xref: /netbsd-src/sys/arch/arm/sunxi/sun4i_spi.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: sun4i_spi.c,v 1.5 2019/09/11 15:03:52 bouyer Exp $	*/
2 
3 /*
4  * Copyright (c) 2019 Tobias Nygren
5  * Copyright (c) 2018 Jonathan A. Kollasch
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: sun4i_spi.c,v 1.5 2019/09/11 15:03:52 bouyer Exp $");
32 
33 #include <sys/param.h>
34 #include <sys/device.h>
35 #include <sys/systm.h>
36 #include <sys/bus.h>
37 #include <sys/intr.h>
38 #include <sys/kernel.h>
39 #include <sys/bitops.h>
40 #include <dev/spi/spivar.h>
41 #include <arm/sunxi/sun4i_spireg.h>
42 #include <dev/fdt/fdtvar.h>
43 
44 static const char * const compatible[] = {
45 	"allwinner,sun4i-a10-spi",
46 	NULL
47 };
48 
49 struct sun4ispi_softc {
50 	device_t		sc_dev;
51 	bus_space_tag_t		sc_bst;
52 	bus_space_handle_t	sc_bsh;
53 	void			*sc_intrh;
54 	struct spi_controller	sc_spi;
55 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
56 	struct spi_transfer	*sc_transfer;
57 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
58 	uint32_t		sc_CTL;
59 	u_int			sc_modclkrate;
60 	volatile bool		sc_running;
61 };
62 
63 #define SPIREG_READ(sc, reg) \
64     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
65 #define SPIREG_WRITE(sc, reg, val) \
66     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
67 
68 static struct spi_controller * sun4i_spi_get_controller(device_t);
69 static int sun4ispi_match(device_t, cfdata_t, void *);
70 static void sun4ispi_attach(device_t, device_t, void *);
71 
72 static int sun4ispi_configure(void *, int, int, int);
73 static int sun4ispi_transfer(void *, struct spi_transfer *);
74 
75 static void sun4ispi_txfifo_fill(struct sun4ispi_softc * const, size_t);
76 static void sun4ispi_rxfifo_drain(struct sun4ispi_softc * const, size_t);
77 static void sun4ispi_rxtx(struct sun4ispi_softc * const);
78 static void sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const);
79 static void sun4ispi_start(struct sun4ispi_softc * const);
80 static int sun4ispi_intr(void *);
81 
82 CFATTACH_DECL_NEW(sun4i_spi, sizeof(struct sun4ispi_softc),
83     sun4ispi_match, sun4ispi_attach, NULL, NULL);
84 
85 static const struct fdtbus_spi_controller_func sun4i_spi_funcs = {
86 	.get_controller = sun4i_spi_get_controller
87 };
88 
89 static struct spi_controller *
90 sun4i_spi_get_controller(device_t dev)
91 {
92 	struct sun4ispi_softc * const sc = device_private(dev);
93 
94 	return &sc->sc_spi;
95 }
96 
97 static int
98 sun4ispi_match(device_t parent, cfdata_t cf, void *aux)
99 {
100 	struct fdt_attach_args * const faa = aux;
101 
102 	return of_match_compatible(faa->faa_phandle, compatible);
103 }
104 
105 static void
106 sun4ispi_attach(device_t parent, device_t self, void *aux)
107 {
108 	struct sun4ispi_softc * const sc = device_private(self);
109 	struct fdt_attach_args * const faa = aux;
110 	const int phandle = faa->faa_phandle;
111 	bus_addr_t addr;
112 	bus_size_t size;
113 	struct clk *clk, *modclk;
114 	char intrstr[128];
115 
116 	sc->sc_dev = self;
117 	sc->sc_bst = faa->faa_bst;
118 	SIMPLEQ_INIT(&sc->sc_q);
119 
120 	if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL
121 	    || clk_enable(clk) != 0) {
122 		aprint_error(": couldn't enable clock\n");
123 		return;
124 	}
125 
126 	if ((modclk = fdtbus_clock_get(phandle, "mod")) == NULL
127 	    || clk_set_rate(modclk, clk_get_rate(clk)) != 0
128 	    || clk_enable(modclk) != 0) {
129 		aprint_error(": couldn't enable module clock\n");
130 		return;
131 	}
132 	sc->sc_modclkrate = clk_get_rate(modclk);
133 
134 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
135 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
136 		aprint_error(": couldn't map registers\n");
137 		return;
138 	}
139 
140 	SPIREG_WRITE(sc, SPI_CTL, SPI_CTL_SSPOL | SPI_CTL_RF_RST
141 	    | SPI_CTL_TF_RST | SPI_CTL_MODE);
142 	SPIREG_WRITE(sc, SPI_DMACTL, 0);
143 	SPIREG_WRITE(sc, SPI_WAIT, 0);
144 	SPIREG_WRITE(sc, SPI_INTCTL, 0);
145 	SPIREG_WRITE(sc, SPI_INT_STA, ~0);
146 
147 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
148 		aprint_error(": failed to decode interrupt\n");
149 		return;
150 	}
151 
152 	sc->sc_intrh = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, sun4ispi_intr, sc);
153 	if (sc->sc_intrh == NULL) {
154 		aprint_error(": unable to establish interrupt\n");
155 		return;
156 	}
157 
158 	aprint_naive("\n");
159 	aprint_normal(": SPI\n");
160 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
161 
162 	sc->sc_spi.sct_cookie = sc;
163 	sc->sc_spi.sct_configure = sun4ispi_configure;
164 	sc->sc_spi.sct_transfer = sun4ispi_transfer;
165 	(void) of_getprop_uint32(phandle, "num-cs", &sc->sc_spi.sct_nslaves);
166 	fdtbus_register_spi_controller(self, phandle, &sun4i_spi_funcs);
167 	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
168 }
169 
170 static int
171 sun4ispi_configure(void *cookie, int slave, int mode, int speed)
172 {
173 	struct sun4ispi_softc * const sc = cookie;
174 	uint32_t ctl, cctl;
175 	uint32_t minfreq, maxfreq;
176 
177 	minfreq = sc->sc_modclkrate >> 16;
178 	maxfreq = sc->sc_modclkrate >> 1;
179 
180 	if (speed <= 0 || speed < minfreq || speed > maxfreq)
181 		return EINVAL;
182 
183 	if (slave >= sc->sc_spi.sct_nslaves)
184 		return EINVAL;
185 
186 	ctl = SPI_CTL_SDM | SPI_CTL_TP_EN | SPI_CTL_SSPOL | SPI_CTL_MODE | SPI_CTL_EN;
187 
188 	switch (mode) {
189 	case SPI_MODE_0:
190 		ctl |= 0;
191 		break;
192 	case SPI_MODE_1:
193 		ctl |= SPI_CTL_PHA;
194 		break;
195 	case SPI_MODE_2:
196 		ctl |= SPI_CTL_POL;
197 		break;
198 	case SPI_MODE_3:
199 		ctl |= SPI_CTL_PHA | SPI_CTL_POL;
200 		break;
201 	default:
202 		return EINVAL;
203 	}
204 
205 	if (speed < sc->sc_modclkrate / 512) {
206 		for (cctl = 0; cctl <= __SHIFTOUT_MASK(SPI_CCTL_CDR1); cctl++) {
207 			if ((sc->sc_modclkrate / (1 << cctl)) <= speed)
208 				goto cdr1_found;
209 		}
210 		return EINVAL;
211 cdr1_found:
212 		cctl = __SHIFTIN(cctl, SPI_CCTL_CDR1);
213 	} else {
214 		cctl = howmany(sc->sc_modclkrate, 2 * speed) - 1;
215 		cctl = SPI_CCTL_DRS|__SHIFTIN(cctl, SPI_CCTL_CDR2);
216 	}
217 
218 	device_printf(sc->sc_dev, "ctl 0x%x, cctl 0x%x, CLK %uHz, SCLK %uHz\n",
219 	    ctl, cctl, sc->sc_modclkrate,
220 	    (cctl & SPI_CCTL_DRS)
221 	    ? (sc->sc_modclkrate / (u_int)(2 * (__SHIFTOUT(cctl, SPI_CCTL_CDR2) + 1)))
222 	    : (sc->sc_modclkrate >> (__SHIFTOUT(cctl, SPI_CCTL_CDR1) + 1))
223 	);
224 
225 	sc->sc_CTL = ctl;
226 	SPIREG_WRITE(sc, SPI_CTL, (ctl | SPI_CTL_RF_RST | SPI_CTL_TF_RST) & ~SPI_CTL_EN);
227 	SPIREG_WRITE(sc, SPI_CCTL, cctl);
228 	SPIREG_WRITE(sc, SPI_CTL, ctl);
229 
230 	return 0;
231 }
232 
233 static int
234 sun4ispi_transfer(void *cookie, struct spi_transfer *st)
235 {
236 	struct sun4ispi_softc * const sc = cookie;
237 	int s;
238 
239 	s = splbio();
240 	spi_transq_enqueue(&sc->sc_q, st);
241 	if (sc->sc_running == false) {
242 		sun4ispi_start(sc);
243 	}
244 	splx(s);
245 
246 	return 0;
247 }
248 
249 static void
250 sun4ispi_txfifo_fill(struct sun4ispi_softc * const sc, size_t maxlen)
251 {
252 	struct spi_chunk *chunk = sc->sc_wchunk;
253 	size_t len;
254 	uint8_t b;
255 
256 	if (chunk == NULL)
257 		return;
258 
259 	len = MIN(maxlen, chunk->chunk_wresid);
260 	chunk->chunk_wresid -= len;
261 	while (len--) {
262 		if (chunk->chunk_wptr) {
263 			b = *chunk->chunk_wptr++;
264 		} else {
265 			b = 0;
266 		}
267 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDATA, b);
268 	}
269 	if (sc->sc_wchunk->chunk_wresid == 0) {
270 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
271 	}
272 }
273 
274 static void
275 sun4ispi_rxfifo_drain(struct sun4ispi_softc * const sc, size_t maxlen)
276 {
277 	struct spi_chunk *chunk = sc->sc_rchunk;
278 	size_t len;
279 	uint8_t b;
280 
281 	if (chunk == NULL)
282 		return;
283 
284 	len = MIN(maxlen, chunk->chunk_rresid);
285 	chunk->chunk_rresid -= len;
286 
287 	while (len--) {
288 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDATA);
289 		if (chunk->chunk_rptr) {
290 			*chunk->chunk_rptr++ = b;
291 		}
292 	}
293 	if (sc->sc_rchunk->chunk_rresid == 0) {
294 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
295 	}
296 }
297 
298 static void
299 sun4ispi_rxtx(struct sun4ispi_softc * const sc)
300 {
301 	bool again;
302 	size_t rxavail, txavail;
303 	uint32_t fsr;
304 
305 	/* service both FIFOs until no more progress can be made */
306 	again = true;
307 	while (again) {
308 		again = false;
309 		fsr = SPIREG_READ(sc, SPI_FIFO_STA);
310 		rxavail = __SHIFTOUT(fsr, SPI_FIFO_STA_RF_CNT);
311 		txavail = 64 - __SHIFTOUT(fsr, SPI_FIFO_STA_TF_CNT);
312 		if (rxavail > 0) {
313 			KASSERT(sc->sc_rchunk != NULL);
314 			sun4ispi_rxfifo_drain(sc, rxavail);
315 			again = true;
316 		}
317 		if (txavail > 0 && sc->sc_wchunk != NULL) {
318 			sun4ispi_txfifo_fill(sc, txavail);
319 			again = true;
320 		}
321 	}
322 }
323 
324 static void
325 sun4ispi_set_interrupt_mask(struct sun4ispi_softc * const sc)
326 {
327 	uint32_t intctl;
328 
329 	intctl = SPI_INTCTL_TX_INT_EN;
330 	intctl |= SPI_INTCTL_RF_OF_INT_EN;
331 	intctl |= SPI_INTCTL_TF_UR_INT_EN;
332 
333 	if (sc->sc_rchunk) {
334 		if (sc->sc_rchunk->chunk_rresid >= 32) {
335 			intctl |= SPI_INTCTL_RF_HALF_FU_INT_EN;
336 		} else {
337 			intctl |= SPI_INTCTL_RF_RDY_INT_EN;
338 		}
339 	}
340 	if (sc->sc_wchunk) {
341 		intctl |= SPI_INTCTL_TF_HALF_EMP_INT_EN;
342 	}
343 	SPIREG_WRITE(sc, SPI_INTCTL, intctl);
344 }
345 
346 static void
347 sun4ispi_start(struct sun4ispi_softc * const sc)
348 {
349 	struct spi_transfer *st;
350 	uint32_t ctl;
351 	struct spi_chunk *chunk;
352 	size_t burstcount;
353 
354 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
355 
356 		spi_transq_dequeue(&sc->sc_q);
357 
358 		KASSERT(sc->sc_transfer == NULL);
359 		sc->sc_transfer = st;
360 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
361 		sc->sc_running = true;
362 
363 		burstcount = 0;
364 		for (chunk = st->st_chunks; chunk; chunk = chunk->chunk_next) {
365 			burstcount += chunk->chunk_count;
366 		}
367 		KASSERT(burstcount <= SPI_BC_BC);
368 		SPIREG_WRITE(sc, SPI_BC, __SHIFTIN(burstcount, SPI_BC_BC));
369 		SPIREG_WRITE(sc, SPI_TC, __SHIFTIN(burstcount, SPI_TC_WTC));
370 
371 		sun4ispi_rxtx(sc);
372 		sun4ispi_set_interrupt_mask(sc);
373 
374 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
375 		ctl = sc->sc_CTL | __SHIFTIN(st->st_slave, SPI_CTL_SS) | SPI_CTL_XCH;
376 		SPIREG_WRITE(sc, SPI_CTL, ctl);
377 
378 		if (!cold)
379 			return;
380 
381 		for (;;) {
382 			(void) sun4ispi_intr(sc);
383 			if (ISSET(st->st_flags, SPI_F_DONE))
384 				break;
385 		}
386 	}
387 	sc->sc_running = false;
388 }
389 
390 static int
391 sun4ispi_intr(void *cookie)
392 {
393 	struct sun4ispi_softc * const sc = cookie;
394 	struct spi_transfer *st;
395 	uint32_t isr;
396 
397 	isr = SPIREG_READ(sc, SPI_INT_STA);
398 	if (!isr)
399 		return 0;
400 
401 	if (ISSET(isr, SPI_INT_STA_RO)) {
402 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
403 	}
404 	if (ISSET(isr, SPI_INT_STA_TU)) {
405 		device_printf(sc->sc_dev, "TXFIFO underrun\n");
406 	}
407 
408 	sun4ispi_rxtx(sc);
409 
410 	if (ISSET(isr, SPI_INT_STA_TC)) {
411 		SPIREG_WRITE(sc, SPI_INTCTL, 0);
412 		KASSERT(sc->sc_rchunk == NULL);
413 		KASSERT(sc->sc_wchunk == NULL);
414 		st = sc->sc_transfer;
415 		sc->sc_transfer = NULL;
416 		KASSERT(st != NULL);
417 		spi_done(st, 0);
418 		sc->sc_running = false;
419 	} else {
420 		sun4ispi_set_interrupt_mask(sc);
421 	}
422 	SPIREG_WRITE(sc, SPI_INT_STA, isr);
423 
424 	return 1;
425 }
426