xref: /netbsd-src/sys/arch/arm/sunxi/sun6i_spi.c (revision 4d342c046e3288fb5a1edcd33cfec48c41c80664)
1 /*	$NetBSD: sun6i_spi.c,v 1.5 2019/08/13 17:03:10 tnn Exp $	*/
2 
3 /*
4  * Copyright (c) 2019 Tobias Nygren
5  * Copyright (c) 2018 Jonathan A. Kollasch
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: sun6i_spi.c,v 1.5 2019/08/13 17:03:10 tnn Exp $");
32 
33 #include <sys/param.h>
34 #include <sys/device.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/intr.h>
38 #include <sys/kernel.h>
39 
40 #include <sys/bitops.h>
41 #include <dev/spi/spivar.h>
42 
43 #include <arm/sunxi/sun6i_spireg.h>
44 
45 #include <dev/fdt/fdtvar.h>
46 
47 #include <arm/fdt/arm_fdtvar.h>
48 
49 #define SPI_IER_DEFAULT (SPI_IER_TC_INT_EN | SPI_IER_TF_UDR_INT_EN | \
50 	SPI_IER_TF_OVF_INT_EN | SPI_IER_RF_UDR_INT_EN | SPI_IER_RF_OVF_INT_EN)
51 
52 struct sun6ispi_softc {
53 	device_t		sc_dev;
54 	bus_space_tag_t		sc_iot;
55 	bus_space_handle_t	sc_ioh;
56 	void			*sc_intrh;
57 	struct spi_controller	sc_spi;
58 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
59 	struct spi_transfer	*sc_transfer;
60 	struct spi_chunk	*sc_wchunk;
61 	struct spi_chunk	*sc_rchunk;
62 	uint32_t		sc_TCR;
63 	u_int			sc_modclkrate;
64 	volatile bool		sc_running;
65 };
66 
67 #define SPIREG_READ(sc, reg) \
68     bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
69 #define SPIREG_WRITE(sc, reg, val) \
70     bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
71 
72 static int sun6ispi_match(device_t, cfdata_t, void *);
73 static void sun6ispi_attach(device_t, device_t, void *);
74 
75 static int sun6ispi_configure(void *, int, int, int);
76 static int sun6ispi_transfer(void *, struct spi_transfer *);
77 
78 static void sun6ispi_start(struct sun6ispi_softc * const);
79 static int sun6ispi_intr(void *);
80 
81 static void sun6ispi_send(struct sun6ispi_softc * const);
82 static void sun6ispi_recv(struct sun6ispi_softc * const);
83 
84 CFATTACH_DECL_NEW(sun6i_spi, sizeof(struct sun6ispi_softc),
85     sun6ispi_match, sun6ispi_attach, NULL, NULL);
86 
87 static int
88 sun6ispi_match(device_t parent, cfdata_t cf, void *aux)
89 {
90 	const char * const compatible[] = {
91 		"allwinner,sun8i-h3-spi",
92 		NULL
93 	};
94 	struct fdt_attach_args * const faa = aux;
95 
96 	return of_match_compatible(faa->faa_phandle, compatible);
97 }
98 
99 static void
100 sun6ispi_attach(device_t parent, device_t self, void *aux)
101 {
102 	struct sun6ispi_softc * const sc = device_private(self);
103 	struct fdt_attach_args * const faa = aux;
104 	struct spibus_attach_args sba;
105 	const int phandle = faa->faa_phandle;
106 	bus_addr_t addr;
107 	bus_size_t size;
108 	struct fdtbus_reset *rst;
109 	struct clk *clk, *modclk;
110 	uint32_t gcr, isr;
111 	char intrstr[128];
112 
113 	sc->sc_dev = self;
114 	sc->sc_iot = faa->faa_bst;
115 	SIMPLEQ_INIT(&sc->sc_q);
116 
117 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
118 	    || clk_enable(clk) != 0) {
119 		aprint_error(": couldn't enable clock\n");
120 		return;
121 	}
122 
123 	/* 200MHz max on H3,H5 */
124 	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
125 	    || clk_set_rate(modclk, 200000000) != 0
126 	    || clk_enable(modclk) != 0) {
127 		aprint_error(": couldn't enable module clock\n");
128 		return;
129 	}
130 	sc->sc_modclkrate = clk_get_rate(modclk);
131 
132 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
133 	    || bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
134 		aprint_error(": couldn't map registers\n");
135 		return;
136 	}
137 
138 	if ((rst = fdtbus_reset_get_index(phandle, 0)) != NULL)
139 		if (fdtbus_reset_deassert(rst) != 0) {
140 			aprint_error(": couldn't de-assert reset\n");
141 			return;
142 		}
143 
144 	isr = SPIREG_READ(sc, SPI_INT_STA);
145 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
146 
147 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
148 		aprint_error(": failed to decode interrupt\n");
149 		return;
150 	}
151 
152 	sc->sc_intrh = fdtbus_intr_establish(phandle, 0, IPL_VM, 0,
153 	    sun6ispi_intr, sc);
154 	if (sc->sc_intrh == NULL) {
155 		aprint_error(": unable to establish interrupt\n");
156 		return;
157 	}
158 
159 	aprint_naive("\n");
160 	aprint_normal(": SPI\n");
161 
162 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
163 
164 	gcr = SPI_GCR_SRST;
165 	SPIREG_WRITE(sc, SPI_GCR, gcr);
166 	for (u_int i = 0; ; i++) {
167 		if (i >= 1000000) {
168 			aprint_error_dev(self, "reset timeout\n");
169 			return;
170 		}
171 		gcr = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SPI_GCR);
172 		if ((gcr & SPI_GCR_SRST) == 0)
173 			break;
174 		else
175 			DELAY(1);
176 	}
177 	gcr = SPI_GCR_TP_EN | SPI_GCR_MODE | SPI_GCR_EN;
178 	SPIREG_WRITE(sc, SPI_GCR, gcr);
179 
180 	SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
181 
182 	sc->sc_spi.sct_cookie = sc;
183 	sc->sc_spi.sct_configure = sun6ispi_configure;
184 	sc->sc_spi.sct_transfer = sun6ispi_transfer;
185 	sc->sc_spi.sct_nslaves = 4;
186 
187 	memset(&sba, 0, sizeof(sba));
188 	sba.sba_controller = &sc->sc_spi;
189 
190 	(void) config_found_ia(self, "spibus", &sba, spibus_print);
191 }
192 
193 static int
194 sun6ispi_configure(void *cookie, int slave, int mode, int speed)
195 {
196 	struct sun6ispi_softc * const sc = cookie;
197 	uint32_t tcr, cctl;
198 	uint32_t minfreq, maxfreq;
199 
200 	minfreq = sc->sc_modclkrate >> 16;
201 	maxfreq = sc->sc_modclkrate >> 1;
202 
203 	if (speed <= 0 || speed < minfreq || speed > maxfreq)
204 		return EINVAL;
205 
206 	if (slave >= sc->sc_spi.sct_nslaves)
207 		return EINVAL;
208 
209 	tcr = SPI_TCR_SS_LEVEL | SPI_TCR_SPOL;
210 
211 	switch (mode) {
212 	case SPI_MODE_0:
213 		tcr |= 0;
214 		break;
215 	case SPI_MODE_1:
216 		tcr |= SPI_TCR_CPHA;
217 		break;
218 	case SPI_MODE_2:
219 		tcr |= SPI_TCR_CPOL;
220 		break;
221 	case SPI_MODE_3:
222 		tcr |= SPI_TCR_CPHA|SPI_TCR_CPOL;
223 		break;
224 	default:
225 		return EINVAL;
226 	}
227 
228 	sc->sc_TCR = tcr;
229 
230 	if (speed < sc->sc_modclkrate / 512) {
231 		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
232 			if ((sc->sc_modclkrate / (1<<cctl)) <= speed)
233 				goto cdr1_found;
234 		}
235 		return EINVAL;
236 cdr1_found:
237 		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
238 	} else {
239 		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
240 		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
241 	}
242 
243 	device_printf(sc->sc_dev, "tcr 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
244 	    tcr, cctl, sc->sc_modclkrate,
245 	    (cctl & SPI_CCTL_DRS)
246 	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
247 	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
248 	);
249 
250 	SPIREG_WRITE(sc, SPI_CCTL, cctl);
251 
252 	return 0;
253 }
254 
255 static int
256 sun6ispi_transfer(void *cookie, struct spi_transfer *st)
257 {
258 	struct sun6ispi_softc * const sc = cookie;
259 	int s;
260 
261 	s = splbio();
262 	spi_transq_enqueue(&sc->sc_q, st);
263 	if (sc->sc_running == false) {
264 		sun6ispi_start(sc);
265 	}
266 	splx(s);
267 	return 0;
268 }
269 
270 static void
271 sun6ispi_start(struct sun6ispi_softc * const sc)
272 {
273 	struct spi_transfer *st;
274 	uint32_t isr, tcr;
275 	struct spi_chunk *chunk;
276 	size_t burstcount;
277 
278 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
279 
280 		spi_transq_dequeue(&sc->sc_q);
281 
282 		KASSERT(sc->sc_transfer == NULL);
283 		sc->sc_transfer = st;
284 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
285 		sc->sc_running = true;
286 
287 		isr = SPIREG_READ(sc, SPI_INT_STA);
288 		SPIREG_WRITE(sc, SPI_INT_STA, isr);
289 
290 		burstcount = 0;
291 		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
292 			burstcount += chunk->chunk_count;
293 		}
294 		KASSERT(burstcount <= SPI_BC_MBC);
295 		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_MBC));
296 		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_MWTC));
297 		SPIREG_WRITE(sc, SPI_BCC, __SHIFTIN(burstcount, SPI_BCC_STC));
298 
299 		KASSERT(st->st_slave <= 3);
300 		tcr = sc->sc_TCR | __SHIFTIN(st->st_slave, SPI_TCR_SS_SEL);
301 
302 		sun6ispi_send(sc);
303 
304 		const uint32_t ier = SPI_IER_DEFAULT | SPI_IER_RF_RDY_INT_EN | SPI_IER_TX_ERQ_INT_EN;
305 		SPIREG_WRITE(sc, SPI_IER, ier);
306 
307 		SPIREG_WRITE(sc, SPI_TCR, tcr|SPI_TCR_XCH);
308 
309 		if (!cold)
310 			return;
311 
312 		for (;;) {
313 			sun6ispi_intr(sc);
314 			if (ISSET(st->st_flags, SPI_F_DONE))
315 				break;
316 		}
317 	}
318 
319 	sc->sc_running = false;
320 }
321 
322 static void
323 sun6ispi_send(struct sun6ispi_softc * const sc)
324 {
325 	uint8_t fd;
326 	uint32_t fsr;
327 	struct spi_chunk *chunk;
328 
329 	while ((chunk = sc->sc_wchunk) != NULL) {
330 		while (chunk->chunk_wresid) {
331 			fsr = SPIREG_READ(sc, SPI_FSR);
332 			if (__SHIFTOUT(fsr, SPI_FSR_TF_CNT) >= 64) {
333 				return;
334 			}
335 			if (chunk->chunk_wptr) {
336 				fd = *chunk->chunk_wptr++;
337 			} else {
338 				fd = '\0';
339 			}
340 			bus_space_write_1(sc->sc_iot, sc->sc_ioh, SPI_TXD, fd);
341 			chunk->chunk_wresid--;
342 		}
343 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
344 	}
345 }
346 
347 static void
348 sun6ispi_recv(struct sun6ispi_softc * const sc)
349 {
350 	uint8_t fd;
351 	uint32_t fsr;
352 	struct spi_chunk *chunk;
353 
354 	while ((chunk = sc->sc_rchunk) != NULL) {
355 		while (chunk->chunk_rresid) {
356 			fsr = SPIREG_READ(sc, SPI_FSR);
357 			if (__SHIFTOUT(fsr, SPI_FSR_RF_CNT) == 0) {
358 				return;
359 			}
360 			fd = bus_space_read_1(sc->sc_iot, sc->sc_ioh, SPI_RXD);
361 			if (chunk->chunk_rptr) {
362 				*chunk->chunk_rptr++ = fd;
363 			}
364 			chunk->chunk_rresid--;
365 		}
366 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
367 	}
368 }
369 
370 static int
371 sun6ispi_intr(void *cookie)
372 {
373 	struct sun6ispi_softc * const sc = cookie;
374 	struct spi_transfer *st;
375 	uint32_t isr;
376 
377 	isr = SPIREG_READ(sc, SPI_INT_STA);
378 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
379 
380 	if (ISSET(isr, SPI_ISR_RX_RDY)) {
381 		sun6ispi_recv(sc);
382 		sun6ispi_send(sc);
383 	}
384 
385 	if (ISSET(isr, SPI_ISR_TC)) {
386 		SPIREG_WRITE(sc, SPI_IER, SPI_IER_DEFAULT);
387 
388 		sc->sc_rchunk = sc->sc_wchunk = NULL;
389 		st = sc->sc_transfer;
390 		sc->sc_transfer = NULL;
391 		KASSERT(st != NULL);
392 		spi_done(st, 0);
393 		sc->sc_running = false;
394 	}
395 
396 	return isr;
397 }
398