 */
527 	if (flags & PCU_REENABLE) {
528 		uint32_t fpexc = armreg_fpexc_read();
529 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
530 		fregs->vfp_fpexc |= VFP_FPEXC_EN;
531 		return;
532 	}
533 	KASSERT((fregs->vfp_fpexc & VFP_FPEXC_EN) == 0);
534 
535 	/*
536 	 * Load and Enable the VFP (so that we can write the registers).
537 	 */
538 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
539 	armreg_fpexc_write(fregs->vfp_fpexc);
540 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == NULL);
541 	KASSERT(l->l_pcu_cpu[PCU_FPU] == NULL);
542 
543 	load_vfpregs(fregs);
544 	armreg_fpscr_write(fregs->vfp_fpscr);
545 
546 	if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
547 		/* Need to restore the exception handling state.  */
548 		armreg_fpinst_write(fregs->vfp_fpinst);
549 		if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
550 			armreg_fpinst2_write(fregs->vfp_fpinst2);
551 	}
552 }
553 
554 void
555 vfp_state_save(lwp_t *l)
556 {
557 	struct pcb * const pcb = lwp_getpcb(l);
558 	struct vfpreg * const fregs = &pcb->pcb_vfp;
559 	uint32_t fpexc = armreg_fpexc_read();
560 
561 	KASSERT(curcpu()->ci_pcu_curlwp[PCU_FPU] == l);
562 	KASSERT(curcpu() == l->l_pcu_cpu[PCU_FPU]);
563 	KASSERT(curlwp == l || curlwp->l_pcu_cpu[PCU_FPU] != curcpu());
564 	/*
565 	 * Enable the VFP (so we can read the registers).
566 	 * Make sure the exception bit is cleared so that we can
567 	 * safely dump the registers.
568 	 */
569 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
570 
571 	fregs->vfp_fpexc = fpexc;
572 	if (fpexc & VFP_FPEXC_EX) {
573 		/* Need to save the exception handling state */
574 		fregs->vfp_fpinst = armreg_fpinst_read();
575 		if (fpexc & VFP_FPEXC_FP2V)
576 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
577 	}
578 	fregs->vfp_fpscr = armreg_fpscr_read();
579 	save_vfpregs(fregs);
580 
581 	/* Disable the VFP.  */
582 	armreg_fpexc_write(fpexc & ~VFP_FPEXC_EN);
583 }
584 
585 void
586 vfp_state_release(lwp_t *l)
587 {
588 	struct pcb * const pcb = lwp_getpcb(l);
589 
590 	/*
591 	 * Now mark the VFP as disabled (and our state
592 	 * has been already saved or is being discarded).
593 	 */
594 	pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
595 
596 	/*
597 	 * Turn off the FPU so the next time a VFP instruction is issued
598 	 * an exception happens.  We don't know if this LWP's state was
599 	 * loaded but if we turned off the FPU for some other LWP, when
600 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
601 	 * is still set so it just restore fpexc and return since its
602 	 * contents are still sitting in the VFP.
603 	 */
604 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
605 }
606 
607 void
608 vfp_savecontext(lwp_t *l)
609 {
610 	pcu_save(&arm_vfp_ops, l);
611 }
612 
613 void
614 vfp_discardcontext(lwp_t *l, bool used_p)
615 {
616 	pcu_discard(&arm_vfp_ops, l, used_p);
617 }
618 
619 bool
620 vfp_used_p(const lwp_t *l)
621 {
622 	return pcu_valid_p(&arm_vfp_ops, l);
623 }
624 
625 void
626 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
627 {
628 	if (vfp_used_p(l)) {
629 		const struct pcb * const pcb = lwp_getpcb(l);
630 
631 		pcu_save(&arm_vfp_ops, l);
632 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
633 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
634 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
635 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
636 	}
637 }
638 
639 void
640 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
641 {
642 	struct pcb * const pcb = lwp_getpcb(l);
643 
644 	pcu_discard(&arm_vfp_ops, l, true);
645 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
646 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
647 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
648 }
649 
650 #endif /* FPU_VFP */
651