xref: /netbsd-src/sys/arch/arm/sunxi/sunxi_emac.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $NetBSD: sunxi_emac.c,v 1.16 2018/06/30 12:36:13 jmcneill Exp $ */
2 
3 /*-
4  * Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_net_mpsafe.h"
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.16 2018/06/30 12:36:13 jmcneill Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54 
55 #include <dev/mii/miivar.h>
56 
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59 
60 #include <arm/sunxi/sunxi_emac.h>
61 
62 #ifdef NET_MPSAFE
63 #define	EMAC_MPSAFE		1
64 #define	CALLOUT_FLAGS		CALLOUT_MPSAFE
65 #define	FDT_INTR_FLAGS		FDT_INTR_MPSAFE
66 #else
67 #define	CALLOUT_FLAGS		0
68 #define	FDT_INTR_FLAGS		0
69 #endif
70 
71 #define	EMAC_IFNAME		"emac%d"
72 
73 #define	ETHER_ALIGN		2
74 
75 #define	EMAC_LOCK(sc)		mutex_enter(&(sc)->mtx)
76 #define	EMAC_UNLOCK(sc)		mutex_exit(&(sc)->mtx)
77 #define	EMAC_ASSERT_LOCKED(sc)	KASSERT(mutex_owned(&(sc)->mtx))
78 
79 #define	DESC_ALIGN		sizeof(struct sunxi_emac_desc)
80 #define	TX_DESC_COUNT		1024
81 #define	TX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
82 #define	RX_DESC_COUNT		256
83 #define	RX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
84 
85 #define	DESC_OFF(n)		((n) * sizeof(struct sunxi_emac_desc))
86 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
87 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
88 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
89 
90 #define	TX_MAX_SEGS		128
91 
92 #define	SOFT_RST_RETRY		1000
93 #define	MII_BUSY_RETRY		1000
94 #define	MDIO_FREQ		2500000
95 
96 #define	BURST_LEN_DEFAULT	8
97 #define	RX_TX_PRI_DEFAULT	0
98 #define	PAUSE_TIME_DEFAULT	0x400
99 
100 /* syscon EMAC clock register */
101 #define	EMAC_CLK_REG		0x30
102 #define	 EMAC_CLK_EPHY_ADDR		(0x1f << 20)	/* H3 */
103 #define	 EMAC_CLK_EPHY_ADDR_SHIFT	20
104 #define	 EMAC_CLK_EPHY_LED_POL		(1 << 17)	/* H3 */
105 #define	 EMAC_CLK_EPHY_SHUTDOWN		(1 << 16)	/* H3 */
106 #define	 EMAC_CLK_EPHY_SELECT		(1 << 15)	/* H3 */
107 #define	 EMAC_CLK_RMII_EN		(1 << 13)
108 #define	 EMAC_CLK_ETXDC			(0x7 << 10)
109 #define	 EMAC_CLK_ETXDC_SHIFT		10
110 #define	 EMAC_CLK_ERXDC			(0x1f << 5)
111 #define	 EMAC_CLK_ERXDC_SHIFT		5
112 #define	 EMAC_CLK_PIT			(0x1 << 2)
113 #define	  EMAC_CLK_PIT_MII		(0 << 2)
114 #define	  EMAC_CLK_PIT_RGMII		(1 << 2)
115 #define	 EMAC_CLK_SRC			(0x3 << 0)
116 #define	  EMAC_CLK_SRC_MII		(0 << 0)
117 #define	  EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
118 #define	  EMAC_CLK_SRC_RGMII		(2 << 0)
119 
120 /* Burst length of RX and TX DMA transfers */
121 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
122 
123 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
124 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
125 
126 /* Pause time field in the transmitted control frame */
127 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
128 
129 enum sunxi_emac_type {
130 	EMAC_A64 = 1,
131 	EMAC_A83T,
132 	EMAC_H3,
133 	EMAC_H6,
134 };
135 
136 static const struct of_compat_data compat_data[] = {
137 	{ "allwinner,sun8i-a83t-emac",	EMAC_A83T },
138 	{ "allwinner,sun8i-h3-emac",	EMAC_H3 },
139 	{ "allwinner,sun50i-a64-emac",	EMAC_A64 },
140 	{ "allwinner,sun50i-h6-emac",	EMAC_H6 },
141 	{ NULL }
142 };
143 
144 struct sunxi_emac_bufmap {
145 	bus_dmamap_t		map;
146 	struct mbuf		*mbuf;
147 };
148 
149 struct sunxi_emac_txring {
150 	bus_dma_tag_t		desc_tag;
151 	bus_dmamap_t		desc_map;
152 	bus_dma_segment_t	desc_dmaseg;
153 	struct sunxi_emac_desc	*desc_ring;
154 	bus_addr_t		desc_ring_paddr;
155 	bus_dma_tag_t		buf_tag;
156 	struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
157 	u_int			cur, next, queued;
158 };
159 
160 struct sunxi_emac_rxring {
161 	bus_dma_tag_t		desc_tag;
162 	bus_dmamap_t		desc_map;
163 	bus_dma_segment_t	desc_dmaseg;
164 	struct sunxi_emac_desc	*desc_ring;
165 	bus_addr_t		desc_ring_paddr;
166 	bus_dma_tag_t		buf_tag;
167 	struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
168 	u_int			cur;
169 };
170 
171 struct sunxi_emac_softc {
172 	device_t		dev;
173 	int			phandle;
174 	enum sunxi_emac_type	type;
175 	bus_space_tag_t		bst;
176 	bus_dma_tag_t		dmat;
177 
178 	bus_space_handle_t	bsh;
179 	struct clk		*clk_ahb;
180 	struct clk		*clk_ephy;
181 	struct fdtbus_reset	*rst_ahb;
182 	struct fdtbus_reset	*rst_ephy;
183 	struct fdtbus_regulator	*reg_phy;
184 	struct fdtbus_gpio_pin	*pin_reset;
185 
186 	struct syscon		*syscon;
187 
188 	int			phy_id;
189 
190 	kmutex_t		mtx;
191 	struct ethercom		ec;
192 	struct mii_data		mii;
193 	callout_t		stat_ch;
194 	void			*ih;
195 	u_int			mdc_div_ratio_m;
196 
197 	struct sunxi_emac_txring	tx;
198 	struct sunxi_emac_rxring	rx;
199 };
200 
201 #define	RD4(sc, reg)			\
202 	bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
203 #define	WR4(sc, reg, val)		\
204 	bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
205 
206 static int
207 sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
208 {
209 	struct sunxi_emac_softc *sc = device_private(dev);
210 	int retry, val;
211 
212 	val = 0;
213 
214 	WR4(sc, EMAC_MII_CMD,
215 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
216 	    (phy << PHY_ADDR_SHIFT) |
217 	    (reg << PHY_REG_ADDR_SHIFT) |
218 	    MII_BUSY);
219 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
220 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
221 			val = RD4(sc, EMAC_MII_DATA);
222 			break;
223 		}
224 		delay(10);
225 	}
226 
227 	if (retry == 0)
228 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
229 		    phy, reg);
230 
231 	return val;
232 }
233 
234 static void
235 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
236 {
237 	struct sunxi_emac_softc *sc = device_private(dev);
238 	int retry;
239 
240 	WR4(sc, EMAC_MII_DATA, val);
241 	WR4(sc, EMAC_MII_CMD,
242 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
243 	    (phy << PHY_ADDR_SHIFT) |
244 	    (reg << PHY_REG_ADDR_SHIFT) |
245 	    MII_WR | MII_BUSY);
246 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
247 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
248 			break;
249 		delay(10);
250 	}
251 
252 	if (retry == 0)
253 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
254 		    phy, reg);
255 }
256 
257 static void
258 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
259 {
260 	struct mii_data *mii = &sc->mii;
261 	uint32_t val;
262 
263 	val = RD4(sc, EMAC_BASIC_CTL_0);
264 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
265 
266 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
267 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
268 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
269 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
270 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
271 	else
272 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
273 
274 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
275 		val |= BASIC_CTL_DUPLEX;
276 
277 	WR4(sc, EMAC_BASIC_CTL_0, val);
278 
279 	val = RD4(sc, EMAC_RX_CTL_0);
280 	val &= ~RX_FLOW_CTL_EN;
281 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
282 		val |= RX_FLOW_CTL_EN;
283 	WR4(sc, EMAC_RX_CTL_0, val);
284 
285 	val = RD4(sc, EMAC_TX_FLOW_CTL);
286 	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
287 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
288 		val |= TX_FLOW_CTL_EN;
289 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
290 		val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
291 	WR4(sc, EMAC_TX_FLOW_CTL, val);
292 }
293 
294 static void
295 sunxi_emac_mii_statchg(struct ifnet *ifp)
296 {
297 	struct sunxi_emac_softc * const sc = ifp->if_softc;
298 
299 	sunxi_emac_update_link(sc);
300 }
301 
302 static void
303 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
304     bus_dmamap_t map, int start, int end, int total, int flags)
305 {
306 	if (end > start) {
307 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
308 		    DESC_OFF(end) - DESC_OFF(start), flags);
309 	} else {
310 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
311 		    DESC_OFF(total) - DESC_OFF(start), flags);
312 		if (DESC_OFF(end) - DESC_OFF(0) > 0)
313 			bus_dmamap_sync(dmat, map, DESC_OFF(0),
314 			    DESC_OFF(end) - DESC_OFF(0), flags);
315 	}
316 }
317 
318 static void
319 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
320     bus_addr_t paddr, u_int len)
321 {
322 	uint32_t status, size;
323 
324 	if (paddr == 0 || len == 0) {
325 		status = 0;
326 		size = 0;
327 		--sc->tx.queued;
328 	} else {
329 		status = TX_DESC_CTL;
330 		size = flags | len;
331 		++sc->tx.queued;
332 	}
333 
334 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
335 	sc->tx.desc_ring[index].size = htole32(size);
336 	sc->tx.desc_ring[index].status = htole32(status);
337 }
338 
339 static int
340 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
341 {
342 	bus_dma_segment_t *segs;
343 	int error, nsegs, cur, i, flags;
344 	u_int csum_flags;
345 
346 	error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
347 	    sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
348 	if (error == EFBIG) {
349 		device_printf(sc->dev,
350 		    "TX packet needs too many DMA segments, dropping...\n");
351 		m_freem(m);
352 		return 0;
353 	}
354 	if (error != 0)
355 		return 0;
356 
357 	segs = sc->tx.buf_map[index].map->dm_segs;
358 	nsegs = sc->tx.buf_map[index].map->dm_nsegs;
359 
360 	flags = TX_FIR_DESC;
361 	if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
362 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
363 			csum_flags = TX_CHECKSUM_CTL_FULL;
364 		else
365 			csum_flags = TX_CHECKSUM_CTL_IP;
366 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
367 	}
368 
369 	for (cur = index, i = 0; i < nsegs; i++) {
370 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
371 		if (i == nsegs - 1)
372 			flags |= TX_LAST_DESC | TX_INT_CTL;
373 
374 		sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
375 		    segs[i].ds_len);
376 		flags &= ~TX_FIR_DESC;
377 		cur = TX_NEXT(cur);
378 	}
379 
380 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
381 	    0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
382 
383 	return nsegs;
384 }
385 
386 static void
387 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
388     bus_addr_t paddr)
389 {
390 	uint32_t status, size;
391 
392 	status = RX_DESC_CTL;
393 	size = MCLBYTES - 1;
394 
395 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
396 	sc->rx.desc_ring[index].size = htole32(size);
397 	sc->rx.desc_ring[index].next =
398 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
399 	sc->rx.desc_ring[index].status = htole32(status);
400 }
401 
402 static int
403 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
404 {
405 	int error;
406 
407 	m_adj(m, ETHER_ALIGN);
408 
409 	error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
410 	    sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
411 	if (error != 0)
412 		return error;
413 
414 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
415 	    0, sc->rx.buf_map[index].map->dm_mapsize,
416 	    BUS_DMASYNC_PREREAD);
417 
418 	sc->rx.buf_map[index].mbuf = m;
419 	sunxi_emac_setup_rxdesc(sc, index,
420 	    sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
421 
422 	return 0;
423 }
424 
425 static struct mbuf *
426 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
427 {
428 	struct mbuf *m;
429 
430 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
431 	if (m != NULL)
432 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
433 
434 	return m;
435 }
436 
437 static void
438 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
439 {
440 	struct ifnet *ifp = &sc->ec.ec_if;
441 	struct mbuf *m;
442 	uint32_t val;
443 	int cnt, nsegs, start;
444 
445 	EMAC_ASSERT_LOCKED(sc);
446 
447 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
448 		return;
449 
450 	for (cnt = 0, start = sc->tx.cur; ; cnt++) {
451 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
452 			ifp->if_flags |= IFF_OACTIVE;
453 			break;
454 		}
455 
456 		IFQ_POLL(&ifp->if_snd, m);
457 		if (m == NULL)
458 			break;
459 
460 		nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
461 		if (nsegs == 0) {
462 			ifp->if_flags |= IFF_OACTIVE;
463 			break;
464 		}
465 		IFQ_DEQUEUE(&ifp->if_snd, m);
466 		bpf_mtap(ifp, m, BPF_D_OUT);
467 
468 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
469 	}
470 
471 	if (cnt != 0) {
472 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
473 		    start, sc->tx.cur, TX_DESC_COUNT,
474 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
475 
476 		/* Start and run TX DMA */
477 		val = RD4(sc, EMAC_TX_CTL_1);
478 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
479 	}
480 }
481 
482 static void
483 sunxi_emac_start(struct ifnet *ifp)
484 {
485 	struct sunxi_emac_softc *sc = ifp->if_softc;
486 
487 	EMAC_LOCK(sc);
488 	sunxi_emac_start_locked(sc);
489 	EMAC_UNLOCK(sc);
490 }
491 
492 static void
493 sunxi_emac_tick(void *softc)
494 {
495 	struct sunxi_emac_softc *sc = softc;
496 	struct mii_data *mii = &sc->mii;
497 #ifndef EMAC_MPSAFE
498 	int s = splnet();
499 #endif
500 
501 	EMAC_LOCK(sc);
502 	mii_tick(mii);
503 	callout_schedule(&sc->stat_ch, hz);
504 	EMAC_UNLOCK(sc);
505 
506 #ifndef EMAC_MPSAFE
507 	splx(s);
508 #endif
509 }
510 
511 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
512 static uint32_t
513 bitrev32(uint32_t x)
514 {
515 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
516 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
517 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
518 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
519 
520 	return (x >> 16) | (x << 16);
521 }
522 
523 static void
524 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
525 {
526 	struct ifnet *ifp = &sc->ec.ec_if;
527 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
528 	struct ether_multi *enm;
529 	struct ether_multistep step;
530 	const uint8_t *eaddr;
531 
532 	EMAC_ASSERT_LOCKED(sc);
533 
534 	val = 0;
535 	hash[0] = hash[1] = 0;
536 
537 	if ((ifp->if_flags & IFF_PROMISC) != 0)
538 		val |= DIS_ADDR_FILTER;
539 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
540 		val |= RX_ALL_MULTICAST;
541 		hash[0] = hash[1] = ~0;
542 	} else {
543 		val |= HASH_MULTICAST;
544 		ETHER_FIRST_MULTI(step, &sc->ec, enm);
545 		while (enm != NULL) {
546 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
547 			crc &= 0x7f;
548 			crc = bitrev32(~crc) >> 26;
549 			hashreg = (crc >> 5);
550 			hashbit = (crc & 0x1f);
551 			hash[hashreg] |= (1 << hashbit);
552 			ETHER_NEXT_MULTI(step, enm);
553 		}
554 	}
555 
556 	/* Write our unicast address */
557 	eaddr = CLLADDR(ifp->if_sadl);
558 	machi = (eaddr[5] << 8) | eaddr[4];
559 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
560 	   (eaddr[0] << 0);
561 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
562 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
563 
564 	/* Multicast hash filters */
565 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
566 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
567 
568 	/* RX frame filter config */
569 	WR4(sc, EMAC_RX_FRM_FLT, val);
570 }
571 
572 static void
573 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
574 {
575 	/* Enable interrupts */
576 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
577 }
578 
579 static void
580 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
581 {
582 	/* Disable interrupts */
583 	WR4(sc, EMAC_INT_EN, 0);
584 }
585 
586 static int
587 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
588 {
589 	struct ifnet *ifp = &sc->ec.ec_if;
590 	struct mii_data *mii = &sc->mii;
591 	uint32_t val;
592 
593 	EMAC_ASSERT_LOCKED(sc);
594 
595 	if ((ifp->if_flags & IFF_RUNNING) != 0)
596 		return 0;
597 
598 	sunxi_emac_setup_rxfilter(sc);
599 
600 	/* Configure DMA burst length and priorities */
601 	val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
602 	if (sunxi_emac_rx_tx_pri)
603 		val |= BASIC_CTL_RX_TX_PRI;
604 	WR4(sc, EMAC_BASIC_CTL_1, val);
605 
606 	/* Enable interrupts */
607 	sunxi_emac_enable_intr(sc);
608 
609 	/* Enable transmit DMA */
610 	val = RD4(sc, EMAC_TX_CTL_1);
611 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
612 
613 	/* Enable receive DMA */
614 	val = RD4(sc, EMAC_RX_CTL_1);
615 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
616 
617 	/* Enable transmitter */
618 	val = RD4(sc, EMAC_TX_CTL_0);
619 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
620 
621 	/* Enable receiver */
622 	val = RD4(sc, EMAC_RX_CTL_0);
623 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
624 
625 	ifp->if_flags |= IFF_RUNNING;
626 	ifp->if_flags &= ~IFF_OACTIVE;
627 
628 	mii_mediachg(mii);
629 	callout_schedule(&sc->stat_ch, hz);
630 
631 	return 0;
632 }
633 
634 static int
635 sunxi_emac_init(struct ifnet *ifp)
636 {
637 	struct sunxi_emac_softc *sc = ifp->if_softc;
638 	int error;
639 
640 	EMAC_LOCK(sc);
641 	error = sunxi_emac_init_locked(sc);
642 	EMAC_UNLOCK(sc);
643 
644 	return error;
645 }
646 
647 static void
648 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
649 {
650 	struct ifnet *ifp = &sc->ec.ec_if;
651 	uint32_t val;
652 
653 	EMAC_ASSERT_LOCKED(sc);
654 
655 	callout_stop(&sc->stat_ch);
656 
657 	mii_down(&sc->mii);
658 
659 	/* Stop transmit DMA and flush data in the TX FIFO */
660 	val = RD4(sc, EMAC_TX_CTL_1);
661 	val &= ~TX_DMA_EN;
662 	val |= FLUSH_TX_FIFO;
663 	WR4(sc, EMAC_TX_CTL_1, val);
664 
665 	/* Disable transmitter */
666 	val = RD4(sc, EMAC_TX_CTL_0);
667 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
668 
669 	/* Disable receiver */
670 	val = RD4(sc, EMAC_RX_CTL_0);
671 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
672 
673 	/* Disable interrupts */
674 	sunxi_emac_disable_intr(sc);
675 
676 	/* Disable transmit DMA */
677 	val = RD4(sc, EMAC_TX_CTL_1);
678 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
679 
680 	/* Disable receive DMA */
681 	val = RD4(sc, EMAC_RX_CTL_1);
682 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
683 
684 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
685 }
686 
687 static void
688 sunxi_emac_stop(struct ifnet *ifp, int disable)
689 {
690 	struct sunxi_emac_softc * const sc = ifp->if_softc;
691 
692 	EMAC_LOCK(sc);
693 	sunxi_emac_stop_locked(sc, disable);
694 	EMAC_UNLOCK(sc);
695 }
696 
697 static int
698 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
699 {
700 	struct ifnet *ifp = &sc->ec.ec_if;
701 	int error, index, len, npkt;
702 	struct mbuf *m, *m0;
703 	uint32_t status;
704 
705 	npkt = 0;
706 
707 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
708 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
709 		    index, index + 1,
710 		    RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
711 
712 		status = le32toh(sc->rx.desc_ring[index].status);
713 		if ((status & RX_DESC_CTL) != 0)
714 			break;
715 
716 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
717 		    0, sc->rx.buf_map[index].map->dm_mapsize,
718 		    BUS_DMASYNC_POSTREAD);
719 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
720 
721 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
722 		if (len != 0) {
723 			m = sc->rx.buf_map[index].mbuf;
724 			m_set_rcvif(m, ifp);
725 			m->m_flags |= M_HASFCS;
726 			m->m_pkthdr.len = len;
727 			m->m_len = len;
728 			m->m_nextpkt = NULL;
729 
730 			if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
731 			    (status & RX_FRM_TYPE) != 0) {
732 				m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
733 				    M_CSUM_TCPv4 | M_CSUM_UDPv4;
734 				if ((status & RX_HEADER_ERR) != 0)
735 					m->m_pkthdr.csum_flags |=
736 					    M_CSUM_IPv4_BAD;
737 				if ((status & RX_PAYLOAD_ERR) != 0)
738 					m->m_pkthdr.csum_flags |=
739 					    M_CSUM_TCP_UDP_BAD;
740 			}
741 
742 			++npkt;
743 
744 			if_percpuq_enqueue(ifp->if_percpuq, m);
745 		}
746 
747 		if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
748 			error = sunxi_emac_setup_rxbuf(sc, index, m0);
749 			if (error != 0) {
750 				/* XXX hole in RX ring */
751 			}
752 		} else
753 			ifp->if_ierrors++;
754 
755 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
756 		    index, index + 1,
757 		    RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
758 	}
759 
760 	sc->rx.cur = index;
761 
762 	return npkt;
763 }
764 
765 static void
766 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
767 {
768 	struct ifnet *ifp = &sc->ec.ec_if;
769 	struct sunxi_emac_bufmap *bmap;
770 	struct sunxi_emac_desc *desc;
771 	uint32_t status;
772 	int i;
773 
774 	EMAC_ASSERT_LOCKED(sc);
775 
776 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
777 		KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
778 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
779 		    i, i + 1, TX_DESC_COUNT,
780 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
781 		desc = &sc->tx.desc_ring[i];
782 		status = le32toh(desc->status);
783 		if ((status & TX_DESC_CTL) != 0)
784 			break;
785 		bmap = &sc->tx.buf_map[i];
786 		if (bmap->mbuf != NULL) {
787 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
788 			    0, bmap->map->dm_mapsize,
789 			    BUS_DMASYNC_POSTWRITE);
790 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
791 			m_freem(bmap->mbuf);
792 			bmap->mbuf = NULL;
793 		}
794 
795 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
796 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
797 		    i, i + 1, TX_DESC_COUNT,
798 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
799 
800 		ifp->if_flags &= ~IFF_OACTIVE;
801 		ifp->if_opackets++;
802 	}
803 
804 	sc->tx.next = i;
805 }
806 
807 static int
808 sunxi_emac_intr(void *arg)
809 {
810 	struct sunxi_emac_softc *sc = arg;
811 	struct ifnet *ifp = &sc->ec.ec_if;
812 	uint32_t val;
813 
814 	EMAC_LOCK(sc);
815 
816 	val = RD4(sc, EMAC_INT_STA);
817 	WR4(sc, EMAC_INT_STA, val);
818 
819 	if (val & RX_INT)
820 		sunxi_emac_rxintr(sc);
821 
822 	if (val & (TX_INT|TX_BUF_UA_INT)) {
823 		sunxi_emac_txintr(sc);
824 		if_schedule_deferred_start(ifp);
825 	}
826 
827 	EMAC_UNLOCK(sc);
828 
829 	return 1;
830 }
831 
832 static int
833 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
834 {
835 	struct sunxi_emac_softc *sc = ifp->if_softc;
836 	struct mii_data *mii = &sc->mii;
837 	struct ifreq *ifr = data;
838 	int error, s;
839 
840 #ifndef EMAC_MPSAFE
841 	s = splnet();
842 #endif
843 
844 	switch (cmd) {
845 	case SIOCSIFMEDIA:
846 	case SIOCGIFMEDIA:
847 #ifdef EMAC_MPSAFE
848 		s = splnet();
849 #endif
850 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
851 #ifdef EMAC_MPSAFE
852 		splx(s);
853 #endif
854 		break;
855 	default:
856 #ifdef EMAC_MPSAFE
857 		s = splnet();
858 #endif
859 		error = ether_ioctl(ifp, cmd, data);
860 #ifdef EMAC_MPSAFE
861 		splx(s);
862 #endif
863 		if (error != ENETRESET)
864 			break;
865 
866 		error = 0;
867 
868 		if (cmd == SIOCSIFCAP)
869 			error = (*ifp->if_init)(ifp);
870 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
871 			;
872 		else if ((ifp->if_flags & IFF_RUNNING) != 0) {
873 			EMAC_LOCK(sc);
874 			sunxi_emac_setup_rxfilter(sc);
875 			EMAC_UNLOCK(sc);
876 		}
877 		break;
878 	}
879 
880 #ifndef EMAC_MPSAFE
881 	splx(s);
882 #endif
883 
884 	return error;
885 }
886 
887 static bool
888 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
889 {
890 	const char * mdio_internal_compat[] = {
891 		"allwinner,sun8i-h3-mdio-internal",
892 		NULL
893 	};
894 	int phy;
895 
896 	/* Non-standard property, for compatible with old dts files */
897 	if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
898 		return true;
899 
900 	phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
901 	if (phy == -1)
902 		return false;
903 
904 	/* For internal PHY, check compatible string of parent node */
905 	return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
906 }
907 
908 static int
909 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
910 {
911 	uint32_t reg, tx_delay, rx_delay;
912 	const char *phy_type;
913 
914 	phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
915 	if (phy_type == NULL)
916 		return 0;
917 
918 	aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
919 
920 	syscon_lock(sc->syscon);
921 	reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
922 
923 	reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
924 	if (strcmp(phy_type, "rgmii") == 0)
925 		reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
926 	else if (strcmp(phy_type, "rmii") == 0)
927 		reg |= EMAC_CLK_RMII_EN;
928 	else
929 		reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
930 
931 	if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
932 	    &tx_delay) == 0) {
933 		reg &= ~EMAC_CLK_ETXDC;
934 		reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
935 	} else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
936 		reg &= ~EMAC_CLK_ETXDC;
937 		reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
938 	}
939 	if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
940 	    &rx_delay) == 0) {
941 		reg &= ~EMAC_CLK_ERXDC;
942 		reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
943 	} else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
944 		reg &= ~EMAC_CLK_ERXDC;
945 		reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
946 	}
947 
948 	if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
949 		if (sunxi_emac_has_internal_phy(sc)) {
950 			reg |= EMAC_CLK_EPHY_SELECT;
951 			reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
952 			if (of_hasprop(sc->phandle,
953 			    "allwinner,leds-active-low"))
954 				reg |= EMAC_CLK_EPHY_LED_POL;
955 			else
956 				reg &= ~EMAC_CLK_EPHY_LED_POL;
957 
958 			/* Set internal PHY addr to 1 */
959 			reg &= ~EMAC_CLK_EPHY_ADDR;
960 			reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
961 		} else {
962 			reg &= ~EMAC_CLK_EPHY_SELECT;
963 		}
964 	}
965 
966 	aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
967 
968 	syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
969 	syscon_unlock(sc->syscon);
970 
971 	return 0;
972 }
973 
974 static int
975 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
976 {
977 	u_int freq;
978 	int error, div;
979 
980 	/* Configure PHY for MII or RGMII mode */
981 	if (sunxi_emac_setup_phy(sc) != 0)
982 		return ENXIO;
983 
984 	/* Enable clocks */
985 	error = clk_enable(sc->clk_ahb);
986 	if (error != 0) {
987 		aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
988 		return error;
989 	}
990 
991 	if (sc->clk_ephy != NULL) {
992 		error = clk_enable(sc->clk_ephy);
993 		if (error != 0) {
994 			aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
995 			return error;
996 		}
997 	}
998 
999 	/* De-assert reset */
1000 	error = fdtbus_reset_deassert(sc->rst_ahb);
1001 	if (error != 0) {
1002 		aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1003 		return error;
1004 	}
1005 	if (sc->rst_ephy != NULL) {
1006 		error = fdtbus_reset_deassert(sc->rst_ephy);
1007 		if (error != 0) {
1008 			aprint_error_dev(sc->dev,
1009 			    "cannot de-assert ephy reset\n");
1010 			return error;
1011 		}
1012 	}
1013 
1014 	/* Enable PHY regulator if applicable */
1015 	if (sc->reg_phy != NULL) {
1016 		error = fdtbus_regulator_enable(sc->reg_phy);
1017 		if (error != 0) {
1018 			aprint_error_dev(sc->dev,
1019 			    "cannot enable PHY regulator\n");
1020 			return error;
1021 		}
1022 	}
1023 
1024 	/* Determine MDC clock divide ratio based on AHB clock */
1025 	freq = clk_get_rate(sc->clk_ahb);
1026 	if (freq == 0) {
1027 		aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1028 		return ENXIO;
1029 	}
1030 	div = freq / MDIO_FREQ;
1031 	if (div <= 16)
1032 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1033 	else if (div <= 32)
1034 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1035 	else if (div <= 64)
1036 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1037 	else if (div <= 128)
1038 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1039 	else {
1040 		aprint_error_dev(sc->dev,
1041 		    "cannot determine MDC clock divide ratio\n");
1042 		return ENXIO;
1043 	}
1044 
1045 	aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1046 	    freq, sc->mdc_div_ratio_m);
1047 
1048 	return 0;
1049 }
1050 
1051 static void
1052 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1053 {
1054 	uint32_t maclo, machi;
1055 #if notyet
1056 	u_char rootkey[16];
1057 #endif
1058 
1059 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1060 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1061 
1062 	if (maclo == 0xffffffff && machi == 0xffff) {
1063 #if notyet
1064 		/* MAC address in hardware is invalid, create one */
1065 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1066 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1067 		     rootkey[15]) != 0) {
1068 			/* MAC address is derived from the root key in SID */
1069 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1070 				(rootkey[3] << 8) | 0x02;
1071 			machi = (rootkey[15] << 8) | rootkey[14];
1072 		} else {
1073 #endif
1074 			/* Create one */
1075 			maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1076 			machi = cprng_strong32() & 0xffff;
1077 #if notyet
1078 		}
1079 #endif
1080 	}
1081 
1082 	eaddr[0] = maclo & 0xff;
1083 	eaddr[1] = (maclo >> 8) & 0xff;
1084 	eaddr[2] = (maclo >> 16) & 0xff;
1085 	eaddr[3] = (maclo >> 24) & 0xff;
1086 	eaddr[4] = machi & 0xff;
1087 	eaddr[5] = (machi >> 8) & 0xff;
1088 }
1089 
1090 #ifdef SUNXI_EMAC_DEBUG
1091 static void
1092 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
1093 {
1094 	static const struct {
1095 		const char *name;
1096 		u_int reg;
1097 	} regs[] = {
1098 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1099 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1100 		{ "INT_STA", EMAC_INT_STA },
1101 		{ "INT_EN", EMAC_INT_EN },
1102 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1103 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1104 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1105 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1106 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1107 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1108 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1109 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1110 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1111 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1112 		{ "MII_CMD", EMAC_MII_CMD },
1113 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1114 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1115 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1116 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1117 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1118 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1119 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1120 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1121 		{ "RGMII_STA", EMAC_RGMII_STA },
1122 	};
1123 	u_int n;
1124 
1125 	for (n = 0; n < __arraycount(regs); n++)
1126 		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1127 		    RD4(sc, regs[n].reg));
1128 }
1129 #endif
1130 
1131 static int
1132 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1133 {
1134 	uint32_t delay_prop[3];
1135 	int pin_value;
1136 
1137 	if (sc->pin_reset == NULL)
1138 		return 0;
1139 
1140 	if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1141 	    sizeof(delay_prop)) <= 0)
1142 		return ENXIO;
1143 
1144 	pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1145 
1146 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1147 	delay(htole32(delay_prop[0]));
1148 	fdtbus_gpio_write(sc->pin_reset, !pin_value);
1149 	delay(htole32(delay_prop[1]));
1150 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1151 	delay(htole32(delay_prop[2]));
1152 
1153 	return 0;
1154 }
1155 
1156 static int
1157 sunxi_emac_reset(struct sunxi_emac_softc *sc)
1158 {
1159 	int retry;
1160 
1161 	/* Reset PHY if necessary */
1162 	if (sunxi_emac_phy_reset(sc) != 0) {
1163 		aprint_error_dev(sc->dev, "failed to reset PHY\n");
1164 		return ENXIO;
1165 	}
1166 
1167 	/* Soft reset all registers and logic */
1168 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1169 
1170 	/* Wait for soft reset bit to self-clear */
1171 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1172 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1173 			break;
1174 		delay(10);
1175 	}
1176 	if (retry == 0) {
1177 		aprint_error_dev(sc->dev, "soft reset timed out\n");
1178 #ifdef SUNXI_EMAC_DEBUG
1179 		sunxi_emac_dump_regs(sc);
1180 #endif
1181 		return ETIMEDOUT;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 static int
1188 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1189 {
1190 	struct mbuf *m;
1191 	int error, nsegs, i;
1192 
1193 	/* Setup TX ring */
1194 	sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1195 	error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1196 	    BUS_DMA_WAITOK, &sc->tx.desc_map);
1197 	if (error)
1198 		return error;
1199 	error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1200 	    &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1201 	if (error)
1202 		return error;
1203 	error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1204 	    TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1205 	    BUS_DMA_WAITOK);
1206 	if (error)
1207 		return error;
1208 	error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1209 	    TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1210 	if (error)
1211 		return error;
1212 	sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1213 
1214 	memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1215 	bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1216 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1217 
1218 	for (i = 0; i < TX_DESC_COUNT; i++)
1219 		sc->tx.desc_ring[i].next =
1220 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1221 
1222 	sc->tx.queued = TX_DESC_COUNT;
1223 	for (i = 0; i < TX_DESC_COUNT; i++) {
1224 		error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1225 		    TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1226 		    &sc->tx.buf_map[i].map);
1227 		if (error != 0) {
1228 			device_printf(sc->dev, "cannot create TX buffer map\n");
1229 			return error;
1230 		}
1231 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1232 	}
1233 
1234 	/* Setup RX ring */
1235 	sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1236 	error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1237 	    BUS_DMA_WAITOK, &sc->rx.desc_map);
1238 	if (error)
1239 		return error;
1240 	error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1241 	    &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1242 	if (error)
1243 		return error;
1244 	error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1245 	    RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1246 	    BUS_DMA_WAITOK);
1247 	if (error)
1248 		return error;
1249 	error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1250 	    RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1251 	if (error)
1252 		return error;
1253 	sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1254 
1255 	memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1256 
1257 	for (i = 0; i < RX_DESC_COUNT; i++) {
1258 		error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1259 		    RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1260 		    &sc->rx.buf_map[i].map);
1261 		if (error != 0) {
1262 			device_printf(sc->dev, "cannot create RX buffer map\n");
1263 			return error;
1264 		}
1265 		if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1266 			device_printf(sc->dev, "cannot allocate RX mbuf\n");
1267 			return ENOMEM;
1268 		}
1269 		error = sunxi_emac_setup_rxbuf(sc, i, m);
1270 		if (error != 0) {
1271 			device_printf(sc->dev, "cannot create RX buffer\n");
1272 			return error;
1273 		}
1274 	}
1275 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1276 	    0, sc->rx.desc_map->dm_mapsize,
1277 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1278 
1279 	/* Write transmit and receive descriptor base address registers */
1280 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1281 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1282 
1283 	return 0;
1284 }
1285 
1286 static int
1287 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1288 {
1289 	const int phandle = sc->phandle;
1290 	bus_addr_t addr, size;
1291 
1292 	/* Map EMAC registers */
1293 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1294 		return ENXIO;
1295 	if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0)
1296 		return ENXIO;
1297 
1298 	/* Get SYSCON registers */
1299 	sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1300 	if (sc->syscon == NULL)
1301 		return ENXIO;
1302 
1303 	/* The "ahb"/"stmmaceth" clock and reset is required */
1304 	if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1305 	    (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1306 		return ENXIO;
1307 	if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1308 	    (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1309 		return ENXIO;
1310 
1311 	/* Internal PHY clock and reset are optional properties. */
1312 	sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1313 	if (sc->clk_ephy == NULL) {
1314 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1315 		if (phy_phandle != -1)
1316 			sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1317 	}
1318 	sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1319 	if (sc->rst_ephy == NULL) {
1320 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1321 		if (phy_phandle != -1)
1322 			sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1323 	}
1324 
1325 	/* Regulator is optional */
1326 	sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1327 
1328 	/* Reset GPIO is optional */
1329 	sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1330 	    "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1331 
1332 	return 0;
1333 }
1334 
1335 static int
1336 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1337 {
1338 	bus_addr_t addr;
1339 	int phy_phandle;
1340 
1341 	phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1342 	if (phy_phandle == -1)
1343 		phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1344 	if (phy_phandle == -1)
1345 		return MII_PHY_ANY;
1346 
1347 	if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1348 		return MII_PHY_ANY;
1349 
1350 	return (int)addr;
1351 }
1352 
1353 static int
1354 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1355 {
1356 	struct fdt_attach_args * const faa = aux;
1357 
1358 	return of_match_compat_data(faa->faa_phandle, compat_data);
1359 }
1360 
1361 static void
1362 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1363 {
1364 	struct fdt_attach_args * const faa = aux;
1365 	struct sunxi_emac_softc * const sc = device_private(self);
1366 	const int phandle = faa->faa_phandle;
1367 	struct mii_data *mii = &sc->mii;
1368 	struct ifnet *ifp = &sc->ec.ec_if;
1369 	uint8_t eaddr[ETHER_ADDR_LEN];
1370 	char intrstr[128];
1371 
1372 	sc->dev = self;
1373 	sc->phandle = phandle;
1374 	sc->bst = faa->faa_bst;
1375 	sc->dmat = faa->faa_dmat;
1376 	sc->type = of_search_compatible(phandle, compat_data)->data;
1377 	sc->phy_id = sunxi_emac_get_phyid(sc);
1378 
1379 	if (sunxi_emac_get_resources(sc) != 0) {
1380 		aprint_error(": cannot allocate resources for device\n");
1381 		return;
1382 	}
1383 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1384 		aprint_error(": cannot decode interrupt\n");
1385 		return;
1386 	}
1387 
1388 	mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1389 	callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1390 	callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1391 
1392 	aprint_naive("\n");
1393 	aprint_normal(": EMAC\n");
1394 
1395 	/* Setup clocks and regulators */
1396 	if (sunxi_emac_setup_resources(sc) != 0)
1397 		return;
1398 
1399 	/* Read MAC address before resetting the chip */
1400 	sunxi_emac_get_eaddr(sc, eaddr);
1401 
1402 	/* Soft reset EMAC core */
1403 	if (sunxi_emac_reset(sc) != 0)
1404 		return;
1405 
1406 	/* Setup DMA descriptors */
1407 	if (sunxi_emac_setup_dma(sc) != 0) {
1408 		aprint_error_dev(self, "failed to setup DMA descriptors\n");
1409 		return;
1410 	}
1411 
1412 	/* Install interrupt handler */
1413 	sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1414 	    FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1415 	if (sc->ih == NULL) {
1416 		aprint_error_dev(self, "failed to establish interrupt on %s\n",
1417 		    intrstr);
1418 		return;
1419 	}
1420 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1421 
1422 	/* Setup ethernet interface */
1423 	ifp->if_softc = sc;
1424 	snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1425 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1426 #ifdef EMAC_MPSAFE
1427 	ifp->if_extflags = IFEF_MPSAFE;
1428 #endif
1429 	ifp->if_start = sunxi_emac_start;
1430 	ifp->if_ioctl = sunxi_emac_ioctl;
1431 	ifp->if_init = sunxi_emac_init;
1432 	ifp->if_stop = sunxi_emac_stop;
1433 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1434 			       IFCAP_CSUM_IPv4_Tx |
1435 			       IFCAP_CSUM_TCPv4_Rx |
1436 			       IFCAP_CSUM_TCPv4_Tx |
1437 			       IFCAP_CSUM_UDPv4_Rx |
1438 			       IFCAP_CSUM_UDPv4_Tx;
1439 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1440 	IFQ_SET_READY(&ifp->if_snd);
1441 
1442 	/* 802.1Q VLAN-sized frames are supported */
1443 	sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1444 
1445 	/* Attach MII driver */
1446 	sc->ec.ec_mii = mii;
1447 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1448 	mii->mii_ifp = ifp;
1449 	mii->mii_readreg = sunxi_emac_mii_readreg;
1450 	mii->mii_writereg = sunxi_emac_mii_writereg;
1451 	mii->mii_statchg = sunxi_emac_mii_statchg;
1452 	mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1453 	    MIIF_DOPAUSE);
1454 
1455 	if (LIST_EMPTY(&mii->mii_phys)) {
1456 		aprint_error_dev(self, "no PHY found!\n");
1457 		return;
1458 	}
1459 	ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1460 
1461 	/* Attach interface */
1462 	if_attach(ifp);
1463 	if_deferred_start_init(ifp, NULL);
1464 
1465 	/* Attach ethernet interface */
1466 	ether_ifattach(ifp, eaddr);
1467 }
1468 
1469 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1470     sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1471