xref: /netbsd-src/sys/arch/arm/sunxi/sun4i_emac.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* $NetBSD: sun4i_emac.c,v 1.4 2018/06/26 06:47:58 msaitoh Exp $ */
2 
3 /*-
4  * Copyright (c) 2013-2017 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas of 3am Software Foundry and Jared McNeill.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 
34 __KERNEL_RCSID(1, "$NetBSD: sun4i_emac.c,v 1.4 2018/06/26 06:47:58 msaitoh Exp $");
35 
36 #include <sys/param.h>
37 #include <sys/bus.h>
38 #include <sys/device.h>
39 #include <sys/intr.h>
40 #include <sys/ioctl.h>
41 #include <sys/mutex.h>
42 #include <sys/rndsource.h>
43 #include <sys/kernel.h>
44 #include <sys/systm.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 
52 #include <dev/mii/miivar.h>
53 
54 #include <dev/fdt/fdtvar.h>
55 
56 #include <arm/sunxi/sunxi_sramc.h>
57 
58 #define	EMAC_IFNAME	"emac%d"
59 
60 #define	EMAC_CTL_REG		0x00
61 #define	 EMAC_CTL_RX_EN			__BIT(2)
62 #define	 EMAC_CTL_TX_EN			__BIT(1)
63 #define	 EMAC_CTL_RST			__BIT(0)
64 #define	EMAC_TX_MODE_REG	0x04
65 #define	 EMAC_TX_MODE_DMA		__BIT(1)
66 #define	 EMAC_TX_MODE_ABF_ENA		__BIT(0)
67 #define	EMAC_TX_FLOW_REG	0x08
68 #define	EMAC_TX_CTL0_REG	0x0c
69 #define	EMAC_TX_CTL1_REG	0x10
70 #define	EMAC_TX_CTL_REG(n)	(EMAC_TX_CTL0_REG+4*(n))
71 #define	 EMAC_TX_CTL_START		__BIT(0)
72 #define	EMAC_TX_INS_REG		0x14
73 #define	EMAC_TX_PL0_REG		0x18
74 #define	EMAC_TX_PL1_REG		0x1c
75 #define	EMAC_TX_PL_REG(n)	(EMAC_TX_PL0_REG+4*(n))
76 #define	EMAC_TX_STA_REG		0x20
77 #define	EMAC_TX_IO_DATA0_REG	0x24
78 #define	EMAC_TX_IO_DATA1_REG	0x28
79 #define	EMAC_TX_IO_DATA_REG(n)	(EMAC_TX_IO_DATA0_REG+4*(n))
80 #define	EMAC_TX_TSVL0_REG	0x2c
81 #define	EMAC_TX_TSVH0_REG	0x30
82 #define	EMAC_TX_TSVL1_REG	0x34
83 #define	EMAC_TX_TSVH1_REG	0x38
84 #define	EMAC_RX_CTL_REG		0x3c
85 #define	 EMAC_RX_CTL_SA_IF		__BIT(25)
86 #define	 EMAC_RX_CTL_SA			__BIT(24)
87 #define	 EMAC_RX_CTL_BC0		__BIT(22)
88 #define	 EMAC_RX_CTL_MHF		__BIT(21)
89 #define	 EMAC_RX_CTL_MC0		__BIT(20)
90 #define	 EMAC_RX_CTL_DAF		__BIT(17)
91 #define	 EMAC_RX_CTL_UCAD		__BIT(16)
92 #define	 EMAC_RX_CTL_POR		__BIT(8)
93 #define	 EMAC_RX_CTL_PLE		__BIT(7)
94 #define	 EMAC_RX_CTL_PCRCE		__BIT(6)
95 #define	 EMAC_RX_CTL_PCF		__BIT(5)
96 #define	 EMAC_RX_CTL_PROMISC		__BIT(4)
97 #define	 EMAC_RX_CTL_FIFO_RESET		__BIT(3)
98 #define	 EMAC_RX_CTL_DMA		__BIT(2)
99 #define	 EMAC_RX_CTL_DRQ_MODE		__BIT(1)
100 #define	 EMAC_RX_CTL_START		__BIT(0)
101 #define	EMAC_RX_HASH0_REG	0x40
102 #define	EMAC_RX_HASH1_REG	0x44
103 #define	EMAC_RX_STA_REG		0x48
104 #define	 EMAC_RX_STA_PKTOK		__BIT(7)
105 #define	 EMAC_RX_STA_ALNERR		__BIT(6)
106 #define	 EMAC_RX_STA_LENERR		__BIT(5)
107 #define	 EMAC_RX_STA_CRCERR		__BIT(4)
108 #define	EMAC_RX_IO_DATA_REG	0x4c
109 #define	EMAC_RX_FBC_REG		0x50
110 #define	EMAC_INT_CTL_REG	0x54
111 #define	EMAC_INT_STA_REG	0x58
112 #define	 EMAC_INT_RX			__BIT(8)
113 #define	 EMAC_INT_TX1			__BIT(1)
114 #define	 EMAC_INT_TX0			__BIT(0)
115 #define	 EMAC_INT_ENABLE		\
116 		(EMAC_INT_RX|EMAC_INT_TX1|EMAC_INT_TX0)
117 #define	EMAC_MAC_CTL0_REG	0x5c
118 #define	 EMAC_MAC_CTL0_SOFT_RESET	__BIT(15)
119 #define	 EMAC_MAC_CTL0_TFC		__BIT(3)
120 #define	 EMAC_MAC_CTL0_RFC		__BIT(2)
121 #define	EMAC_MAC_CTL1_REG	0x60
122 #define	 EMAC_MAC_CTL1_ED		__BIT(15)
123 #define	 EMAC_MAC_CTL1_NB		__BIT(13)
124 #define	 EMAC_MAC_CTL1_BNB		__BIT(12)
125 #define	 EMAC_MAC_CTL1_LPE		__BIT(9)
126 #define	 EMAC_MAC_CTL1_PRE		__BIT(8)
127 #define	 EMAC_MAC_CTL1_ADP		__BIT(7)
128 #define	 EMAC_MAC_CTL1_VC		__BIT(6)
129 #define	 EMAC_MAC_CTL1_PC		__BIT(5)
130 #define	 EMAC_MAC_CTL1_CRC		__BIT(4)
131 #define	 EMAC_MAC_CTL1_DCRC		__BIT(3)
132 #define	 EMAC_MAC_CTL1_HF		__BIT(2)
133 #define	 EMAC_MAC_CTL1_FLC		__BIT(1)
134 #define	 EMAC_MAC_CTL1_FD		__BIT(0)
135 #define	EMAC_MAC_IPGT_REG	0x64
136 #define	 EMAC_MAC_IPGT_FD		0x15
137 #define	EMAC_MAC_IPGR_REG	0x68
138 #define	 EMAC_MAC_IPGR_IPG1		__BITS(15,8)
139 #define	 EMAC_MAC_IPGR_IPG2		__BITS(7,0)
140 #define	EMAC_MAC_CLRT_REG	0x6c
141 #define	 EMAC_MAC_CLRT_CW		__BITS(15,8)
142 #define	 EMAC_MAC_CLRT_RM		__BITS(7,0)
143 #define	EMAC_MAC_MAXF_REG	0x70
144 #define	EMAC_MAC_SUPP_REG	0x74
145 #define	 EMAC_MAC_SUPP_100M		__BIT(8)
146 #define	EMAC_MAC_TEST_REG	0x78
147 #define	EMAC_MAC_MCFG_REG	0x7c
148 #define	 EMAC_MAC_MCFG_CLK		__BITS(5,2)
149 #define	EMAC_MAC_MCMD_REG	0x80
150 #define	EMAC_MAC_MADR_REG	0x84
151 #define	EMAC_MAC_MWTD_REG	0x88
152 #define	EMAC_MAC_MRDD_REG	0x8c
153 #define	EMAC_MAC_MIND_REG	0x90
154 #define	EMAC_MAC_SSRR_REG	0x94
155 #define	EMAC_MAC_A0_REG		0x98
156 #define	EMAC_MAC_A1_REG		0x9c
157 #define	EMAC_MAC_A2_REG		0xa0
158 
159 #define	EMAC_RXHDR_STS			__BITS(31,16)
160 #define	EMAC_RXHDR_LEN			__BITS(15,0)
161 
162 #define	EMAC_RX_MAGIC		0x0143414d	/* M A C \001 */
163 
164 #define	EMAC_TXBUF_SIZE		4096
165 
166 static int sun4i_emac_match(device_t, cfdata_t, void *);
167 static void sun4i_emac_attach(device_t, device_t, void *);
168 
169 static int sun4i_emac_intr(void *);
170 static void sun4i_emac_tick(void *);
171 
172 static int sun4i_emac_miibus_read_reg(device_t, int, int);
173 static void sun4i_emac_miibus_write_reg(device_t, int, int, int);
174 static void sun4i_emac_miibus_statchg(struct ifnet *);
175 
176 static void sun4i_emac_ifstart(struct ifnet *);
177 static int sun4i_emac_ifioctl(struct ifnet *, u_long, void *);
178 static int sun4i_emac_ifinit(struct ifnet *);
179 static void sun4i_emac_ifstop(struct ifnet *, int);
180 static void sun4i_emac_ifwatchdog(struct ifnet *);
181 
182 struct sun4i_emac_softc;
183 static void sun4i_emac_rx_hash(struct sun4i_emac_softc *);
184 
185 struct sun4i_emac_softc {
186 	device_t sc_dev;
187 	int sc_phandle;
188 	bus_space_tag_t sc_bst;
189 	bus_space_handle_t sc_bsh;
190 	bus_dma_tag_t sc_dmat;
191 	struct ethercom sc_ec;
192 	struct mii_data sc_mii;
193 	krndsource_t sc_rnd_source;	/* random source */
194 	kmutex_t sc_intr_lock;
195 	uint8_t sc_tx_active;
196 	callout_t sc_stat_ch;
197 	void *sc_ih;
198 	uint32_t sc_txbuf[EMAC_TXBUF_SIZE/4];
199 };
200 
201 static const char * compatible[] = {
202 	"allwinner,sun4i-a10-emac",
203 	NULL
204 };
205 
206 CFATTACH_DECL_NEW(sun4i_emac, sizeof(struct sun4i_emac_softc),
207 	sun4i_emac_match, sun4i_emac_attach, NULL, NULL);
208 
209 static inline uint32_t
210 sun4i_emac_read(struct sun4i_emac_softc *sc, bus_size_t o)
211 {
212 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
213 }
214 
215 static inline void
216 sun4i_emac_write(struct sun4i_emac_softc *sc, bus_size_t o, uint32_t v)
217 {
218 	return bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
219 }
220 
221 static inline void
222 sun4i_emac_clear_set(struct sun4i_emac_softc *sc, bus_size_t o, uint32_t c,
223     uint32_t s)
224 {
225 	uint32_t v = bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
226 	return bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, (v & ~c) | s);
227 }
228 
229 static int
230 sun4i_emac_match(device_t parent, cfdata_t cf, void *aux)
231 {
232 	struct fdt_attach_args * const faa = aux;
233 
234 	return of_match_compatible(faa->faa_phandle, compatible);
235 }
236 
237 static void
238 sun4i_emac_attach(device_t parent, device_t self, void *aux)
239 {
240 	struct sun4i_emac_softc * const sc = device_private(self);
241 	struct fdt_attach_args * const faa = aux;
242 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
243 	struct mii_data * const mii = &sc->sc_mii;
244 	const int phandle = faa->faa_phandle;
245 	char enaddr[ETHER_ADDR_LEN];
246 	const uint8_t *local_addr;
247 	char intrstr[128];
248 	struct clk *clk;
249 	bus_addr_t addr;
250 	bus_size_t size;
251 	int len;
252 
253 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
254 		aprint_error(": cannot get registers\n");
255 		return;
256 	}
257 
258 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
259 		aprint_error(": cannot decode interrupt\n");
260 		return;
261 	}
262 
263 	clk = fdtbus_clock_get_index(phandle, 0);
264 	if (clk == NULL) {
265 		aprint_error(": cannot acquire clock\n");
266 		return;
267 	}
268 	if (clk_enable(clk) != 0) {
269 		aprint_error(": cannot enable clock\n");
270 		return;
271 	}
272 
273 	if (sunxi_sramc_claim(phandle) != 0) {
274 		aprint_error(": cannot map SRAM to EMAC\n");
275 		return;
276 	}
277 
278 	sc->sc_dev = self;
279 	sc->sc_phandle = phandle;
280 	sc->sc_ec.ec_mii = mii;
281 	sc->sc_bst = faa->faa_bst;
282 	if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
283 		aprint_error(": cannot map registers\n");
284 		return;
285 	}
286 	sc->sc_dmat = faa->faa_dmat;
287 
288 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_NET);
289 	callout_init(&sc->sc_stat_ch, 0);
290 	callout_setfunc(&sc->sc_stat_ch, sun4i_emac_tick, sc);
291 
292 	aprint_naive("\n");
293 	aprint_normal(": 10/100 Ethernet Controller\n");
294 
295 	/*
296 	 * Disable and then clear all interrupts
297 	 */
298 	sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0);
299 	sun4i_emac_write(sc, EMAC_INT_STA_REG,
300 	    sun4i_emac_read(sc, EMAC_INT_STA_REG));
301 
302 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET, 0,
303 	    sun4i_emac_intr, sc);
304 	if (sc->sc_ih == NULL) {
305 		aprint_error_dev(self, "failed to establish interrupt on %s\n",
306 		    intrstr);
307 		return;
308 	}
309 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
310 
311 	local_addr = fdtbus_get_prop(phandle, "local-mac-address", &len);
312 	if (local_addr && len == ETHER_ADDR_LEN) {
313 		memcpy(enaddr, local_addr, ETHER_ADDR_LEN);
314 
315 		uint32_t a1 = ((uint32_t)enaddr[0] << 16) |
316 			      ((uint32_t)enaddr[1] << 8) |
317 			       (uint32_t)enaddr[2];
318 		uint32_t a0 = ((uint32_t)enaddr[3] << 16) |
319 			      ((uint32_t)enaddr[4] << 8) |
320 			       (uint32_t)enaddr[5];
321 
322 		sun4i_emac_write(sc, EMAC_MAC_A1_REG, a1);
323 		sun4i_emac_write(sc, EMAC_MAC_A0_REG, a0);
324 	}
325 
326 	uint32_t a1 = sun4i_emac_read(sc, EMAC_MAC_A1_REG);
327 	uint32_t a0 = sun4i_emac_read(sc, EMAC_MAC_A0_REG);
328 	if (a0 != 0 || a1 != 0) {
329 		enaddr[0] = a1 >> 16;
330 		enaddr[1] = a1 >>  8;
331 		enaddr[2] = a1 >>  0;
332 		enaddr[3] = a0 >> 16;
333 		enaddr[4] = a0 >>  8;
334 		enaddr[5] = a0 >>  0;
335 	}
336 	aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(enaddr));
337 
338 	snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
339 	ifp->if_softc = sc;
340 	ifp->if_capabilities = 0;
341 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
342 	ifp->if_start = sun4i_emac_ifstart;
343 	ifp->if_ioctl = sun4i_emac_ifioctl;
344 	ifp->if_init = sun4i_emac_ifinit;
345 	ifp->if_stop = sun4i_emac_ifstop;
346 	ifp->if_watchdog = sun4i_emac_ifwatchdog;
347 	IFQ_SET_READY(&ifp->if_snd);
348 
349 	/* 802.1Q VLAN-sized frames are supported */
350 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
351 
352 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
353 
354         mii->mii_ifp = ifp;
355         mii->mii_readreg = sun4i_emac_miibus_read_reg;
356         mii->mii_writereg = sun4i_emac_miibus_write_reg;
357         mii->mii_statchg = sun4i_emac_miibus_statchg;
358 
359         mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
360 
361         if (LIST_EMPTY(&mii->mii_phys)) {
362                 aprint_error_dev(self, "no PHY found!\n");
363                 ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
364                 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_MANUAL);
365         } else {
366                 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
367         }
368 
369 	/*
370 	 * Attach the interface.
371 	 */
372 	if_attach(ifp);
373 	if_deferred_start_init(ifp, NULL);
374 	ether_ifattach(ifp, enaddr);
375 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self),
376 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
377 }
378 
379 static inline void
380 sun4i_emac_int_enable(struct sun4i_emac_softc *sc)
381 {
382 	sun4i_emac_clear_set(sc, EMAC_INT_CTL_REG, 0,
383 	    EMAC_INT_ENABLE);
384 	sun4i_emac_write(sc, EMAC_INT_STA_REG,
385 	    sun4i_emac_read(sc, EMAC_INT_STA_REG));
386 }
387 
388 int
389 sun4i_emac_miibus_read_reg(device_t self, int phy, int reg)
390 {
391 	struct sun4i_emac_softc * const sc = device_private(self);
392 	int retry = 100;
393 
394 	sun4i_emac_write(sc, EMAC_MAC_MADR_REG, (phy << 8) | reg);
395 	sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 1);
396 
397 	while (--retry > 0 && (sun4i_emac_read(sc, EMAC_MAC_MIND_REG) & 1) != 0)
398 		delay(1000);
399 	if (retry == 0)
400 		device_printf(self, "PHY read timeout\n");
401 
402 	sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 0);
403 	const uint32_t rv = sun4i_emac_read(sc, EMAC_MAC_MRDD_REG);
404 
405 	return rv;
406 }
407 
408 void
409 sun4i_emac_miibus_write_reg(device_t self, int phy, int reg, int val)
410 {
411 	struct sun4i_emac_softc * const sc = device_private(self);
412 	int retry = 100;
413 
414 	sun4i_emac_write(sc, EMAC_MAC_MADR_REG, (phy << 8) | reg);
415 	sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 1);
416 
417 	while (--retry > 0 && (sun4i_emac_read(sc, EMAC_MAC_MIND_REG) & 1) != 0)
418 		delay(1000);
419 	if (retry == 0)
420 		device_printf(self, "PHY write timeout\n");
421 
422 	sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 0);
423 	sun4i_emac_write(sc, EMAC_MAC_MWTD_REG, val);
424 }
425 
426 void
427 sun4i_emac_miibus_statchg(struct ifnet *ifp)
428 {
429 	struct sun4i_emac_softc * const sc = ifp->if_softc;
430 	struct mii_data * const mii = &sc->sc_mii;
431 	const u_int media = mii->mii_media_active;
432 
433 	/*
434 	 * Set MII interface based on the speed
435 	 * negotiated by the PHY.
436 	 */
437 	switch (IFM_SUBTYPE(media)) {
438 	case IFM_10_T:
439 		sun4i_emac_clear_set(sc, EMAC_MAC_SUPP_REG,
440 		    EMAC_MAC_SUPP_100M, 0);
441 		break;
442 	case IFM_100_TX:
443 		sun4i_emac_clear_set(sc, EMAC_MAC_SUPP_REG,
444 		    0, EMAC_MAC_SUPP_100M);
445 		break;
446 	}
447 
448 	const bool link = (IFM_SUBTYPE(media) & (IFM_10_T|IFM_100_TX)) != 0;
449 	if (link) {
450 		if (media & IFM_FDX) {
451 			sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG,
452 			    0, EMAC_MAC_CTL1_FD);
453 		} else {
454 			sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG,
455 			    EMAC_MAC_CTL1_FD, 0);
456 		}
457 	}
458 }
459 
460 static void
461 sun4i_emac_tick(void *softc)
462 {
463 	struct sun4i_emac_softc * const sc = softc;
464 	struct mii_data * const mii = &sc->sc_mii;
465 	int s;
466 
467 	s = splnet();
468 	mii_tick(mii);
469 	callout_schedule(&sc->sc_stat_ch, hz);
470 	splx(s);
471 }
472 
473 static inline void
474 sun4i_emac_rxfifo_flush(struct sun4i_emac_softc *sc)
475 {
476 	sun4i_emac_clear_set(sc, EMAC_CTL_REG, EMAC_CTL_RX_EN, 0);
477 
478 	sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG, 0, EMAC_RX_CTL_FIFO_RESET);
479 
480 	for (;;) {
481 		uint32_t v0 = sun4i_emac_read(sc, EMAC_RX_CTL_REG);
482 		if ((v0 & EMAC_RX_CTL_FIFO_RESET) == 0)
483 			break;
484 	}
485 
486 	sun4i_emac_clear_set(sc, EMAC_CTL_REG, 0, EMAC_CTL_RX_EN);
487 }
488 
489 static void
490 sun4i_emac_rxfifo_consume(struct sun4i_emac_softc *sc, size_t len)
491 {
492 	for (len = (len + 3) >> 2; len > 0; len--) {
493 		(void) sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG);
494 	}
495 }
496 
497 static void
498 sun4i_emac_rxfifo_transfer(struct sun4i_emac_softc *sc, struct mbuf *m)
499 {
500 	uint32_t *dp32 = mtod(m, uint32_t *);
501 	const int len = roundup2(m->m_len, 4);
502 
503 	bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh,
504 	    EMAC_RX_IO_DATA_REG, dp32, len / 4);
505 }
506 
507 static struct mbuf *
508 sun4i_emac_mgethdr(struct sun4i_emac_softc *sc, size_t rxlen)
509 {
510 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
511 
512 	if (m == NULL) {
513 		return NULL;
514 	}
515 	if (rxlen + 2 > MHLEN) {
516 		MCLGET(m, M_DONTWAIT);
517 		if ((m->m_flags & M_EXT) == 0) {
518 			m_free(m);
519 			return NULL;
520 		}
521 	}
522 
523 	m_adj(m, 2);
524 	m->m_len = rxlen;
525 	m->m_pkthdr.len = rxlen;
526 	m_set_rcvif(m, &sc->sc_ec.ec_if);
527 	m->m_flags |= M_HASFCS;
528 
529 	return m;
530 }
531 
532 static void
533 sun4i_emac_if_input(struct sun4i_emac_softc *sc, struct mbuf *m)
534 {
535 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
536 
537 	if_percpuq_enqueue(ifp->if_percpuq, m);
538 }
539 
540 static void
541 sun4i_emac_rx_intr(struct sun4i_emac_softc *sc)
542 {
543 	for (;;) {
544 		uint32_t rx_count = sun4i_emac_read(sc, EMAC_RX_FBC_REG);
545 		struct mbuf *m;
546 
547 		if (rx_count == 0) {
548 			rx_count = sun4i_emac_read(sc, EMAC_RX_FBC_REG);
549 			if (rx_count == 0)
550 				return;
551 		}
552 
553 		uint32_t v = sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG);
554 		if (v != EMAC_RX_MAGIC) {
555 			sun4i_emac_rxfifo_flush(sc);
556 			return;
557 		}
558 
559 		uint32_t rxhdr = sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG);
560 		uint32_t rxlen = __SHIFTOUT(rxhdr, EMAC_RXHDR_LEN);
561 		uint32_t rxsts = __SHIFTOUT(rxhdr, EMAC_RXHDR_STS);
562 
563 		if (rxlen < ETHER_MIN_LEN || (rxsts & EMAC_RX_STA_PKTOK) == 0) {
564 			sc->sc_ec.ec_if.if_ierrors++;
565 			continue;
566 		}
567 
568 		m = sun4i_emac_mgethdr(sc, rxlen);
569 		if (m == NULL) {
570 			sc->sc_ec.ec_if.if_ierrors++;
571 			sun4i_emac_rxfifo_consume(sc, rxlen);
572 			return;
573 		}
574 
575 		sun4i_emac_rxfifo_transfer(sc, m);
576 		sun4i_emac_if_input(sc, m);
577 	}
578 }
579 
580 static int
581 sun4i_emac_txfifo_transfer(struct sun4i_emac_softc *sc, struct mbuf *m, u_int slot)
582 {
583 	bus_size_t const io_data_reg = EMAC_TX_IO_DATA_REG(0);
584 	const int len = m->m_pkthdr.len;
585 	uint32_t *pktdata;
586 
587 	KASSERT(len > 0 && len <= sizeof(sc->sc_txbuf));
588 
589 	if (m->m_next != NULL) {
590 		m_copydata(m, 0, len, sc->sc_txbuf);
591 		pktdata = sc->sc_txbuf;
592 	} else {
593 		pktdata = mtod(m, uint32_t *);
594 	}
595 
596 	bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, io_data_reg,
597 	    pktdata, roundup2(len, 4) / 4);
598 
599 	return len;
600 }
601 
602 static void
603 sun4i_emac_tx_enqueue(struct sun4i_emac_softc *sc, struct mbuf *m, u_int slot)
604 {
605 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
606 
607 	sun4i_emac_write(sc, EMAC_TX_INS_REG, slot);
608 
609 	const int len = sun4i_emac_txfifo_transfer(sc, m, slot);
610 
611 	bus_size_t const pl_reg = EMAC_TX_PL_REG(slot);
612 	bus_size_t const ctl_reg = EMAC_TX_CTL_REG(slot);
613 
614 	sun4i_emac_write(sc, pl_reg, len);
615 	sun4i_emac_clear_set(sc, ctl_reg, 0, EMAC_TX_CTL_START);
616 
617 	bpf_mtap(ifp, m, BPF_D_OUT);
618 
619 	m_freem(m);
620 }
621 
622 static void
623 sun4i_emac_tx_intr(struct sun4i_emac_softc *sc, u_int slot)
624 {
625 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
626 
627 	sc->sc_tx_active &= ~__BIT(slot);
628 	ifp->if_flags &= ~IFF_OACTIVE;
629 }
630 
631 int
632 sun4i_emac_intr(void *arg)
633 {
634 	struct sun4i_emac_softc * const sc = arg;
635 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
636 
637 	mutex_enter(&sc->sc_intr_lock);
638 
639 	uint32_t sts = sun4i_emac_read(sc, EMAC_INT_STA_REG);
640 	sun4i_emac_write(sc, EMAC_INT_STA_REG, sts);
641 	rnd_add_uint32(&sc->sc_rnd_source, sts);
642 
643 	if (sts & EMAC_INT_RX) {
644 		sun4i_emac_rx_intr(sc);
645 	}
646 	if (sts & EMAC_INT_TX0) {
647 		sun4i_emac_tx_intr(sc, 0);
648 	}
649 	if (sts & EMAC_INT_TX1) {
650 		sun4i_emac_tx_intr(sc, 1);
651 	}
652 	if (sts & (EMAC_INT_TX0|EMAC_INT_TX1)) {
653 		if (sc->sc_tx_active == 0)
654 			ifp->if_timer = 0;
655 		if_schedule_deferred_start(ifp);
656 	}
657 
658 	mutex_exit(&sc->sc_intr_lock);
659 
660 	return 1;
661 }
662 
663 void
664 sun4i_emac_ifstart(struct ifnet *ifp)
665 {
666 	struct sun4i_emac_softc * const sc = ifp->if_softc;
667 
668 	mutex_enter(&sc->sc_intr_lock);
669 
670 	if ((sc->sc_tx_active & 1) == 0) {
671 		struct mbuf *m;
672 		IFQ_DEQUEUE(&ifp->if_snd, m);
673 		if (m == NULL) {
674 			mutex_exit(&sc->sc_intr_lock);
675 			return;
676 		}
677 		sun4i_emac_tx_enqueue(sc, m, 0);
678 		sc->sc_tx_active |= 1;
679 	}
680 
681 	if ((sc->sc_tx_active & 2) == 0) {
682 		struct mbuf *m;
683 		IFQ_DEQUEUE(&ifp->if_snd, m);
684 		if (m == NULL) {
685 			mutex_exit(&sc->sc_intr_lock);
686 			return;
687 		}
688 		sun4i_emac_tx_enqueue(sc, m, 1);
689 		sc->sc_tx_active |= 2;
690 	}
691 
692 	if (sc->sc_tx_active == 3)
693 		ifp->if_flags |= IFF_OACTIVE;
694 
695 	ifp->if_timer = 5;
696 
697 	mutex_exit(&sc->sc_intr_lock);
698 }
699 
700 
701 static int
702 sun4i_emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
703 {
704 	struct sun4i_emac_softc * const sc = ifp->if_softc;
705 	struct ifreq *ifr = (struct ifreq *)data;
706 	int error;
707 
708 	switch (cmd) {
709 	case SIOCGIFMEDIA:
710 	case SIOCSIFMEDIA:
711 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
712 		break;
713 	default:
714 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
715 			break;
716 		error = 0;
717 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
718 			break;
719 		if (ifp->if_flags & IFF_RUNNING) {
720 			/*
721 			 * Multicast list has changed; set the hardware filter
722 			 * accordingly.
723 			 */
724 			mutex_enter(&sc->sc_intr_lock);
725 			sun4i_emac_ifstop(ifp, 0);
726 			error = sun4i_emac_ifinit(ifp);
727 			mutex_exit(&sc->sc_intr_lock);
728 		}
729 		break;
730 	}
731 
732 	return error;
733 }
734 
735 static void
736 sun4i_emac_ifstop(struct ifnet *ifp, int discard)
737 {
738 	struct sun4i_emac_softc * const sc = ifp->if_softc;
739 	struct mii_data * const mii = &sc->sc_mii;
740 
741 	KASSERT(mutex_owned(&sc->sc_intr_lock));
742 
743 	callout_stop(&sc->sc_stat_ch);
744 	mii_down(mii);
745 
746 	sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0);
747 	sun4i_emac_write(sc, EMAC_INT_STA_REG,
748 	    sun4i_emac_read(sc, EMAC_INT_STA_REG));
749 
750 	sun4i_emac_clear_set(sc, EMAC_CTL_REG,
751 	    EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN, 0);
752 
753 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
754 	ifp->if_timer = 0;
755 }
756 
757 int
758 sun4i_emac_ifinit(struct ifnet *ifp)
759 {
760 	struct sun4i_emac_softc * const sc = ifp->if_softc;
761 	struct mii_data * const mii = &sc->sc_mii;
762 
763 	sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG,
764 	    0, EMAC_RX_CTL_FIFO_RESET);
765 
766 	delay(1);
767 
768 	sun4i_emac_clear_set(sc, EMAC_MAC_CTL0_REG,
769 	    EMAC_MAC_CTL0_SOFT_RESET, 0);
770 
771 	sun4i_emac_clear_set(sc, EMAC_MAC_MCFG_REG,
772 	    EMAC_MAC_MCFG_CLK, __SHIFTIN(0xd, EMAC_MAC_MCFG_CLK));
773 
774 	sun4i_emac_write(sc, EMAC_RX_FBC_REG, 0);
775 
776 	sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0);
777 	sun4i_emac_write(sc, EMAC_INT_STA_REG,
778 	    sun4i_emac_read(sc, EMAC_INT_STA_REG));
779 
780 	delay(1);
781 
782 	sun4i_emac_clear_set(sc, EMAC_TX_MODE_REG,
783 	    EMAC_TX_MODE_DMA, EMAC_TX_MODE_ABF_ENA);
784 
785 	sun4i_emac_clear_set(sc, EMAC_MAC_CTL0_REG,
786 	    0, EMAC_MAC_CTL0_TFC | EMAC_MAC_CTL0_RFC);
787 
788 	sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG,
789 	    EMAC_RX_CTL_DMA, 0);
790 
791 	sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG,
792 	    0,
793 	    EMAC_MAC_CTL1_FLC | EMAC_MAC_CTL1_CRC |
794 	    EMAC_MAC_CTL1_PC);
795 
796 	sun4i_emac_write(sc, EMAC_MAC_IPGT_REG, EMAC_MAC_IPGT_FD);
797 	sun4i_emac_write(sc, EMAC_MAC_IPGR_REG,
798 	    __SHIFTIN(0x0c, EMAC_MAC_IPGR_IPG1) |
799 	    __SHIFTIN(0x12, EMAC_MAC_IPGR_IPG2));
800 
801 	sun4i_emac_write(sc, EMAC_MAC_CLRT_REG,
802 	    __SHIFTIN(0x0f, EMAC_MAC_CLRT_RM) |
803 	    __SHIFTIN(0x37, EMAC_MAC_CLRT_CW));
804 
805 	sun4i_emac_write(sc, EMAC_MAC_MAXF_REG, 0x600);
806 
807 	sun4i_emac_rx_hash(sc);
808 
809 	sun4i_emac_int_enable(sc);
810 
811 	ifp->if_flags |= IFF_RUNNING;
812 	ifp->if_flags &= ~IFF_OACTIVE;
813 
814 	/* Enable RX/TX */
815 	sun4i_emac_clear_set(sc, EMAC_CTL_REG,
816 	    0, EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN);
817 
818 	mii_mediachg(mii);
819 	callout_schedule(&sc->sc_stat_ch, hz);
820 
821 	return 0;
822 }
823 
824 static void
825 sun4i_emac_ifwatchdog(struct ifnet *ifp)
826 {
827 	struct sun4i_emac_softc * const sc = ifp->if_softc;
828 
829 	device_printf(sc->sc_dev, "device timeout\n");
830 
831 	ifp->if_oerrors++;
832 	sun4i_emac_ifinit(ifp);
833 	sun4i_emac_ifstart(ifp);
834 }
835 
836 static void
837 sun4i_emac_rx_hash(struct sun4i_emac_softc *sc)
838 {
839 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
840 	struct ether_multistep step;
841 	struct ether_multi *enm;
842 	uint32_t hash[2];
843 	uint32_t rxctl;
844 
845 	rxctl = sun4i_emac_read(sc, EMAC_RX_CTL_REG);
846 	rxctl &= ~EMAC_RX_CTL_MHF;
847 	rxctl |= EMAC_RX_CTL_UCAD;
848 	rxctl |= EMAC_RX_CTL_DAF;
849 	rxctl |= EMAC_RX_CTL_MC0;
850 	rxctl |= EMAC_RX_CTL_BC0;
851 	rxctl |= EMAC_RX_CTL_POR;
852 
853 	hash[0] = hash[1] = ~0;
854 	if (ifp->if_flags & IFF_PROMISC) {
855 		ifp->if_flags |= IFF_ALLMULTI;
856 		rxctl |= EMAC_RX_CTL_PROMISC;
857 	} else {
858 		rxctl &= ~EMAC_RX_CTL_PROMISC;
859 	}
860 
861 	if ((ifp->if_flags & IFF_PROMISC) == 0) {
862 		hash[0] = hash[1] = 0;
863 
864 		ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
865 		while (enm != NULL) {
866 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
867 				/*
868 				 * We must listen to a range of multicast addresses.
869 				 * For now, just accept all multicasts, rather than
870 				 * trying to set only those filter bits needed to match
871 				 * the range.  (At this time, the only use of address
872 				 * ranges is for IP multicast routing, for which the
873 				 * range is big enough to require all bits set.)
874 				 */
875 				hash[0] = hash[1] = ~0;
876 				ifp->if_flags |= IFF_ALLMULTI;
877 				goto done;
878                 	}
879 
880 			u_int crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
881 
882 			/* Just want the 6 most significant bits. */
883 			crc >>= 26;
884 
885 			/* Set the corresponding bit in the filter. */
886 			hash[crc >> 5] |= __BIT(crc & 31);
887                 	ETHER_NEXT_MULTI(step, enm);
888 		}
889 		ifp->if_flags &= ~IFF_ALLMULTI;
890 		rxctl |= EMAC_RX_CTL_MHF;
891 	}
892 
893 done:
894 
895 	sun4i_emac_write(sc, EMAC_RX_HASH0_REG, hash[0]);
896 	sun4i_emac_write(sc, EMAC_RX_HASH1_REG, hash[1]);
897 
898 	sun4i_emac_write(sc, EMAC_RX_CTL_REG, rxctl);
899 }
900