xref: /netbsd-src/sys/arch/arm/sunxi/sunxi_emac.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* $NetBSD: sunxi_emac.c,v 1.33 2021/01/27 03:10:20 thorpej Exp $ */
2 
3 /*-
4  * Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /*
30  * Allwinner Gigabit Ethernet MAC (EMAC) controller
31  */
32 
33 #include "opt_net_mpsafe.h"
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.33 2021/01/27 03:10:20 thorpej Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/gpio.h>
47 #include <sys/cprng.h>
48 
49 #include <net/if.h>
50 #include <net/if_dl.h>
51 #include <net/if_ether.h>
52 #include <net/if_media.h>
53 #include <net/bpf.h>
54 
55 #include <dev/mii/miivar.h>
56 
57 #include <dev/fdt/fdtvar.h>
58 #include <dev/fdt/syscon.h>
59 
60 #include <arm/sunxi/sunxi_emac.h>
61 
62 #ifdef NET_MPSAFE
63 #define	EMAC_MPSAFE		1
64 #define	CALLOUT_FLAGS		CALLOUT_MPSAFE
65 #define	FDT_INTR_FLAGS		FDT_INTR_MPSAFE
66 #else
67 #define	CALLOUT_FLAGS		0
68 #define	FDT_INTR_FLAGS		0
69 #endif
70 
71 #define	EMAC_IFNAME		"emac%d"
72 
73 #define	EMAC_LOCK(sc)		mutex_enter(&(sc)->mtx)
74 #define	EMAC_UNLOCK(sc)		mutex_exit(&(sc)->mtx)
75 #define	EMAC_ASSERT_LOCKED(sc)	KASSERT(mutex_owned(&(sc)->mtx))
76 
77 #define	DESC_ALIGN		sizeof(struct sunxi_emac_desc)
78 #define	TX_DESC_COUNT		1024
79 #define	TX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
80 #define	RX_DESC_COUNT		256
81 #define	RX_DESC_SIZE		(sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
82 
83 #define	DESC_OFF(n)		((n) * sizeof(struct sunxi_emac_desc))
84 #define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
85 #define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
86 #define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
87 
88 #define	TX_MAX_SEGS		128
89 
90 #define	SOFT_RST_RETRY		1000
91 #define	MII_BUSY_RETRY		1000
92 #define	MDIO_FREQ		2500000
93 
94 #define	BURST_LEN_DEFAULT	8
95 #define	RX_TX_PRI_DEFAULT	0
96 #define	PAUSE_TIME_DEFAULT	0x400
97 
98 /* syscon EMAC clock register */
99 #define	EMAC_CLK_REG		0x30
100 #define	 EMAC_CLK_EPHY_ADDR		(0x1f << 20)	/* H3 */
101 #define	 EMAC_CLK_EPHY_ADDR_SHIFT	20
102 #define	 EMAC_CLK_EPHY_LED_POL		(1 << 17)	/* H3 */
103 #define	 EMAC_CLK_EPHY_SHUTDOWN		(1 << 16)	/* H3 */
104 #define	 EMAC_CLK_EPHY_SELECT		(1 << 15)	/* H3 */
105 #define	 EMAC_CLK_RMII_EN		(1 << 13)
106 #define	 EMAC_CLK_ETXDC			(0x7 << 10)
107 #define	 EMAC_CLK_ETXDC_SHIFT		10
108 #define	 EMAC_CLK_ERXDC			(0x1f << 5)
109 #define	 EMAC_CLK_ERXDC_SHIFT		5
110 #define	 EMAC_CLK_PIT			(0x1 << 2)
111 #define	  EMAC_CLK_PIT_MII		(0 << 2)
112 #define	  EMAC_CLK_PIT_RGMII		(1 << 2)
113 #define	 EMAC_CLK_SRC			(0x3 << 0)
114 #define	  EMAC_CLK_SRC_MII		(0 << 0)
115 #define	  EMAC_CLK_SRC_EXT_RGMII	(1 << 0)
116 #define	  EMAC_CLK_SRC_RGMII		(2 << 0)
117 
118 /* Burst length of RX and TX DMA transfers */
119 static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
120 
121 /* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
122 static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
123 
124 /* Pause time field in the transmitted control frame */
125 static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
126 
127 enum sunxi_emac_type {
128 	EMAC_A64 = 1,
129 	EMAC_A83T,
130 	EMAC_H3,
131 	EMAC_H6,
132 };
133 
134 static const struct device_compatible_entry compat_data[] = {
135 	{ .compat = "allwinner,sun8i-a83t-emac",	.value = EMAC_A83T },
136 	{ .compat = "allwinner,sun8i-h3-emac",		.value = EMAC_H3 },
137 	{ .compat = "allwinner,sun50i-a64-emac",	.value = EMAC_A64 },
138 	{ .compat = "allwinner,sun50i-h6-emac",		.value = EMAC_H6 },
139 	DEVICE_COMPAT_EOL
140 };
141 
142 struct sunxi_emac_bufmap {
143 	bus_dmamap_t		map;
144 	struct mbuf		*mbuf;
145 };
146 
147 struct sunxi_emac_txring {
148 	bus_dma_tag_t		desc_tag;
149 	bus_dmamap_t		desc_map;
150 	bus_dma_segment_t	desc_dmaseg;
151 	struct sunxi_emac_desc	*desc_ring;
152 	bus_addr_t		desc_ring_paddr;
153 	bus_dma_tag_t		buf_tag;
154 	struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
155 	u_int			cur, next, queued;
156 };
157 
158 struct sunxi_emac_rxring {
159 	bus_dma_tag_t		desc_tag;
160 	bus_dmamap_t		desc_map;
161 	bus_dma_segment_t	desc_dmaseg;
162 	struct sunxi_emac_desc	*desc_ring;
163 	bus_addr_t		desc_ring_paddr;
164 	bus_dma_tag_t		buf_tag;
165 	struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
166 	u_int			cur;
167 };
168 
169 struct sunxi_emac_softc {
170 	device_t		dev;
171 	int			phandle;
172 	enum sunxi_emac_type	type;
173 	bus_space_tag_t		bst;
174 	bus_dma_tag_t		dmat;
175 
176 	bus_space_handle_t	bsh;
177 	struct clk		*clk_ahb;
178 	struct clk		*clk_ephy;
179 	struct fdtbus_reset	*rst_ahb;
180 	struct fdtbus_reset	*rst_ephy;
181 	struct fdtbus_regulator	*reg_phy;
182 	struct fdtbus_gpio_pin	*pin_reset;
183 
184 	struct syscon		*syscon;
185 
186 	int			phy_id;
187 
188 	kmutex_t		mtx;
189 	struct ethercom		ec;
190 	struct mii_data		mii;
191 	callout_t		stat_ch;
192 	void			*ih;
193 	u_int			mdc_div_ratio_m;
194 
195 	struct sunxi_emac_txring	tx;
196 	struct sunxi_emac_rxring	rx;
197 };
198 
199 #define	RD4(sc, reg)			\
200 	bus_space_read_4((sc)->bst, (sc)->bsh, (reg))
201 #define	WR4(sc, reg, val)		\
202 	bus_space_write_4((sc)->bst, (sc)->bsh, (reg), (val))
203 
204 static int
205 sunxi_emac_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
206 {
207 	struct sunxi_emac_softc *sc = device_private(dev);
208 	int retry;
209 
210 	WR4(sc, EMAC_MII_CMD,
211 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
212 	    (phy << PHY_ADDR_SHIFT) |
213 	    (reg << PHY_REG_ADDR_SHIFT) |
214 	    MII_BUSY);
215 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
216 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
217 			*val = RD4(sc, EMAC_MII_DATA) & 0xffff;
218 			break;
219 		}
220 		delay(10);
221 	}
222 
223 	if (retry == 0) {
224 		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
225 		    phy, reg);
226 		return ETIMEDOUT;
227 	}
228 
229 	return 0;
230 }
231 
232 static int
233 sunxi_emac_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
234 {
235 	struct sunxi_emac_softc *sc = device_private(dev);
236 	int retry;
237 
238 	WR4(sc, EMAC_MII_DATA, val);
239 	WR4(sc, EMAC_MII_CMD,
240 	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
241 	    (phy << PHY_ADDR_SHIFT) |
242 	    (reg << PHY_REG_ADDR_SHIFT) |
243 	    MII_WR | MII_BUSY);
244 	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
245 		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
246 			break;
247 		delay(10);
248 	}
249 
250 	if (retry == 0) {
251 		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
252 		    phy, reg);
253 		return ETIMEDOUT;
254 	}
255 
256 	return 0;
257 }
258 
259 static void
260 sunxi_emac_update_link(struct sunxi_emac_softc *sc)
261 {
262 	struct mii_data *mii = &sc->mii;
263 	uint32_t val;
264 
265 	val = RD4(sc, EMAC_BASIC_CTL_0);
266 	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
267 
268 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
269 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
270 		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
271 	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
272 		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
273 	else
274 		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
275 
276 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
277 		val |= BASIC_CTL_DUPLEX;
278 
279 	WR4(sc, EMAC_BASIC_CTL_0, val);
280 
281 	val = RD4(sc, EMAC_RX_CTL_0);
282 	val &= ~RX_FLOW_CTL_EN;
283 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
284 		val |= RX_FLOW_CTL_EN;
285 	WR4(sc, EMAC_RX_CTL_0, val);
286 
287 	val = RD4(sc, EMAC_TX_FLOW_CTL);
288 	val &= ~(PAUSE_TIME | TX_FLOW_CTL_EN);
289 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
290 		val |= TX_FLOW_CTL_EN;
291 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
292 		val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
293 	WR4(sc, EMAC_TX_FLOW_CTL, val);
294 }
295 
296 static void
297 sunxi_emac_mii_statchg(struct ifnet *ifp)
298 {
299 	struct sunxi_emac_softc * const sc = ifp->if_softc;
300 
301 	sunxi_emac_update_link(sc);
302 }
303 
304 static void
305 sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
306     bus_dmamap_t map, int start, int end, int total, int flags)
307 {
308 	if (end > start) {
309 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
310 		    DESC_OFF(end) - DESC_OFF(start), flags);
311 	} else {
312 		bus_dmamap_sync(dmat, map, DESC_OFF(start),
313 		    DESC_OFF(total) - DESC_OFF(start), flags);
314 		if (DESC_OFF(end) - DESC_OFF(0) > 0)
315 			bus_dmamap_sync(dmat, map, DESC_OFF(0),
316 			    DESC_OFF(end) - DESC_OFF(0), flags);
317 	}
318 }
319 
320 static void
321 sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
322     bus_addr_t paddr, u_int len)
323 {
324 	uint32_t status, size;
325 
326 	if (paddr == 0 || len == 0) {
327 		status = 0;
328 		size = 0;
329 		--sc->tx.queued;
330 	} else {
331 		status = TX_DESC_CTL;
332 		size = flags | len;
333 		++sc->tx.queued;
334 	}
335 
336 	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
337 	sc->tx.desc_ring[index].size = htole32(size);
338 	sc->tx.desc_ring[index].status = htole32(status);
339 }
340 
341 static int
342 sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
343 {
344 	bus_dma_segment_t *segs;
345 	int error, nsegs, cur, i, flags;
346 	u_int csum_flags;
347 
348 	error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
349 	    sc->tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
350 	if (error == EFBIG) {
351 		device_printf(sc->dev,
352 		    "TX packet needs too many DMA segments, dropping...\n");
353 		m_freem(m);
354 		return 0;
355 	}
356 	if (error != 0)
357 		return 0;
358 
359 	segs = sc->tx.buf_map[index].map->dm_segs;
360 	nsegs = sc->tx.buf_map[index].map->dm_nsegs;
361 
362 	flags = TX_FIR_DESC;
363 	if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
364 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
365 			csum_flags = TX_CHECKSUM_CTL_FULL;
366 		else
367 			csum_flags = TX_CHECKSUM_CTL_IP;
368 		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
369 	}
370 
371 	for (cur = index, i = 0; i < nsegs; i++) {
372 		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
373 		if (i == nsegs - 1)
374 			flags |= TX_LAST_DESC | TX_INT_CTL;
375 
376 		sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
377 		    segs[i].ds_len);
378 		flags &= ~TX_FIR_DESC;
379 		cur = TX_NEXT(cur);
380 	}
381 
382 	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
383 	    0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
384 
385 	return nsegs;
386 }
387 
388 static void
389 sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
390     bus_addr_t paddr)
391 {
392 	uint32_t status, size;
393 
394 	status = RX_DESC_CTL;
395 	size = MCLBYTES - 1;
396 
397 	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
398 	sc->rx.desc_ring[index].size = htole32(size);
399 	sc->rx.desc_ring[index].next =
400 	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
401 	sc->rx.desc_ring[index].status = htole32(status);
402 }
403 
404 static int
405 sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
406 {
407 	int error;
408 
409 	m_adj(m, ETHER_ALIGN);
410 
411 	error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
412 	    sc->rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
413 	if (error != 0)
414 		return error;
415 
416 	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
417 	    0, sc->rx.buf_map[index].map->dm_mapsize,
418 	    BUS_DMASYNC_PREREAD);
419 
420 	sc->rx.buf_map[index].mbuf = m;
421 	sunxi_emac_setup_rxdesc(sc, index,
422 	    sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
423 
424 	return 0;
425 }
426 
427 static struct mbuf *
428 sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
429 {
430 	struct mbuf *m;
431 
432 	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
433 	if (m != NULL)
434 		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
435 
436 	return m;
437 }
438 
439 static void
440 sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
441 {
442 	struct ifnet *ifp = &sc->ec.ec_if;
443 	struct mbuf *m;
444 	uint32_t val;
445 	int cnt, nsegs, start;
446 
447 	EMAC_ASSERT_LOCKED(sc);
448 
449 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
450 		return;
451 
452 	for (cnt = 0, start = sc->tx.cur; ; cnt++) {
453 		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
454 			ifp->if_flags |= IFF_OACTIVE;
455 			break;
456 		}
457 
458 		IFQ_POLL(&ifp->if_snd, m);
459 		if (m == NULL)
460 			break;
461 
462 		nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
463 		if (nsegs == 0) {
464 			ifp->if_flags |= IFF_OACTIVE;
465 			break;
466 		}
467 		IFQ_DEQUEUE(&ifp->if_snd, m);
468 		bpf_mtap(ifp, m, BPF_D_OUT);
469 
470 		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
471 	}
472 
473 	if (cnt != 0) {
474 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
475 		    start, sc->tx.cur, TX_DESC_COUNT,
476 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
477 
478 		/* Start and run TX DMA */
479 		val = RD4(sc, EMAC_TX_CTL_1);
480 		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
481 	}
482 }
483 
484 static void
485 sunxi_emac_start(struct ifnet *ifp)
486 {
487 	struct sunxi_emac_softc *sc = ifp->if_softc;
488 
489 	EMAC_LOCK(sc);
490 	sunxi_emac_start_locked(sc);
491 	EMAC_UNLOCK(sc);
492 }
493 
494 static void
495 sunxi_emac_tick(void *softc)
496 {
497 	struct sunxi_emac_softc *sc = softc;
498 	struct mii_data *mii = &sc->mii;
499 #ifndef EMAC_MPSAFE
500 	int s = splnet();
501 #endif
502 
503 	EMAC_LOCK(sc);
504 	mii_tick(mii);
505 	callout_schedule(&sc->stat_ch, hz);
506 	EMAC_UNLOCK(sc);
507 
508 #ifndef EMAC_MPSAFE
509 	splx(s);
510 #endif
511 }
512 
513 /* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
514 static uint32_t
515 bitrev32(uint32_t x)
516 {
517 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
518 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
519 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
520 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
521 
522 	return (x >> 16) | (x << 16);
523 }
524 
525 static void
526 sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
527 {
528 	struct ethercom *ec = &sc->ec;
529 	struct ifnet *ifp = &ec->ec_if;
530 	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
531 	struct ether_multi *enm;
532 	struct ether_multistep step;
533 	const uint8_t *eaddr;
534 
535 	EMAC_ASSERT_LOCKED(sc);
536 
537 	val = 0;
538 	hash[0] = hash[1] = 0;
539 
540 	if ((ifp->if_flags & IFF_PROMISC) != 0)
541 		val |= DIS_ADDR_FILTER;
542 	else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
543 		val |= RX_ALL_MULTICAST;
544 		hash[0] = hash[1] = ~0;
545 	} else {
546 		val |= HASH_MULTICAST;
547 		ETHER_LOCK(ec);
548 		ETHER_FIRST_MULTI(step, ec, enm);
549 		while (enm != NULL) {
550 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
551 			crc &= 0x7f;
552 			crc = bitrev32(~crc) >> 26;
553 			hashreg = (crc >> 5);
554 			hashbit = (crc & 0x1f);
555 			hash[hashreg] |= (1 << hashbit);
556 			ETHER_NEXT_MULTI(step, enm);
557 		}
558 		ETHER_UNLOCK(ec);
559 	}
560 
561 	/* Write our unicast address */
562 	eaddr = CLLADDR(ifp->if_sadl);
563 	machi = (eaddr[5] << 8) | eaddr[4];
564 	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
565 	   (eaddr[0] << 0);
566 	WR4(sc, EMAC_ADDR_HIGH(0), machi);
567 	WR4(sc, EMAC_ADDR_LOW(0), maclo);
568 
569 	/* Multicast hash filters */
570 	WR4(sc, EMAC_RX_HASH_0, hash[1]);
571 	WR4(sc, EMAC_RX_HASH_1, hash[0]);
572 
573 	/* RX frame filter config */
574 	WR4(sc, EMAC_RX_FRM_FLT, val);
575 }
576 
577 static void
578 sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
579 {
580 	/* Enable interrupts */
581 	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
582 }
583 
584 static void
585 sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
586 {
587 	/* Disable interrupts */
588 	WR4(sc, EMAC_INT_EN, 0);
589 }
590 
591 #ifdef SUNXI_EMAC_DEBUG
592 static void
593 sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
594 {
595 	static const struct {
596 		const char *name;
597 		u_int reg;
598 	} regs[] = {
599 		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
600 		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
601 		{ "INT_STA", EMAC_INT_STA },
602 		{ "INT_EN", EMAC_INT_EN },
603 		{ "TX_CTL_0", EMAC_TX_CTL_0 },
604 		{ "TX_CTL_1", EMAC_TX_CTL_1 },
605 		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
606 		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
607 		{ "RX_CTL_0", EMAC_RX_CTL_0 },
608 		{ "RX_CTL_1", EMAC_RX_CTL_1 },
609 		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
610 		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
611 		{ "RX_HASH_0", EMAC_RX_HASH_0 },
612 		{ "RX_HASH_1", EMAC_RX_HASH_1 },
613 		{ "MII_CMD", EMAC_MII_CMD },
614 		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
615 		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
616 		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
617 		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
618 		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
619 		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
620 		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
621 		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
622 		{ "RGMII_STA", EMAC_RGMII_STA },
623 	};
624 	u_int n;
625 
626 	for (n = 0; n < __arraycount(regs); n++)
627 		device_printf(sc->dev, "  %-20s %08x\n", regs[n].name,
628 		    RD4(sc, regs[n].reg));
629 }
630 #endif
631 
632 static int
633 sunxi_emac_reset(struct sunxi_emac_softc *sc)
634 {
635 	int retry;
636 
637 	/* Soft reset all registers and logic */
638 	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
639 
640 	/* Wait for soft reset bit to self-clear */
641 	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
642 		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
643 			break;
644 		delay(10);
645 	}
646 	if (retry == 0) {
647 		aprint_debug_dev(sc->dev, "soft reset timed out\n");
648 #ifdef SUNXI_EMAC_DEBUG
649 		sunxi_emac_dump_regs(sc);
650 #endif
651 		return ETIMEDOUT;
652 	}
653 
654 	return 0;
655 }
656 
657 static int
658 sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
659 {
660 	struct ifnet *ifp = &sc->ec.ec_if;
661 	struct mii_data *mii = &sc->mii;
662 	uint32_t val;
663 
664 	EMAC_ASSERT_LOCKED(sc);
665 
666 	if ((ifp->if_flags & IFF_RUNNING) != 0)
667 		return 0;
668 
669 	/* Soft reset EMAC core */
670 	sunxi_emac_reset(sc);
671 
672 	/* Write transmit and receive descriptor base address registers */
673 	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
674 	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
675 
676 	sunxi_emac_setup_rxfilter(sc);
677 
678 	/* Configure DMA burst length and priorities */
679 	val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
680 	if (sunxi_emac_rx_tx_pri)
681 		val |= BASIC_CTL_RX_TX_PRI;
682 	WR4(sc, EMAC_BASIC_CTL_1, val);
683 
684 	/* Enable interrupts */
685 	sunxi_emac_enable_intr(sc);
686 
687 	/* Enable transmit DMA */
688 	val = RD4(sc, EMAC_TX_CTL_1);
689 	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
690 
691 	/* Enable receive DMA */
692 	val = RD4(sc, EMAC_RX_CTL_1);
693 	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
694 
695 	/* Enable transmitter */
696 	val = RD4(sc, EMAC_TX_CTL_0);
697 	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
698 
699 	/* Enable receiver */
700 	val = RD4(sc, EMAC_RX_CTL_0);
701 	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
702 
703 	ifp->if_flags |= IFF_RUNNING;
704 	ifp->if_flags &= ~IFF_OACTIVE;
705 
706 	mii_mediachg(mii);
707 	callout_schedule(&sc->stat_ch, hz);
708 
709 	return 0;
710 }
711 
712 static int
713 sunxi_emac_init(struct ifnet *ifp)
714 {
715 	struct sunxi_emac_softc *sc = ifp->if_softc;
716 	int error;
717 
718 	EMAC_LOCK(sc);
719 	error = sunxi_emac_init_locked(sc);
720 	EMAC_UNLOCK(sc);
721 
722 	return error;
723 }
724 
725 static void
726 sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
727 {
728 	struct ifnet *ifp = &sc->ec.ec_if;
729 	uint32_t val;
730 
731 	EMAC_ASSERT_LOCKED(sc);
732 
733 	callout_stop(&sc->stat_ch);
734 
735 	mii_down(&sc->mii);
736 
737 	/* Stop transmit DMA and flush data in the TX FIFO */
738 	val = RD4(sc, EMAC_TX_CTL_1);
739 	val &= ~TX_DMA_EN;
740 	val |= FLUSH_TX_FIFO;
741 	WR4(sc, EMAC_TX_CTL_1, val);
742 
743 	/* Disable transmitter */
744 	val = RD4(sc, EMAC_TX_CTL_0);
745 	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
746 
747 	/* Disable receiver */
748 	val = RD4(sc, EMAC_RX_CTL_0);
749 	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
750 
751 	/* Disable interrupts */
752 	sunxi_emac_disable_intr(sc);
753 
754 	/* Disable transmit DMA */
755 	val = RD4(sc, EMAC_TX_CTL_1);
756 	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
757 
758 	/* Disable receive DMA */
759 	val = RD4(sc, EMAC_RX_CTL_1);
760 	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
761 
762 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
763 }
764 
765 static void
766 sunxi_emac_stop(struct ifnet *ifp, int disable)
767 {
768 	struct sunxi_emac_softc * const sc = ifp->if_softc;
769 
770 	EMAC_LOCK(sc);
771 	sunxi_emac_stop_locked(sc, disable);
772 	EMAC_UNLOCK(sc);
773 }
774 
775 static int
776 sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
777 {
778 	struct ifnet *ifp = &sc->ec.ec_if;
779 	int error, index, len, npkt;
780 	struct mbuf *m, *m0;
781 	uint32_t status;
782 
783 	npkt = 0;
784 
785 	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
786 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
787 		    index, index + 1, RX_DESC_COUNT,
788 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
789 
790 		status = le32toh(sc->rx.desc_ring[index].status);
791 		if ((status & RX_DESC_CTL) != 0)
792 			break;
793 
794 		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
795 		    0, sc->rx.buf_map[index].map->dm_mapsize,
796 		    BUS_DMASYNC_POSTREAD);
797 		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
798 
799 		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
800 		if (len != 0) {
801 			m = sc->rx.buf_map[index].mbuf;
802 			m_set_rcvif(m, ifp);
803 			m->m_flags |= M_HASFCS;
804 			m->m_pkthdr.len = len;
805 			m->m_len = len;
806 			m->m_nextpkt = NULL;
807 
808 			if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
809 			    (status & RX_FRM_TYPE) != 0) {
810 				m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
811 				    M_CSUM_TCPv4 | M_CSUM_UDPv4;
812 				if ((status & RX_HEADER_ERR) != 0)
813 					m->m_pkthdr.csum_flags |=
814 					    M_CSUM_IPv4_BAD;
815 				if ((status & RX_PAYLOAD_ERR) != 0)
816 					m->m_pkthdr.csum_flags |=
817 					    M_CSUM_TCP_UDP_BAD;
818 			}
819 
820 			++npkt;
821 
822 			if_percpuq_enqueue(ifp->if_percpuq, m);
823 		}
824 
825 		if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
826 			error = sunxi_emac_setup_rxbuf(sc, index, m0);
827 			if (error != 0) {
828 				/* XXX hole in RX ring */
829 			}
830 		} else
831 			if_statinc(ifp, if_ierrors);
832 
833 		sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
834 		    index, index + 1,
835 		    RX_DESC_COUNT, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
836 	}
837 
838 	sc->rx.cur = index;
839 
840 	return npkt;
841 }
842 
843 static void
844 sunxi_emac_txintr(struct sunxi_emac_softc *sc)
845 {
846 	struct ifnet *ifp = &sc->ec.ec_if;
847 	struct sunxi_emac_bufmap *bmap;
848 	struct sunxi_emac_desc *desc;
849 	uint32_t status;
850 	int i;
851 
852 	EMAC_ASSERT_LOCKED(sc);
853 
854 	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
855 		KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
856 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
857 		    i, i + 1, TX_DESC_COUNT,
858 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
859 		desc = &sc->tx.desc_ring[i];
860 		status = le32toh(desc->status);
861 		if ((status & TX_DESC_CTL) != 0)
862 			break;
863 		bmap = &sc->tx.buf_map[i];
864 		if (bmap->mbuf != NULL) {
865 			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
866 			    0, bmap->map->dm_mapsize,
867 			    BUS_DMASYNC_POSTWRITE);
868 			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
869 			m_freem(bmap->mbuf);
870 			bmap->mbuf = NULL;
871 		}
872 
873 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
874 		sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
875 		    i, i + 1, TX_DESC_COUNT,
876 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
877 
878 		ifp->if_flags &= ~IFF_OACTIVE;
879 		if_statinc(ifp, if_opackets);
880 	}
881 
882 	sc->tx.next = i;
883 }
884 
885 static int
886 sunxi_emac_intr(void *arg)
887 {
888 	struct sunxi_emac_softc *sc = arg;
889 	struct ifnet *ifp = &sc->ec.ec_if;
890 	uint32_t val;
891 
892 	EMAC_LOCK(sc);
893 
894 	val = RD4(sc, EMAC_INT_STA);
895 	WR4(sc, EMAC_INT_STA, val);
896 
897 	if (val & RX_INT)
898 		sunxi_emac_rxintr(sc);
899 
900 	if (val & (TX_INT | TX_BUF_UA_INT)) {
901 		sunxi_emac_txintr(sc);
902 		if_schedule_deferred_start(ifp);
903 	}
904 
905 	EMAC_UNLOCK(sc);
906 
907 	return 1;
908 }
909 
910 static int
911 sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
912 {
913 	struct sunxi_emac_softc *sc = ifp->if_softc;
914 	int error, s;
915 
916 #ifndef EMAC_MPSAFE
917 	s = splnet();
918 #endif
919 
920 	switch (cmd) {
921 	default:
922 #ifdef EMAC_MPSAFE
923 		s = splnet();
924 #endif
925 		error = ether_ioctl(ifp, cmd, data);
926 #ifdef EMAC_MPSAFE
927 		splx(s);
928 #endif
929 		if (error != ENETRESET)
930 			break;
931 
932 		error = 0;
933 
934 		if (cmd == SIOCSIFCAP)
935 			error = (*ifp->if_init)(ifp);
936 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
937 			;
938 		else if ((ifp->if_flags & IFF_RUNNING) != 0) {
939 			EMAC_LOCK(sc);
940 			sunxi_emac_setup_rxfilter(sc);
941 			EMAC_UNLOCK(sc);
942 		}
943 		break;
944 	}
945 
946 #ifndef EMAC_MPSAFE
947 	splx(s);
948 #endif
949 
950 	return error;
951 }
952 
953 static bool
954 sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
955 {
956 	static const struct device_compatible_entry mdio_internal_compat[] = {
957 		{ .compat = "allwinner,sun8i-h3-mdio-internal" },
958 		DEVICE_COMPAT_EOL
959 	};
960 	int phy;
961 
962 	/* Non-standard property, for compatible with old dts files */
963 	if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
964 		return true;
965 
966 	phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
967 	if (phy == -1)
968 		return false;
969 
970 	/* For internal PHY, check compatible string of parent node */
971 	return of_compatible_match(OF_parent(phy), mdio_internal_compat);
972 }
973 
974 static int
975 sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
976 {
977 	uint32_t reg, tx_delay, rx_delay;
978 	const char *phy_type;
979 
980 	phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
981 	if (phy_type == NULL)
982 		return 0;
983 
984 	aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
985 
986 	syscon_lock(sc->syscon);
987 	reg = syscon_read_4(sc->syscon, EMAC_CLK_REG);
988 
989 	reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
990 	if (strcmp(phy_type, "rgmii") == 0)
991 		reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
992 	else if (strcmp(phy_type, "rmii") == 0)
993 		reg |= EMAC_CLK_RMII_EN;
994 	else
995 		reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
996 
997 	if (of_getprop_uint32(sc->phandle, "allwinner,tx-delay-ps",
998 	    &tx_delay) == 0) {
999 		reg &= ~EMAC_CLK_ETXDC;
1000 		reg |= ((tx_delay / 100) << EMAC_CLK_ETXDC_SHIFT);
1001 	} else if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
1002 		reg &= ~EMAC_CLK_ETXDC;
1003 		reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
1004 	}
1005 	if (of_getprop_uint32(sc->phandle, "allwinner,rx-delay-ps",
1006 	    &rx_delay) == 0) {
1007 		reg &= ~EMAC_CLK_ERXDC;
1008 		reg |= ((rx_delay / 100) << EMAC_CLK_ERXDC_SHIFT);
1009 	} else if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
1010 		reg &= ~EMAC_CLK_ERXDC;
1011 		reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
1012 	}
1013 
1014 	if (sc->type == EMAC_H3 || sc->type == EMAC_H6) {
1015 		if (sunxi_emac_has_internal_phy(sc)) {
1016 			reg |= EMAC_CLK_EPHY_SELECT;
1017 			reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
1018 			if (of_hasprop(sc->phandle,
1019 			    "allwinner,leds-active-low"))
1020 				reg |= EMAC_CLK_EPHY_LED_POL;
1021 			else
1022 				reg &= ~EMAC_CLK_EPHY_LED_POL;
1023 
1024 			/* Set internal PHY addr to 1 */
1025 			reg &= ~EMAC_CLK_EPHY_ADDR;
1026 			reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
1027 		} else {
1028 			reg &= ~EMAC_CLK_EPHY_SELECT;
1029 		}
1030 	}
1031 
1032 	aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
1033 
1034 	syscon_write_4(sc->syscon, EMAC_CLK_REG, reg);
1035 	syscon_unlock(sc->syscon);
1036 
1037 	return 0;
1038 }
1039 
1040 static int
1041 sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
1042 {
1043 	u_int freq;
1044 	int error, div;
1045 
1046 	/* Configure PHY for MII or RGMII mode */
1047 	if (sunxi_emac_setup_phy(sc) != 0)
1048 		return ENXIO;
1049 
1050 	/* Enable clocks */
1051 	error = clk_enable(sc->clk_ahb);
1052 	if (error != 0) {
1053 		aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
1054 		return error;
1055 	}
1056 
1057 	if (sc->clk_ephy != NULL) {
1058 		error = clk_enable(sc->clk_ephy);
1059 		if (error != 0) {
1060 			aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
1061 			return error;
1062 		}
1063 	}
1064 
1065 	/* De-assert reset */
1066 	error = fdtbus_reset_deassert(sc->rst_ahb);
1067 	if (error != 0) {
1068 		aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
1069 		return error;
1070 	}
1071 	if (sc->rst_ephy != NULL) {
1072 		error = fdtbus_reset_deassert(sc->rst_ephy);
1073 		if (error != 0) {
1074 			aprint_error_dev(sc->dev,
1075 			    "cannot de-assert ephy reset\n");
1076 			return error;
1077 		}
1078 	}
1079 
1080 	/* Enable PHY regulator if applicable */
1081 	if (sc->reg_phy != NULL) {
1082 		error = fdtbus_regulator_enable(sc->reg_phy);
1083 		if (error != 0) {
1084 			aprint_error_dev(sc->dev,
1085 			    "cannot enable PHY regulator\n");
1086 			return error;
1087 		}
1088 	}
1089 
1090 	/* Determine MDC clock divide ratio based on AHB clock */
1091 	freq = clk_get_rate(sc->clk_ahb);
1092 	if (freq == 0) {
1093 		aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1094 		return ENXIO;
1095 	}
1096 	div = freq / MDIO_FREQ;
1097 	if (div <= 16)
1098 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1099 	else if (div <= 32)
1100 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1101 	else if (div <= 64)
1102 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1103 	else if (div <= 128)
1104 		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1105 	else {
1106 		aprint_error_dev(sc->dev,
1107 		    "cannot determine MDC clock divide ratio\n");
1108 		return ENXIO;
1109 	}
1110 
1111 	aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1112 	    freq, sc->mdc_div_ratio_m);
1113 
1114 	return 0;
1115 }
1116 
1117 static void
1118 sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1119 {
1120 	uint32_t maclo, machi;
1121 #if notyet
1122 	u_char rootkey[16];
1123 #endif
1124 
1125 	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1126 	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1127 
1128 	if (maclo == 0xffffffff && machi == 0xffff) {
1129 #if notyet
1130 		/* MAC address in hardware is invalid, create one */
1131 		if (aw_sid_get_rootkey(rootkey) == 0 &&
1132 		    (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1133 		     rootkey[15]) != 0) {
1134 			/* MAC address is derived from the root key in SID */
1135 			maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1136 				(rootkey[3] << 8) | 0x02;
1137 			machi = (rootkey[15] << 8) | rootkey[14];
1138 		} else {
1139 #endif
1140 			/* Create one */
1141 			maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1142 			machi = cprng_strong32() & 0xffff;
1143 #if notyet
1144 		}
1145 #endif
1146 	}
1147 
1148 	eaddr[0] = maclo & 0xff;
1149 	eaddr[1] = (maclo >> 8) & 0xff;
1150 	eaddr[2] = (maclo >> 16) & 0xff;
1151 	eaddr[3] = (maclo >> 24) & 0xff;
1152 	eaddr[4] = machi & 0xff;
1153 	eaddr[5] = (machi >> 8) & 0xff;
1154 }
1155 
1156 static int
1157 sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1158 {
1159 	uint32_t delay_prop[3];
1160 	int pin_value;
1161 
1162 	if (sc->pin_reset == NULL)
1163 		return 0;
1164 
1165 	if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1166 	    sizeof(delay_prop)) <= 0)
1167 		return ENXIO;
1168 
1169 	pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1170 
1171 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1172 	delay(htole32(delay_prop[0]));
1173 	fdtbus_gpio_write(sc->pin_reset, !pin_value);
1174 	delay(htole32(delay_prop[1]));
1175 	fdtbus_gpio_write(sc->pin_reset, pin_value);
1176 	delay(htole32(delay_prop[2]));
1177 
1178 	return 0;
1179 }
1180 
1181 static int
1182 sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1183 {
1184 	struct mbuf *m;
1185 	int error, nsegs, i;
1186 
1187 	/* Setup TX ring */
1188 	sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1189 	error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1190 	    BUS_DMA_WAITOK, &sc->tx.desc_map);
1191 	if (error)
1192 		return error;
1193 	error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1194 	    &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1195 	if (error)
1196 		return error;
1197 	error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1198 	    TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1199 	    BUS_DMA_WAITOK);
1200 	if (error)
1201 		return error;
1202 	error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1203 	    TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1204 	if (error)
1205 		return error;
1206 	sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1207 
1208 	memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1209 	bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1210 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1211 
1212 	for (i = 0; i < TX_DESC_COUNT; i++)
1213 		sc->tx.desc_ring[i].next =
1214 		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1215 
1216 	sc->tx.queued = TX_DESC_COUNT;
1217 	for (i = 0; i < TX_DESC_COUNT; i++) {
1218 		error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1219 		    TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1220 		    &sc->tx.buf_map[i].map);
1221 		if (error != 0) {
1222 			device_printf(sc->dev, "cannot create TX buffer map\n");
1223 			return error;
1224 		}
1225 		sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1226 	}
1227 
1228 	/* Setup RX ring */
1229 	sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1230 	error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1231 	    BUS_DMA_WAITOK, &sc->rx.desc_map);
1232 	if (error)
1233 		return error;
1234 	error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1235 	    &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1236 	if (error)
1237 		return error;
1238 	error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1239 	    RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1240 	    BUS_DMA_WAITOK);
1241 	if (error)
1242 		return error;
1243 	error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1244 	    RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1245 	if (error)
1246 		return error;
1247 	sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1248 
1249 	memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1250 
1251 	for (i = 0; i < RX_DESC_COUNT; i++) {
1252 		error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1253 		    RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1254 		    &sc->rx.buf_map[i].map);
1255 		if (error != 0) {
1256 			device_printf(sc->dev, "cannot create RX buffer map\n");
1257 			return error;
1258 		}
1259 		if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1260 			device_printf(sc->dev, "cannot allocate RX mbuf\n");
1261 			return ENOMEM;
1262 		}
1263 		error = sunxi_emac_setup_rxbuf(sc, i, m);
1264 		if (error != 0) {
1265 			device_printf(sc->dev, "cannot create RX buffer\n");
1266 			return error;
1267 		}
1268 	}
1269 	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1270 	    0, sc->rx.desc_map->dm_mapsize,
1271 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1272 
1273 	return 0;
1274 }
1275 
1276 static int
1277 sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1278 {
1279 	const int phandle = sc->phandle;
1280 	bus_addr_t addr, size;
1281 
1282 	/* Map EMAC registers */
1283 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
1284 		aprint_error_dev(sc->dev, "unable to get registers\n");
1285 		return ENXIO;
1286 	}
1287 	if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh) != 0) {
1288 		aprint_error_dev(sc->dev, "unable to map registers\n");
1289 		return ENXIO;
1290 	}
1291 
1292 	/* Get SYSCON registers */
1293 	sc->syscon = fdtbus_syscon_acquire(phandle, "syscon");
1294 	if (sc->syscon == NULL) {
1295 		aprint_error_dev(sc->dev, "unable to acquire syscon\n");
1296 		return ENXIO;
1297 	}
1298 
1299 	/* The "ahb"/"stmmaceth" clock and reset is required */
1300 	if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1301 	    (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL) {
1302 		aprint_error_dev(sc->dev, "unable to get clock\n");
1303 		return ENXIO;
1304 	}
1305 	if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1306 	    (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL) {
1307 		aprint_error_dev(sc->dev, "unable to get reset\n");
1308 		return ENXIO;
1309 	}
1310 
1311 	/* Internal PHY clock and reset are optional properties. */
1312 	sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
1313 	if (sc->clk_ephy == NULL) {
1314 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1315 		if (phy_phandle != -1)
1316 			sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
1317 	}
1318 	sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
1319 	if (sc->rst_ephy == NULL) {
1320 		int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
1321 		if (phy_phandle != -1)
1322 			sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
1323 	}
1324 
1325 	/* Regulator is optional */
1326 	sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1327 
1328 	/* Reset GPIO is optional */
1329 	sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1330 	    "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1331 
1332 	return 0;
1333 }
1334 
1335 static int
1336 sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1337 {
1338 	bus_addr_t addr;
1339 	int phy_phandle;
1340 
1341 	phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
1342 	if (phy_phandle == -1)
1343 		phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1344 	if (phy_phandle == -1)
1345 		return MII_PHY_ANY;
1346 
1347 	if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1348 		return MII_PHY_ANY;
1349 
1350 	return (int)addr;
1351 }
1352 
1353 static int
1354 sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1355 {
1356 	struct fdt_attach_args * const faa = aux;
1357 
1358 	return of_compatible_match(faa->faa_phandle, compat_data);
1359 }
1360 
1361 static void
1362 sunxi_emac_attach(device_t parent, device_t self, void *aux)
1363 {
1364 	struct fdt_attach_args * const faa = aux;
1365 	struct sunxi_emac_softc * const sc = device_private(self);
1366 	const int phandle = faa->faa_phandle;
1367 	struct mii_data *mii = &sc->mii;
1368 	struct ifnet *ifp = &sc->ec.ec_if;
1369 	uint8_t eaddr[ETHER_ADDR_LEN];
1370 	char intrstr[128];
1371 
1372 	sc->dev = self;
1373 	sc->phandle = phandle;
1374 	sc->bst = faa->faa_bst;
1375 	sc->dmat = faa->faa_dmat;
1376 	sc->type = of_compatible_lookup(phandle, compat_data)->value;
1377 	sc->phy_id = sunxi_emac_get_phyid(sc);
1378 
1379 	aprint_naive("\n");
1380 	aprint_normal(": EMAC\n");
1381 
1382 	if (sunxi_emac_get_resources(sc) != 0) {
1383 		aprint_error_dev(self,
1384 		    "cannot allocate resources for device\n");
1385 		return;
1386 	}
1387 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1388 		aprint_error_dev(self, "cannot decode interrupt\n");
1389 		return;
1390 	}
1391 
1392 	mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1393 	callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1394 	callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1395 
1396 	/* Setup clocks and regulators */
1397 	if (sunxi_emac_setup_resources(sc) != 0)
1398 		return;
1399 
1400 	/* Read MAC address before resetting the chip */
1401 	sunxi_emac_get_eaddr(sc, eaddr);
1402 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
1403 
1404 	/* Reset PHY if necessary */
1405 	if (sunxi_emac_phy_reset(sc) != 0) {
1406 		aprint_error_dev(self, "failed to reset PHY\n");
1407 		return;
1408 	}
1409 
1410 	/* Setup DMA descriptors */
1411 	if (sunxi_emac_setup_dma(sc) != 0) {
1412 		aprint_error_dev(self, "failed to setup DMA descriptors\n");
1413 		return;
1414 	}
1415 
1416 	/* Install interrupt handler */
1417 	sc->ih = fdtbus_intr_establish_xname(phandle, 0, IPL_NET,
1418 	    FDT_INTR_FLAGS, sunxi_emac_intr, sc, device_xname(self));
1419 	if (sc->ih == NULL) {
1420 		aprint_error_dev(self, "failed to establish interrupt on %s\n",
1421 		    intrstr);
1422 		return;
1423 	}
1424 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1425 
1426 	/* Setup ethernet interface */
1427 	ifp->if_softc = sc;
1428 	snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1429 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1430 #ifdef EMAC_MPSAFE
1431 	ifp->if_extflags = IFEF_MPSAFE;
1432 #endif
1433 	ifp->if_start = sunxi_emac_start;
1434 	ifp->if_ioctl = sunxi_emac_ioctl;
1435 	ifp->if_init = sunxi_emac_init;
1436 	ifp->if_stop = sunxi_emac_stop;
1437 	ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1438 			       IFCAP_CSUM_IPv4_Tx |
1439 			       IFCAP_CSUM_TCPv4_Rx |
1440 			       IFCAP_CSUM_TCPv4_Tx |
1441 			       IFCAP_CSUM_UDPv4_Rx |
1442 			       IFCAP_CSUM_UDPv4_Tx;
1443 	ifp->if_capenable = ifp->if_capabilities;
1444 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1445 	IFQ_SET_READY(&ifp->if_snd);
1446 
1447 	/* 802.1Q VLAN-sized frames are supported */
1448 	sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1449 
1450 	/* Attach MII driver */
1451 	sc->ec.ec_mii = mii;
1452 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1453 	mii->mii_ifp = ifp;
1454 	mii->mii_readreg = sunxi_emac_mii_readreg;
1455 	mii->mii_writereg = sunxi_emac_mii_writereg;
1456 	mii->mii_statchg = sunxi_emac_mii_statchg;
1457 	mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1458 	    MIIF_DOPAUSE);
1459 
1460 	if (LIST_EMPTY(&mii->mii_phys)) {
1461 		aprint_error_dev(self, "no PHY found!\n");
1462 		return;
1463 	}
1464 	ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1465 
1466 	/* Attach interface */
1467 	if_attach(ifp);
1468 	if_deferred_start_init(ifp, NULL);
1469 
1470 	/* Attach ethernet interface */
1471 	ether_ifattach(ifp, eaddr);
1472 }
1473 
1474 CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1475     sunxi_emac_match, sunxi_emac_attach, NULL, NULL);
1476