xref: /netbsd-src/sys/arch/arm/vfp/vfp_init.c (revision 4391d5e9d4f291db41e3b3ba26a01b5e51364aae)
1 /*      $NetBSD: vfp_init.c,v 1.27 2013/11/18 18:02:01 matt Exp $ */
2 
3 /*
4  * Copyright (c) 2008 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
25  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/device.h>
36 #include <sys/proc.h>
37 #include <sys/cpu.h>
38 
39 #include <arm/locore.h>
40 #include <arm/pcb.h>
41 #include <arm/undefined.h>
42 #include <arm/vfpreg.h>
43 #include <arm/mcontext.h>
44 
45 #include <uvm/uvm_extern.h>		/* for pmap.h */
46 
47 extern int cpu_media_and_vfp_features[];
48 extern int cpu_neon_present;
49 
50 #ifdef FPU_VFP
51 
52 /* FLDMD <X>, {d0-d15} */
53 static inline void
54 load_vfpregs_lo(const uint64_t *p)
55 {
56 	/* vldmia rN, {d0-d15} */
57 	__asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
58 }
59 
60 /* FSTMD <X>, {d0-d15} */
61 static inline void
62 save_vfpregs_lo(uint64_t *p)
63 {
64 	__asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
65 }
66 
67 #ifdef CPU_CORTEX
68 /* FLDMD <X>, {d16-d31} */
69 static inline void
70 load_vfpregs_hi(const uint64_t *p)
71 {
72 	__asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
73 }
74 
75 /* FLDMD <X>, {d16-d31} */
76 static inline void
77 save_vfpregs_hi(uint64_t *p)
78 {
79 	__asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
80 }
81 #endif
82 
83 static inline void
84 load_vfpregs(const struct vfpreg *fregs)
85 {
86 	load_vfpregs_lo(fregs->vfp_regs);
87 #ifdef CPU_CORTEX
88 #ifdef CPU_ARM11
89 	switch (curcpu()->ci_vfp_id) {
90 	case FPU_VFP_CORTEXA5:
91 	case FPU_VFP_CORTEXA7:
92 	case FPU_VFP_CORTEXA8:
93 	case FPU_VFP_CORTEXA9:
94 	case FPU_VFP_CORTEXA15:
95 #endif
96 		load_vfpregs_hi(fregs->vfp_regs);
97 #ifdef CPU_ARM11
98 		break;
99 	}
100 #endif
101 #endif
102 }
103 
104 static inline void
105 save_vfpregs(struct vfpreg *fregs)
106 {
107 	save_vfpregs_lo(fregs->vfp_regs);
108 #ifdef CPU_CORTEX
109 #ifdef CPU_ARM11
110 	switch (curcpu()->ci_vfp_id) {
111 	case FPU_VFP_CORTEXA5:
112 	case FPU_VFP_CORTEXA7:
113 	case FPU_VFP_CORTEXA8:
114 	case FPU_VFP_CORTEXA9:
115 	case FPU_VFP_CORTEXA15:
116 #endif
117 		save_vfpregs_hi(fregs->vfp_regs);
118 #ifdef CPU_ARM11
119 		break;
120 	}
121 #endif
122 #endif
123 }
124 
125 /* The real handler for VFP bounces.  */
126 static int vfp_handler(u_int, u_int, trapframe_t *, int);
127 #ifdef CPU_CORTEX
128 static int neon_handler(u_int, u_int, trapframe_t *, int);
129 #endif
130 
131 static void vfp_state_load(lwp_t *, u_int);
132 static void vfp_state_save(lwp_t *, u_int);
133 static void vfp_state_release(lwp_t *, u_int);
134 
135 const pcu_ops_t arm_vfp_ops = {
136 	.pcu_id = PCU_FPU,
137 	.pcu_state_save = vfp_state_save,
138 	.pcu_state_load = vfp_state_load,
139 	.pcu_state_release = vfp_state_release,
140 };
141 
142 struct evcnt vfpevent_use;
143 struct evcnt vfpevent_reuse;
144 struct evcnt vfpevent_fpe;
145 
146 /*
147  * Used to test for a VFP. The following function is installed as a coproc10
148  * handler on the undefined instruction vector and then we issue a VFP
149  * instruction. If undefined_test is non zero then the VFP did not handle
150  * the instruction so must be absent, or disabled.
151  */
152 
153 static int undefined_test;
154 
155 static int
156 vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
157 {
158 
159 	frame->tf_pc += INSN_SIZE;
160 	++undefined_test;
161 	return 0;
162 }
163 
164 #endif /* FPU_VFP */
165 
166 struct evcnt vfp_fpscr_ev =
167     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
168 EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
169 
170 static int
171 vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
172 {
173 	struct lwp * const l = curlwp;
174 	const u_int regno = (insn >> 12) & 0xf;
175 	/*
176 	 * Only match move to/from the FPSCR register and we
177 	 * can't be using the SP,LR,PC as a source.
178 	 */
179 	if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
180 		return 1;
181 
182 	struct pcb * const pcb = lwp_getpcb(l);
183 
184 #ifdef FPU_VFP
185 	/*
186 	 * If FPU is valid somewhere, let's just reenable VFP and
187 	 * retry the instruction (only safe thing to do since the
188 	 * pcb has a stale copy).
189 	 */
190 	if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
191 		return 1;
192 
193 	if (__predict_false(!vfp_used_p())) {
194 		pcb->pcb_vfp.vfp_fpscr =
195 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ);	/* Runfast */
196 	}
197 #endif
198 
199 	/*
200 	 * We know know the pcb has the saved copy.
201 	 */
202 	register_t * const regp = &frame->tf_r0 + regno;
203 	if (insn & 0x00100000) {
204 		*regp = pcb->pcb_vfp.vfp_fpscr;
205 	} else {
206 		register_t tmp = *regp;
207 		if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
208 			tmp &= ~VFP_FPSCR_ESUM;
209 		pcb->pcb_vfp.vfp_fpscr = tmp;
210 	}
211 
212 	vfp_fpscr_ev.ev_count++;
213 
214 	frame->tf_pc += INSN_SIZE;
215 	return 0;
216 }
217 
218 #ifndef FPU_VFP
219 /*
220  * If we don't want VFP support, we still need to handle emulating VFP FPSCR
221  * instructions.
222  */
223 void
224 vfp_attach(void)
225 {
226 	install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
227 }
228 
229 #else
230 #if 0
231 static bool
232 vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
233 {
234 	for (;; code += sizeof(uint32_t)) {
235 		uint32_t insn = *(uint32_t *)code;
236 		if ((insn & 0xffd08000) == 0xe8908000)	/* ldm ... { pc } */
237 			return false;
238 		if ((insn & 0xfffffff0) == 0xe12fff10)	/* bx rN */
239 			return false;
240 		if ((insn & 0xf1a0f000) == 0xe1a0f000)	/* mov pc, ... */
241 			return false;
242 		if ((insn >> 25) != 0x75)		/* not b/bl insn */
243 			continue;
244 		intptr_t imm26 = ((int32_t)insn << 8) >> 6;
245 		if (code + imm26 + 8 == func) {
246 			int32_t imm24 = (newfunc - (code + 8)) >> 2;
247 			uint32_t new_insn = (insn & 0xff000000)
248 			   | (imm24 & 0xffffff);
249 			KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
250 			    ((imm24 >> 24) + 1));
251 			*(uint32_t *)code = new_insn;
252 			cpu_idcache_wbinv_range(code, sizeof(uint32_t));
253 			return true;
254 		}
255 	}
256 }
257 #endif
258 
259 void
260 vfp_attach(void)
261 {
262 	struct cpu_info * const ci = curcpu();
263 	const char *model = NULL;
264 	bool vfp_p = false;
265 
266 	if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
267 	    || CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
268 		const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
269 		const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
270 
271 		/*
272 		 * We first need to enable access to the coprocessors.
273 		 */
274 		uint32_t cpacr = armreg_cpacr_read();
275 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
276 		cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
277 #if 0
278 		if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
279 			/*
280 			 * Disable access to the upper 16 FP registers and NEON.
281 			 */
282 			cpacr |= CPACR_V7_D32DIS;
283 			cpacr |= CPACR_V7_ASEDIS;
284 		}
285 #endif
286 		armreg_cpacr_write(cpacr);
287 
288 		/*
289 		 * If we could enable them, then they exist.
290 		 */
291 		cpacr = armreg_cpacr_read();
292 		vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
293 		    || __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
294 	}
295 
296 	void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
297 
298 	undefined_test = 0;
299 
300 	const uint32_t fpsid = armreg_fpsid_read();
301 
302 	remove_coproc_handler(uh);
303 
304 	if (undefined_test != 0) {
305 		aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
306 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
307 		ci->ci_vfp_id = 0;
308 		return;
309 	}
310 
311 	ci->ci_vfp_id = fpsid;
312 	switch (fpsid & ~ VFP_FPSID_REV_MSK) {
313 	case FPU_VFP10_ARM10E:
314 		model = "VFP10 R1";
315 		break;
316 	case FPU_VFP11_ARM11:
317 		model = "VFP11";
318 		break;
319 	case FPU_VFP_CORTEXA5:
320 	case FPU_VFP_CORTEXA7:
321 	case FPU_VFP_CORTEXA8:
322 	case FPU_VFP_CORTEXA9:
323 	case FPU_VFP_CORTEXA15:
324 		model = "NEON MPE (VFP 3.0+)";
325 		cpu_neon_present = 1;
326 		break;
327 	default:
328 		aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
329 		    fpsid);
330 		install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
331 		return;
332 	}
333 
334 	cpu_fpu_present = 1;
335 	cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
336 	cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
337 	if (fpsid != 0) {
338 		aprint_normal("vfp%d at %s: %s\n",
339 		    device_unit(curcpu()->ci_dev),
340 		    device_xname(curcpu()->ci_dev),
341 		    model);
342 		aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
343 		    device_unit(curcpu()->ci_dev),
344 		    cpu_media_and_vfp_features[0],
345 		    cpu_media_and_vfp_features[1]);
346 	}
347 	evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
348 	    "VFP", "coproc use");
349 	evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
350 	    "VFP", "coproc re-use");
351 	evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
352 	    "VFP", "coproc fault");
353 	install_coproc_handler(VFP_COPROC, vfp_handler);
354 	install_coproc_handler(VFP_COPROC2, vfp_handler);
355 #ifdef CPU_CORTEX
356 	install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
357 #endif
358 
359 #if 0
360 	vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
361 	   (uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
362 	vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
363 	   (uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
364 #endif
365 }
366 
367 /* The real handler for VFP bounces.  */
368 static int
369 vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
370 {
371 	struct cpu_info * const ci = curcpu();
372 
373 	/* This shouldn't ever happen.  */
374 	if (fault_code != FAULT_USER)
375 		panic("VFP fault at %#x in non-user mode", frame->tf_pc);
376 
377 	if (ci->ci_vfp_id == 0) {
378 		/* No VFP detected, just fault.  */
379 		return 1;
380 	}
381 
382 	/*
383 	 * If we are just changing/fetching FPSCR, don't bother loading it.
384 	 */
385 	if (!vfp_fpscr_handler(address, insn, frame, fault_code))
386 		return 0;
387 
388 	/*
389 	 * Make sure we own the FP.
390 	 */
391 	pcu_load(&arm_vfp_ops);
392 
393 	uint32_t fpexc = armreg_fpexc_read();
394 	if (fpexc & VFP_FPEXC_EX) {
395 		ksiginfo_t ksi;
396 		KASSERT(fpexc & VFP_FPEXC_EN);
397 
398 		vfpevent_fpe.ev_count++;
399 
400 		pcu_save(&arm_vfp_ops);
401 
402 		/*
403 		 * Need the clear the exception condition so any signal
404 		 * can run.
405 		 */
406 		armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXE_FSUM));
407 
408 		KSI_INIT_TRAP(&ksi);
409 		ksi.ksi_signo = SIGFPE;
410 		if (fpexc & VFP_FPEXC_IXF)
411 			ksi.ksi_code = FPE_FLTRES;
412 		else if (fpexc & VFP_FPEXC_UFF)
413 			ksi.ksi_code = FPE_FLTUND;
414 		else if (fpexc & VFP_FPEXC_OFF)
415 			ksi.ksi_code = FPE_FLTOVF;
416 		else if (fpexc & VFP_FPEXC_DZF)
417 			ksi.ksi_code = FPE_FLTDIV;
418 		else if (fpexc & VFP_FPEXC_IOF)
419 			ksi.ksi_code = FPE_FLTINV;
420 		ksi.ksi_addr = (uint32_t *)address;
421 		ksi.ksi_trap = 0;
422 		trapsignal(curlwp, &ksi);
423 		return 0;
424 	}
425 
426 	/* Need to restart the faulted instruction.  */
427 //	frame->tf_pc -= INSN_SIZE;
428 	return 0;
429 }
430 
431 #ifdef CPU_CORTEX
432 /* The real handler for NEON bounces.  */
433 static int
434 neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
435 {
436 	struct cpu_info * const ci = curcpu();
437 
438 	if (ci->ci_vfp_id == 0)
439 		/* No VFP detected, just fault.  */
440 		return 1;
441 
442 	if ((insn & 0xfe000000) != 0xf2000000
443 	    && (insn & 0xfe000000) != 0xf4000000)
444 		/* Not NEON instruction, just fault.  */
445 		return 1;
446 
447 	/* This shouldn't ever happen.  */
448 	if (fault_code != FAULT_USER)
449 		panic("NEON fault in non-user mode");
450 
451 	pcu_load(&arm_vfp_ops);
452 
453 	/* Need to restart the faulted instruction.  */
454 //	frame->tf_pc -= INSN_SIZE;
455 	return 0;
456 }
457 #endif
458 
459 static void
460 vfp_state_load(lwp_t *l, u_int flags)
461 {
462 	struct pcb * const pcb = lwp_getpcb(l);
463 
464 	KASSERT(flags & PCU_ENABLE);
465 
466 	if (flags & PCU_KERNEL) {
467 		if ((flags & PCU_LOADED) == 0) {
468 			pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
469 		}
470 		pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
471 		armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
472 		/*
473 		 * Load the kernel registers (just the first 16) if they've
474 		 * been used..
475 		 */
476 		if (flags & PCU_LOADED) {
477 			load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
478 		}
479 		return;
480 	}
481 	struct vfpreg * const fregs = &pcb->pcb_vfp;
482 
483 	/*
484 	 * Instrument VFP usage -- if a process has not previously
485 	 * used the VFP, mark it as having used VFP for the first time,
486 	 * and count this event.
487 	 *
488 	 * If a process has used the VFP, count a "used VFP, and took
489 	 * a trap to use it again" event.
490 	 */
491 	if (__predict_false((flags & PCU_LOADED) == 0)) {
492 		vfpevent_use.ev_count++;
493 		pcb->pcb_vfp.vfp_fpscr =	/* Runfast */
494 		    (VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
495 	} else {
496 		vfpevent_reuse.ev_count++;
497 	}
498 
499 	if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
500 		/*
501 		 * If we think the VFP is enabled, it must have be disabled by
502 		 * vfp_state_release for another LWP so we can just restore
503 		 * FPEXC and return since our VFP state is still loaded.
504 		 */
505 		armreg_fpexc_write(fregs->vfp_fpexc);
506 		return;
507 	}
508 
509 	/* Load and Enable the VFP (so that we can write the registers).  */
510 	if (flags & PCU_RELOAD) {
511 		uint32_t fpexc = armreg_fpexc_read();
512 		KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
513 		armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
514 
515 		load_vfpregs(fregs);
516 		armreg_fpscr_write(fregs->vfp_fpscr);
517 
518 		if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
519 			/* Need to restore the exception handling state.  */
520 			armreg_fpinst2_write(fregs->vfp_fpinst2);
521 			if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
522 				armreg_fpinst_write(fregs->vfp_fpinst);
523 		}
524 	}
525 
526 	/* Finally, restore the FPEXC but don't enable the VFP. */
527 	fregs->vfp_fpexc |= VFP_FPEXC_EN;
528 	armreg_fpexc_write(fregs->vfp_fpexc);
529 }
530 
531 void
532 vfp_state_save(lwp_t *l, u_int flags)
533 {
534 	struct pcb * const pcb = lwp_getpcb(l);
535 	uint32_t fpexc = armreg_fpexc_read();
536 	armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
537 
538 	if (flags & PCU_KERNEL) {
539 		/*
540 		 * Save the kernel set of VFP registers.
541 		 * (just the first 16).
542 		 */
543 		save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
544 		return;
545 	}
546 
547 	struct vfpreg * const fregs = &pcb->pcb_vfp;
548 
549 	/*
550 	 * Enable the VFP (so we can read the registers).
551 	 * Make sure the exception bit is cleared so that we can
552 	 * safely dump the registers.
553 	 */
554 	fregs->vfp_fpexc = fpexc;
555 	if (fpexc & VFP_FPEXC_EX) {
556 		/* Need to save the exception handling state */
557 		fregs->vfp_fpinst = armreg_fpinst_read();
558 		if (fpexc & VFP_FPEXC_FP2V)
559 			fregs->vfp_fpinst2 = armreg_fpinst2_read();
560 	}
561 	fregs->vfp_fpscr = armreg_fpscr_read();
562 	save_vfpregs(fregs);
563 
564 	/* Disable the VFP.  */
565 	armreg_fpexc_write(fpexc);
566 }
567 
568 void
569 vfp_state_release(lwp_t *l, u_int flags)
570 {
571 	struct pcb * const pcb = lwp_getpcb(l);
572 
573 	if (flags & PCU_KERNEL) {
574 		/*
575 		 * Restore the FPEXC since we borrowed that field.
576 		 */
577 		pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
578 	} else {
579 		/*
580 		 * Now mark the VFP as disabled (and our state
581 		 * has been already saved or is being discarded).
582 		 */
583 		pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
584 	}
585 
586 	/*
587 	 * Turn off the FPU so the next time a VFP instruction is issued
588 	 * an exception happens.  We don't know if this LWP's state was
589 	 * loaded but if we turned off the FPU for some other LWP, when
590 	 * pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
591 	 * is still set so it just restore fpexc and return since its
592 	 * contents are still sitting in the VFP.
593 	 */
594 	armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
595 }
596 
597 void
598 vfp_savecontext(void)
599 {
600 	pcu_save(&arm_vfp_ops);
601 }
602 
603 void
604 vfp_discardcontext(bool used_p)
605 {
606 	pcu_discard(&arm_vfp_ops, used_p);
607 }
608 
609 bool
610 vfp_used_p(void)
611 {
612 	return pcu_used_p(&arm_vfp_ops);
613 }
614 
615 void
616 vfp_kernel_acquire(void)
617 {
618 	if (__predict_false(cpu_intr_p())) {
619 		armreg_fpexc_write(VFP_FPEXC_EN);
620 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
621 			lwp_t * const l = curlwp;
622 			struct pcb * const pcb = lwp_getpcb(l);
623 			KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
624 			l->l_md.md_flags |= MDLWP_VFPINTR;
625 			save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
626 		}
627 	} else {
628 		pcu_kernel_acquire(&arm_vfp_ops);
629 	}
630 }
631 
632 void
633 vfp_kernel_release(void)
634 {
635 	if (__predict_false(cpu_intr_p())) {
636 		uint32_t fpexc = 0;
637 		if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
638 			lwp_t * const l = curlwp;
639 			struct pcb * const pcb = lwp_getpcb(l);
640 			KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
641 			load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
642 			l->l_md.md_flags &= ~MDLWP_VFPINTR;
643 			fpexc = pcb->pcb_vfp.vfp_fpexc;
644 		}
645 		armreg_fpexc_write(fpexc);
646 	} else {
647 		pcu_kernel_release(&arm_vfp_ops);
648 	}
649 }
650 
651 void
652 vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
653 {
654 	if (vfp_used_p()) {
655 		const struct pcb * const pcb = lwp_getpcb(l);
656 		pcu_save(&arm_vfp_ops);
657 		mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
658 		memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
659 		    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
660 		*flagsp |= _UC_FPU|_UC_ARM_VFP;
661 	}
662 }
663 
664 void
665 vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
666 {
667 	pcu_discard(&arm_vfp_ops, true);
668 	struct pcb * const pcb = lwp_getpcb(l);
669 	pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
670 	memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
671 	    sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
672 }
673 
674 #endif /* FPU_VFP */
675