1 /* $NetBSD: sun4i_emac.c,v 1.14 2021/01/27 03:10:20 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2013-2017 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas of 3am Software Foundry and Jared McNeill. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 34 __KERNEL_RCSID(1, "$NetBSD: sun4i_emac.c,v 1.14 2021/01/27 03:10:20 thorpej Exp $"); 35 36 #include <sys/param.h> 37 #include <sys/bus.h> 38 #include <sys/device.h> 39 #include <sys/intr.h> 40 #include <sys/ioctl.h> 41 #include <sys/mutex.h> 42 #include <sys/rndsource.h> 43 #include <sys/kernel.h> 44 #include <sys/systm.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_dl.h> 49 #include <net/if_ether.h> 50 #include <net/if_media.h> 51 52 #include <dev/mii/miivar.h> 53 54 #include <dev/fdt/fdtvar.h> 55 56 #include <arm/sunxi/sunxi_sramc.h> 57 58 #define EMAC_IFNAME "emac%d" 59 60 #define EMAC_CTL_REG 0x00 61 #define EMAC_CTL_RX_EN __BIT(2) 62 #define EMAC_CTL_TX_EN __BIT(1) 63 #define EMAC_CTL_RST __BIT(0) 64 #define EMAC_TX_MODE_REG 0x04 65 #define EMAC_TX_MODE_DMA __BIT(1) 66 #define EMAC_TX_MODE_ABF_ENA __BIT(0) 67 #define EMAC_TX_FLOW_REG 0x08 68 #define EMAC_TX_CTL0_REG 0x0c 69 #define EMAC_TX_CTL1_REG 0x10 70 #define EMAC_TX_CTL_REG(n) (EMAC_TX_CTL0_REG+4*(n)) 71 #define EMAC_TX_CTL_START __BIT(0) 72 #define EMAC_TX_INS_REG 0x14 73 #define EMAC_TX_PL0_REG 0x18 74 #define EMAC_TX_PL1_REG 0x1c 75 #define EMAC_TX_PL_REG(n) (EMAC_TX_PL0_REG+4*(n)) 76 #define EMAC_TX_STA_REG 0x20 77 #define EMAC_TX_IO_DATA0_REG 0x24 78 #define EMAC_TX_IO_DATA1_REG 0x28 79 #define EMAC_TX_IO_DATA_REG(n) (EMAC_TX_IO_DATA0_REG+4*(n)) 80 #define EMAC_TX_TSVL0_REG 0x2c 81 #define EMAC_TX_TSVH0_REG 0x30 82 #define EMAC_TX_TSVL1_REG 0x34 83 #define EMAC_TX_TSVH1_REG 0x38 84 #define EMAC_RX_CTL_REG 0x3c 85 #define EMAC_RX_CTL_SA_IF __BIT(25) 86 #define EMAC_RX_CTL_SA __BIT(24) 87 #define EMAC_RX_CTL_BC0 __BIT(22) 88 #define EMAC_RX_CTL_MHF __BIT(21) 89 #define EMAC_RX_CTL_MC0 __BIT(20) 90 #define EMAC_RX_CTL_DAF __BIT(17) 91 #define EMAC_RX_CTL_UCAD __BIT(16) 92 #define EMAC_RX_CTL_POR __BIT(8) 93 #define EMAC_RX_CTL_PLE __BIT(7) 94 #define EMAC_RX_CTL_PCRCE __BIT(6) 95 #define EMAC_RX_CTL_PCF __BIT(5) 96 #define EMAC_RX_CTL_PROMISC __BIT(4) 97 #define EMAC_RX_CTL_FIFO_RESET __BIT(3) 98 #define EMAC_RX_CTL_DMA __BIT(2) 99 #define EMAC_RX_CTL_DRQ_MODE __BIT(1) 100 #define EMAC_RX_CTL_START __BIT(0) 101 #define EMAC_RX_HASH0_REG 0x40 102 #define EMAC_RX_HASH1_REG 0x44 103 #define EMAC_RX_STA_REG 0x48 104 #define EMAC_RX_STA_PKTOK __BIT(7) 105 #define EMAC_RX_STA_ALNERR __BIT(6) 106 #define EMAC_RX_STA_LENERR __BIT(5) 107 #define EMAC_RX_STA_CRCERR __BIT(4) 108 #define EMAC_RX_IO_DATA_REG 0x4c 109 #define EMAC_RX_FBC_REG 0x50 110 #define EMAC_INT_CTL_REG 0x54 111 #define EMAC_INT_STA_REG 0x58 112 #define EMAC_INT_RX __BIT(8) 113 #define EMAC_INT_TX1 __BIT(1) 114 #define EMAC_INT_TX0 __BIT(0) 115 #define EMAC_INT_ENABLE \ 116 (EMAC_INT_RX | EMAC_INT_TX1 | EMAC_INT_TX0) 117 #define EMAC_MAC_CTL0_REG 0x5c 118 #define EMAC_MAC_CTL0_SOFT_RESET __BIT(15) 119 #define EMAC_MAC_CTL0_TFC __BIT(3) 120 #define EMAC_MAC_CTL0_RFC __BIT(2) 121 #define EMAC_MAC_CTL1_REG 0x60 122 #define EMAC_MAC_CTL1_ED __BIT(15) 123 #define EMAC_MAC_CTL1_NB __BIT(13) 124 #define EMAC_MAC_CTL1_BNB __BIT(12) 125 #define EMAC_MAC_CTL1_LPE __BIT(9) 126 #define EMAC_MAC_CTL1_PRE __BIT(8) 127 #define EMAC_MAC_CTL1_ADP __BIT(7) 128 #define EMAC_MAC_CTL1_VC __BIT(6) 129 #define EMAC_MAC_CTL1_PC __BIT(5) 130 #define EMAC_MAC_CTL1_CRC __BIT(4) 131 #define EMAC_MAC_CTL1_DCRC __BIT(3) 132 #define EMAC_MAC_CTL1_HF __BIT(2) 133 #define EMAC_MAC_CTL1_FLC __BIT(1) 134 #define EMAC_MAC_CTL1_FD __BIT(0) 135 #define EMAC_MAC_IPGT_REG 0x64 136 #define EMAC_MAC_IPGT_FD 0x15 137 #define EMAC_MAC_IPGR_REG 0x68 138 #define EMAC_MAC_IPGR_IPG1 __BITS(15,8) 139 #define EMAC_MAC_IPGR_IPG2 __BITS(7,0) 140 #define EMAC_MAC_CLRT_REG 0x6c 141 #define EMAC_MAC_CLRT_CW __BITS(15,8) 142 #define EMAC_MAC_CLRT_RM __BITS(7,0) 143 #define EMAC_MAC_MAXF_REG 0x70 144 #define EMAC_MAC_SUPP_REG 0x74 145 #define EMAC_MAC_SUPP_100M __BIT(8) 146 #define EMAC_MAC_TEST_REG 0x78 147 #define EMAC_MAC_MCFG_REG 0x7c 148 #define EMAC_MAC_MCFG_CLK __BITS(5,2) 149 #define EMAC_MAC_MCMD_REG 0x80 150 #define EMAC_MAC_MADR_REG 0x84 151 #define EMAC_MAC_MWTD_REG 0x88 152 #define EMAC_MAC_MRDD_REG 0x8c 153 #define EMAC_MAC_MIND_REG 0x90 154 #define EMAC_MAC_SSRR_REG 0x94 155 #define EMAC_MAC_A0_REG 0x98 156 #define EMAC_MAC_A1_REG 0x9c 157 #define EMAC_MAC_A2_REG 0xa0 158 159 #define EMAC_RXHDR_STS __BITS(31,16) 160 #define EMAC_RXHDR_LEN __BITS(15,0) 161 162 #define EMAC_RX_MAGIC 0x0143414d /* M A C \001 */ 163 164 #define EMAC_TXBUF_SIZE 4096 165 166 static int sun4i_emac_match(device_t, cfdata_t, void *); 167 static void sun4i_emac_attach(device_t, device_t, void *); 168 169 static int sun4i_emac_intr(void *); 170 static void sun4i_emac_tick(void *); 171 172 static int sun4i_emac_miibus_read_reg(device_t, int, int, uint16_t *); 173 static int sun4i_emac_miibus_write_reg(device_t, int, int, uint16_t); 174 static void sun4i_emac_miibus_statchg(struct ifnet *); 175 176 static void sun4i_emac_ifstart(struct ifnet *); 177 static int sun4i_emac_ifioctl(struct ifnet *, u_long, void *); 178 static int sun4i_emac_ifinit(struct ifnet *); 179 static void sun4i_emac_ifstop(struct ifnet *, int); 180 static void sun4i_emac_ifwatchdog(struct ifnet *); 181 182 struct sun4i_emac_softc; 183 static void sun4i_emac_rx_hash(struct sun4i_emac_softc *); 184 185 struct sun4i_emac_softc { 186 device_t sc_dev; 187 int sc_phandle; 188 bus_space_tag_t sc_bst; 189 bus_space_handle_t sc_bsh; 190 bus_dma_tag_t sc_dmat; 191 struct ethercom sc_ec; 192 struct mii_data sc_mii; 193 krndsource_t sc_rnd_source; /* random source */ 194 kmutex_t sc_intr_lock; 195 uint8_t sc_tx_active; 196 callout_t sc_stat_ch; 197 void *sc_ih; 198 uint32_t sc_txbuf[EMAC_TXBUF_SIZE/4]; 199 }; 200 201 static const struct device_compatible_entry compat_data[] = { 202 { .compat = "allwinner,sun4i-a10-emac" }, 203 DEVICE_COMPAT_EOL 204 }; 205 206 CFATTACH_DECL_NEW(sun4i_emac, sizeof(struct sun4i_emac_softc), 207 sun4i_emac_match, sun4i_emac_attach, NULL, NULL); 208 209 static inline uint32_t 210 sun4i_emac_read(struct sun4i_emac_softc *sc, bus_size_t o) 211 { 212 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o); 213 } 214 215 static inline void 216 sun4i_emac_write(struct sun4i_emac_softc *sc, bus_size_t o, uint32_t v) 217 { 218 return bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v); 219 } 220 221 static inline void 222 sun4i_emac_clear_set(struct sun4i_emac_softc *sc, bus_size_t o, uint32_t c, 223 uint32_t s) 224 { 225 uint32_t v = bus_space_read_4(sc->sc_bst, sc->sc_bsh, o); 226 return bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, (v & ~c) | s); 227 } 228 229 static int 230 sun4i_emac_match(device_t parent, cfdata_t cf, void *aux) 231 { 232 struct fdt_attach_args * const faa = aux; 233 234 return of_compatible_match(faa->faa_phandle, compat_data); 235 } 236 237 static void 238 sun4i_emac_attach(device_t parent, device_t self, void *aux) 239 { 240 struct sun4i_emac_softc * const sc = device_private(self); 241 struct fdt_attach_args * const faa = aux; 242 struct ifnet * const ifp = &sc->sc_ec.ec_if; 243 struct mii_data * const mii = &sc->sc_mii; 244 const int phandle = faa->faa_phandle; 245 char enaddr[ETHER_ADDR_LEN]; 246 const uint8_t *local_addr; 247 char intrstr[128]; 248 struct clk *clk; 249 bus_addr_t addr; 250 bus_size_t size; 251 int len; 252 253 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { 254 aprint_error(": cannot get registers\n"); 255 return; 256 } 257 258 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 259 aprint_error(": cannot decode interrupt\n"); 260 return; 261 } 262 263 clk = fdtbus_clock_get_index(phandle, 0); 264 if (clk == NULL) { 265 aprint_error(": cannot acquire clock\n"); 266 return; 267 } 268 if (clk_enable(clk) != 0) { 269 aprint_error(": cannot enable clock\n"); 270 return; 271 } 272 273 if (sunxi_sramc_claim(phandle) != 0) { 274 aprint_error(": cannot map SRAM to EMAC\n"); 275 return; 276 } 277 278 sc->sc_dev = self; 279 sc->sc_phandle = phandle; 280 sc->sc_ec.ec_mii = mii; 281 sc->sc_bst = faa->faa_bst; 282 if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { 283 aprint_error(": cannot map registers\n"); 284 return; 285 } 286 sc->sc_dmat = faa->faa_dmat; 287 288 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_NET); 289 callout_init(&sc->sc_stat_ch, 0); 290 callout_setfunc(&sc->sc_stat_ch, sun4i_emac_tick, sc); 291 292 aprint_naive("\n"); 293 aprint_normal(": 10/100 Ethernet Controller\n"); 294 295 /* 296 * Disable and then clear all interrupts 297 */ 298 sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0); 299 sun4i_emac_write(sc, EMAC_INT_STA_REG, 300 sun4i_emac_read(sc, EMAC_INT_STA_REG)); 301 302 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_NET, 0, 303 sun4i_emac_intr, sc, device_xname(self)); 304 if (sc->sc_ih == NULL) { 305 aprint_error_dev(self, "failed to establish interrupt on %s\n", 306 intrstr); 307 return; 308 } 309 aprint_normal_dev(self, "interrupting on %s\n", intrstr); 310 311 local_addr = fdtbus_get_prop(phandle, "local-mac-address", &len); 312 if (local_addr && len == ETHER_ADDR_LEN) { 313 memcpy(enaddr, local_addr, ETHER_ADDR_LEN); 314 315 uint32_t a1 = ((uint32_t)enaddr[0] << 16) | 316 ((uint32_t)enaddr[1] << 8) | 317 (uint32_t)enaddr[2]; 318 uint32_t a0 = ((uint32_t)enaddr[3] << 16) | 319 ((uint32_t)enaddr[4] << 8) | 320 (uint32_t)enaddr[5]; 321 322 sun4i_emac_write(sc, EMAC_MAC_A1_REG, a1); 323 sun4i_emac_write(sc, EMAC_MAC_A0_REG, a0); 324 } 325 326 uint32_t a1 = sun4i_emac_read(sc, EMAC_MAC_A1_REG); 327 uint32_t a0 = sun4i_emac_read(sc, EMAC_MAC_A0_REG); 328 if (a0 != 0 || a1 != 0) { 329 enaddr[0] = a1 >> 16; 330 enaddr[1] = a1 >> 8; 331 enaddr[2] = a1 >> 0; 332 enaddr[3] = a0 >> 16; 333 enaddr[4] = a0 >> 8; 334 enaddr[5] = a0 >> 0; 335 } 336 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr)); 337 338 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self)); 339 ifp->if_softc = sc; 340 ifp->if_capabilities = 0; 341 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 342 ifp->if_start = sun4i_emac_ifstart; 343 ifp->if_ioctl = sun4i_emac_ifioctl; 344 ifp->if_init = sun4i_emac_ifinit; 345 ifp->if_stop = sun4i_emac_ifstop; 346 ifp->if_watchdog = sun4i_emac_ifwatchdog; 347 IFQ_SET_READY(&ifp->if_snd); 348 349 /* 802.1Q VLAN-sized frames are supported */ 350 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 351 352 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 353 354 mii->mii_ifp = ifp; 355 mii->mii_readreg = sun4i_emac_miibus_read_reg; 356 mii->mii_writereg = sun4i_emac_miibus_write_reg; 357 mii->mii_statchg = sun4i_emac_miibus_statchg; 358 359 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); 360 361 if (LIST_EMPTY(&mii->mii_phys)) { 362 aprint_error_dev(self, "no PHY found!\n"); 363 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); 364 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL); 365 } else { 366 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 367 } 368 369 /* 370 * Attach the interface. 371 */ 372 if_attach(ifp); 373 if_deferred_start_init(ifp, NULL); 374 ether_ifattach(ifp, enaddr); 375 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 376 RND_TYPE_NET, RND_FLAG_DEFAULT); 377 } 378 379 static inline void 380 sun4i_emac_int_enable(struct sun4i_emac_softc *sc) 381 { 382 sun4i_emac_clear_set(sc, EMAC_INT_CTL_REG, 0, 383 EMAC_INT_ENABLE); 384 sun4i_emac_write(sc, EMAC_INT_STA_REG, 385 sun4i_emac_read(sc, EMAC_INT_STA_REG)); 386 } 387 388 int 389 sun4i_emac_miibus_read_reg(device_t self, int phy, int reg, uint16_t *val) 390 { 391 struct sun4i_emac_softc * const sc = device_private(self); 392 int retry = 100; 393 int rv = 0; 394 395 sun4i_emac_write(sc, EMAC_MAC_MADR_REG, (phy << 8) | reg); 396 sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 1); 397 398 while (--retry > 0 && (sun4i_emac_read(sc, EMAC_MAC_MIND_REG) & 1) != 0) 399 delay(1000); 400 if (retry == 0) { 401 device_printf(self, "PHY read timeout\n"); 402 rv = ETIMEDOUT; 403 } 404 405 sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 0); 406 *val = sun4i_emac_read(sc, EMAC_MAC_MRDD_REG) & 0xffff; 407 408 return rv; 409 } 410 411 int 412 sun4i_emac_miibus_write_reg(device_t self, int phy, int reg, uint16_t val) 413 { 414 struct sun4i_emac_softc * const sc = device_private(self); 415 int retry = 100; 416 int rv = 0; 417 418 sun4i_emac_write(sc, EMAC_MAC_MADR_REG, (phy << 8) | reg); 419 sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 1); 420 421 while (--retry > 0 && (sun4i_emac_read(sc, EMAC_MAC_MIND_REG) & 1) != 0) 422 delay(1000); 423 if (retry == 0) { 424 device_printf(self, "PHY write timeout\n"); 425 rv = ETIMEDOUT; 426 } 427 428 sun4i_emac_write(sc, EMAC_MAC_MCMD_REG, 0); 429 sun4i_emac_write(sc, EMAC_MAC_MWTD_REG, val); 430 431 return rv; 432 } 433 434 void 435 sun4i_emac_miibus_statchg(struct ifnet *ifp) 436 { 437 struct sun4i_emac_softc * const sc = ifp->if_softc; 438 struct mii_data * const mii = &sc->sc_mii; 439 const u_int media = mii->mii_media_active; 440 441 /* 442 * Set MII interface based on the speed 443 * negotiated by the PHY. 444 */ 445 switch (IFM_SUBTYPE(media)) { 446 case IFM_10_T: 447 sun4i_emac_clear_set(sc, EMAC_MAC_SUPP_REG, 448 EMAC_MAC_SUPP_100M, 0); 449 break; 450 case IFM_100_TX: 451 sun4i_emac_clear_set(sc, EMAC_MAC_SUPP_REG, 452 0, EMAC_MAC_SUPP_100M); 453 break; 454 } 455 456 const bool link = (IFM_SUBTYPE(media) & (IFM_10_T | IFM_100_TX)) != 0; 457 if (link) { 458 if (media & IFM_FDX) { 459 sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG, 460 0, EMAC_MAC_CTL1_FD); 461 } else { 462 sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG, 463 EMAC_MAC_CTL1_FD, 0); 464 } 465 } 466 } 467 468 static void 469 sun4i_emac_tick(void *softc) 470 { 471 struct sun4i_emac_softc * const sc = softc; 472 struct mii_data * const mii = &sc->sc_mii; 473 int s; 474 475 s = splnet(); 476 mii_tick(mii); 477 callout_schedule(&sc->sc_stat_ch, hz); 478 splx(s); 479 } 480 481 static inline void 482 sun4i_emac_rxfifo_flush(struct sun4i_emac_softc *sc) 483 { 484 sun4i_emac_clear_set(sc, EMAC_CTL_REG, EMAC_CTL_RX_EN, 0); 485 486 sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG, 0, EMAC_RX_CTL_FIFO_RESET); 487 488 for (;;) { 489 uint32_t v0 = sun4i_emac_read(sc, EMAC_RX_CTL_REG); 490 if ((v0 & EMAC_RX_CTL_FIFO_RESET) == 0) 491 break; 492 } 493 494 sun4i_emac_clear_set(sc, EMAC_CTL_REG, 0, EMAC_CTL_RX_EN); 495 } 496 497 static void 498 sun4i_emac_rxfifo_consume(struct sun4i_emac_softc *sc, size_t len) 499 { 500 for (len = (len + 3) >> 2; len > 0; len--) { 501 (void) sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG); 502 } 503 } 504 505 static void 506 sun4i_emac_rxfifo_transfer(struct sun4i_emac_softc *sc, struct mbuf *m) 507 { 508 uint32_t *dp32 = mtod(m, uint32_t *); 509 const int len = roundup2(m->m_len, 4); 510 511 bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh, 512 EMAC_RX_IO_DATA_REG, dp32, len / 4); 513 } 514 515 static struct mbuf * 516 sun4i_emac_mgethdr(struct sun4i_emac_softc *sc, size_t rxlen) 517 { 518 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA); 519 520 if (m == NULL) { 521 return NULL; 522 } 523 if (rxlen + 2 > MHLEN) { 524 MCLGET(m, M_DONTWAIT); 525 if ((m->m_flags & M_EXT) == 0) { 526 m_free(m); 527 return NULL; 528 } 529 } 530 531 m_adj(m, 2); 532 m->m_len = rxlen; 533 m->m_pkthdr.len = rxlen; 534 m_set_rcvif(m, &sc->sc_ec.ec_if); 535 m->m_flags |= M_HASFCS; 536 537 return m; 538 } 539 540 static void 541 sun4i_emac_if_input(struct sun4i_emac_softc *sc, struct mbuf *m) 542 { 543 struct ifnet * const ifp = &sc->sc_ec.ec_if; 544 545 if_percpuq_enqueue(ifp->if_percpuq, m); 546 } 547 548 static void 549 sun4i_emac_rx_intr(struct sun4i_emac_softc *sc) 550 { 551 for (;;) { 552 uint32_t rx_count = sun4i_emac_read(sc, EMAC_RX_FBC_REG); 553 struct mbuf *m; 554 555 if (rx_count == 0) { 556 rx_count = sun4i_emac_read(sc, EMAC_RX_FBC_REG); 557 if (rx_count == 0) 558 return; 559 } 560 561 uint32_t v = sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG); 562 if (v != EMAC_RX_MAGIC) { 563 sun4i_emac_rxfifo_flush(sc); 564 return; 565 } 566 567 uint32_t rxhdr = sun4i_emac_read(sc, EMAC_RX_IO_DATA_REG); 568 uint32_t rxlen = __SHIFTOUT(rxhdr, EMAC_RXHDR_LEN); 569 uint32_t rxsts = __SHIFTOUT(rxhdr, EMAC_RXHDR_STS); 570 571 if (rxlen < ETHER_MIN_LEN || (rxsts & EMAC_RX_STA_PKTOK) == 0) { 572 if_statinc(&sc->sc_ec.ec_if, if_ierrors); 573 continue; 574 } 575 576 m = sun4i_emac_mgethdr(sc, rxlen); 577 if (m == NULL) { 578 if_statinc(&sc->sc_ec.ec_if, if_ierrors); 579 sun4i_emac_rxfifo_consume(sc, rxlen); 580 return; 581 } 582 583 sun4i_emac_rxfifo_transfer(sc, m); 584 sun4i_emac_if_input(sc, m); 585 } 586 } 587 588 static int 589 sun4i_emac_txfifo_transfer(struct sun4i_emac_softc *sc, struct mbuf *m, u_int slot) 590 { 591 bus_size_t const io_data_reg = EMAC_TX_IO_DATA_REG(0); 592 const int len = m->m_pkthdr.len; 593 uint32_t *pktdata; 594 595 KASSERT(len > 0 && len <= sizeof(sc->sc_txbuf)); 596 597 if (m->m_next != NULL) { 598 m_copydata(m, 0, len, sc->sc_txbuf); 599 pktdata = sc->sc_txbuf; 600 } else { 601 pktdata = mtod(m, uint32_t *); 602 } 603 604 bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, io_data_reg, 605 pktdata, roundup2(len, 4) / 4); 606 607 return len; 608 } 609 610 static void 611 sun4i_emac_tx_enqueue(struct sun4i_emac_softc *sc, struct mbuf *m, u_int slot) 612 { 613 struct ifnet * const ifp = &sc->sc_ec.ec_if; 614 615 sun4i_emac_write(sc, EMAC_TX_INS_REG, slot); 616 617 const int len = sun4i_emac_txfifo_transfer(sc, m, slot); 618 619 bus_size_t const pl_reg = EMAC_TX_PL_REG(slot); 620 bus_size_t const ctl_reg = EMAC_TX_CTL_REG(slot); 621 622 sun4i_emac_write(sc, pl_reg, len); 623 sun4i_emac_clear_set(sc, ctl_reg, 0, EMAC_TX_CTL_START); 624 625 bpf_mtap(ifp, m, BPF_D_OUT); 626 627 m_freem(m); 628 } 629 630 static void 631 sun4i_emac_tx_intr(struct sun4i_emac_softc *sc, u_int slot) 632 { 633 struct ifnet * const ifp = &sc->sc_ec.ec_if; 634 635 sc->sc_tx_active &= ~__BIT(slot); 636 ifp->if_flags &= ~IFF_OACTIVE; 637 } 638 639 int 640 sun4i_emac_intr(void *arg) 641 { 642 struct sun4i_emac_softc * const sc = arg; 643 struct ifnet * const ifp = &sc->sc_ec.ec_if; 644 645 mutex_enter(&sc->sc_intr_lock); 646 647 uint32_t sts = sun4i_emac_read(sc, EMAC_INT_STA_REG); 648 sun4i_emac_write(sc, EMAC_INT_STA_REG, sts); 649 rnd_add_uint32(&sc->sc_rnd_source, sts); 650 651 if (sts & EMAC_INT_RX) { 652 sun4i_emac_rx_intr(sc); 653 } 654 if (sts & EMAC_INT_TX0) { 655 sun4i_emac_tx_intr(sc, 0); 656 } 657 if (sts & EMAC_INT_TX1) { 658 sun4i_emac_tx_intr(sc, 1); 659 } 660 if (sts & (EMAC_INT_TX0 | EMAC_INT_TX1)) { 661 if (sc->sc_tx_active == 0) 662 ifp->if_timer = 0; 663 if_schedule_deferred_start(ifp); 664 } 665 666 mutex_exit(&sc->sc_intr_lock); 667 668 return 1; 669 } 670 671 void 672 sun4i_emac_ifstart(struct ifnet *ifp) 673 { 674 struct sun4i_emac_softc * const sc = ifp->if_softc; 675 676 mutex_enter(&sc->sc_intr_lock); 677 678 if ((sc->sc_tx_active & 1) == 0) { 679 struct mbuf *m; 680 IFQ_DEQUEUE(&ifp->if_snd, m); 681 if (m == NULL) { 682 mutex_exit(&sc->sc_intr_lock); 683 return; 684 } 685 sun4i_emac_tx_enqueue(sc, m, 0); 686 sc->sc_tx_active |= 1; 687 } 688 689 if ((sc->sc_tx_active & 2) == 0) { 690 struct mbuf *m; 691 IFQ_DEQUEUE(&ifp->if_snd, m); 692 if (m == NULL) { 693 mutex_exit(&sc->sc_intr_lock); 694 return; 695 } 696 sun4i_emac_tx_enqueue(sc, m, 1); 697 sc->sc_tx_active |= 2; 698 } 699 700 if (sc->sc_tx_active == 3) 701 ifp->if_flags |= IFF_OACTIVE; 702 703 ifp->if_timer = 5; 704 705 mutex_exit(&sc->sc_intr_lock); 706 } 707 708 709 static int 710 sun4i_emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 711 { 712 struct sun4i_emac_softc * const sc = ifp->if_softc; 713 int error; 714 715 switch (cmd) { 716 default: 717 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 718 break; 719 error = 0; 720 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 721 break; 722 if (ifp->if_flags & IFF_RUNNING) { 723 /* 724 * Multicast list has changed; set the hardware filter 725 * accordingly. 726 */ 727 mutex_enter(&sc->sc_intr_lock); 728 sun4i_emac_ifstop(ifp, 0); 729 error = sun4i_emac_ifinit(ifp); 730 mutex_exit(&sc->sc_intr_lock); 731 } 732 break; 733 } 734 735 return error; 736 } 737 738 static void 739 sun4i_emac_ifstop(struct ifnet *ifp, int discard) 740 { 741 struct sun4i_emac_softc * const sc = ifp->if_softc; 742 struct mii_data * const mii = &sc->sc_mii; 743 744 KASSERT(mutex_owned(&sc->sc_intr_lock)); 745 746 callout_stop(&sc->sc_stat_ch); 747 mii_down(mii); 748 749 sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0); 750 sun4i_emac_write(sc, EMAC_INT_STA_REG, 751 sun4i_emac_read(sc, EMAC_INT_STA_REG)); 752 753 sun4i_emac_clear_set(sc, EMAC_CTL_REG, 754 EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN, 0); 755 756 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 757 ifp->if_timer = 0; 758 } 759 760 int 761 sun4i_emac_ifinit(struct ifnet *ifp) 762 { 763 struct sun4i_emac_softc * const sc = ifp->if_softc; 764 struct mii_data * const mii = &sc->sc_mii; 765 766 sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG, 767 0, EMAC_RX_CTL_FIFO_RESET); 768 769 delay(1); 770 771 sun4i_emac_clear_set(sc, EMAC_MAC_CTL0_REG, 772 EMAC_MAC_CTL0_SOFT_RESET, 0); 773 774 sun4i_emac_clear_set(sc, EMAC_MAC_MCFG_REG, 775 EMAC_MAC_MCFG_CLK, __SHIFTIN(0xd, EMAC_MAC_MCFG_CLK)); 776 777 sun4i_emac_write(sc, EMAC_RX_FBC_REG, 0); 778 779 sun4i_emac_write(sc, EMAC_INT_CTL_REG, 0); 780 sun4i_emac_write(sc, EMAC_INT_STA_REG, 781 sun4i_emac_read(sc, EMAC_INT_STA_REG)); 782 783 delay(1); 784 785 sun4i_emac_clear_set(sc, EMAC_TX_MODE_REG, 786 EMAC_TX_MODE_DMA, EMAC_TX_MODE_ABF_ENA); 787 788 sun4i_emac_clear_set(sc, EMAC_MAC_CTL0_REG, 789 0, EMAC_MAC_CTL0_TFC | EMAC_MAC_CTL0_RFC); 790 791 sun4i_emac_clear_set(sc, EMAC_RX_CTL_REG, 792 EMAC_RX_CTL_DMA, 0); 793 794 sun4i_emac_clear_set(sc, EMAC_MAC_CTL1_REG, 795 0, 796 EMAC_MAC_CTL1_FLC | EMAC_MAC_CTL1_CRC | 797 EMAC_MAC_CTL1_PC); 798 799 sun4i_emac_write(sc, EMAC_MAC_IPGT_REG, EMAC_MAC_IPGT_FD); 800 sun4i_emac_write(sc, EMAC_MAC_IPGR_REG, 801 __SHIFTIN(0x0c, EMAC_MAC_IPGR_IPG1) | 802 __SHIFTIN(0x12, EMAC_MAC_IPGR_IPG2)); 803 804 sun4i_emac_write(sc, EMAC_MAC_CLRT_REG, 805 __SHIFTIN(0x0f, EMAC_MAC_CLRT_RM) | 806 __SHIFTIN(0x37, EMAC_MAC_CLRT_CW)); 807 808 sun4i_emac_write(sc, EMAC_MAC_MAXF_REG, 0x600); 809 810 sun4i_emac_rx_hash(sc); 811 812 sun4i_emac_int_enable(sc); 813 814 ifp->if_flags |= IFF_RUNNING; 815 ifp->if_flags &= ~IFF_OACTIVE; 816 817 /* Enable RX/TX */ 818 sun4i_emac_clear_set(sc, EMAC_CTL_REG, 819 0, EMAC_CTL_RST | EMAC_CTL_TX_EN | EMAC_CTL_RX_EN); 820 821 mii_mediachg(mii); 822 callout_schedule(&sc->sc_stat_ch, hz); 823 824 return 0; 825 } 826 827 static void 828 sun4i_emac_ifwatchdog(struct ifnet *ifp) 829 { 830 struct sun4i_emac_softc * const sc = ifp->if_softc; 831 832 device_printf(sc->sc_dev, "device timeout\n"); 833 834 if_statinc(ifp, if_oerrors); 835 sun4i_emac_ifinit(ifp); 836 sun4i_emac_ifstart(ifp); 837 } 838 839 static void 840 sun4i_emac_rx_hash(struct sun4i_emac_softc *sc) 841 { 842 struct ethercom *ec = &sc->sc_ec; 843 struct ifnet * const ifp = &ec->ec_if; 844 struct ether_multistep step; 845 struct ether_multi *enm; 846 uint32_t hash[2]; 847 uint32_t rxctl; 848 849 rxctl = sun4i_emac_read(sc, EMAC_RX_CTL_REG); 850 rxctl &= ~EMAC_RX_CTL_MHF; 851 rxctl |= EMAC_RX_CTL_UCAD; 852 rxctl |= EMAC_RX_CTL_DAF; 853 rxctl |= EMAC_RX_CTL_MC0; 854 rxctl |= EMAC_RX_CTL_BC0; 855 rxctl |= EMAC_RX_CTL_POR; 856 857 hash[0] = hash[1] = ~0; 858 if (ifp->if_flags & IFF_PROMISC) { 859 ifp->if_flags |= IFF_ALLMULTI; 860 rxctl |= EMAC_RX_CTL_PROMISC; 861 } else { 862 rxctl &= ~EMAC_RX_CTL_PROMISC; 863 } 864 865 if ((ifp->if_flags & IFF_PROMISC) == 0) { 866 hash[0] = hash[1] = 0; 867 868 ETHER_LOCK(ec); 869 ETHER_FIRST_MULTI(step, ec, enm); 870 while (enm != NULL) { 871 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 872 ETHER_ADDR_LEN)) { 873 ETHER_UNLOCK(ec); 874 /* 875 * We must listen to a range of multicast 876 * addresses. For now, just accept all 877 * multicasts, rather than trying to set only 878 * those filter bits needed to match the range. 879 * (At this time, the only use of address 880 * ranges is for IP multicast routing, for 881 * which the range is big enough to require all 882 * bits set.) 883 */ 884 hash[0] = hash[1] = ~0; 885 ifp->if_flags |= IFF_ALLMULTI; 886 goto done; 887 } 888 889 u_int crc = ether_crc32_be(enm->enm_addrlo, 890 ETHER_ADDR_LEN); 891 892 /* Just want the 6 most significant bits. */ 893 crc >>= 26; 894 895 /* Set the corresponding bit in the filter. */ 896 hash[crc >> 5] |= __BIT(crc & 31); 897 ETHER_NEXT_MULTI(step, enm); 898 } 899 ETHER_UNLOCK(ec); 900 ifp->if_flags &= ~IFF_ALLMULTI; 901 rxctl |= EMAC_RX_CTL_MHF; 902 } 903 904 done: 905 906 sun4i_emac_write(sc, EMAC_RX_HASH0_REG, hash[0]); 907 sun4i_emac_write(sc, EMAC_RX_HASH1_REG, hash[1]); 908 909 sun4i_emac_write(sc, EMAC_RX_CTL_REG, rxctl); 910 } 911