xref: /netbsd-src/sys/arch/arm/sociox/if_scx.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /*	$NetBSD: if_scx.c,v 1.22 2020/03/28 13:15:24 nisimura Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #define NOT_MP_SAFE	0
33 
34 /*
35  * Socionext SC2A11 SynQuacer NetSec GbE driver
36  *
37  *   (possibly incorrect notes to be removed eventually)
38  * - 32 byte descriptor for 64 bit paddr design.
39  * - multiple rings seems available. There are special descriptor fields
40  *   to designify ring number from which to arrive or to which go.
41  * - memory mapped EEPROM to hold MAC address. The rest of the area is
42  *   occupied by a set of ucode for two DMA engines and one packet engine.
43  * - The size of frame address filter is 16 plus 16.
44  * - The first slot is my own station address. Always enabled to perform
45  *   to identify oneself.
46  * - 1~15 are for supplimental MAC addresses. Independently enabled for
47  *   use. Good to catch multicast. Byte-wise selective match available.
48  *   Use the mask to catch { 0x01, 0x00, 0x00 } and/or { 0x33, 0x33 }.
49  * - 16~32 might be exact match without byte-mask.
50  * - The size of multicast hash filter store is 64 bit.
51  * - Socionext/Linaro "NetSec" code contains some constants left unexplained.
52  *   Fortunately, Intel/Altera CycloneV PDFs describe every detail of
53  *   "such the instance of" DW EMAC IP and most of them are likely applicable
54  *   to SC2A11 GbE.
55  * - not known "NetSec" instanciates DW timestamp or builds its own.
56  * - DW EMAC implmentation (0x20) is known 0x10.36
57  */
58 
59 #include <sys/cdefs.h>
60 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.22 2020/03/28 13:15:24 nisimura Exp $");
61 
62 #include <sys/param.h>
63 #include <sys/bus.h>
64 #include <sys/intr.h>
65 #include <sys/device.h>
66 #include <sys/callout.h>
67 #include <sys/mbuf.h>
68 #include <sys/malloc.h>
69 #include <sys/errno.h>
70 #include <sys/rndsource.h>
71 #include <sys/kernel.h>
72 #include <sys/systm.h>
73 
74 #include <net/if.h>
75 #include <net/if_media.h>
76 #include <net/if_dl.h>
77 #include <net/if_ether.h>
78 #include <dev/mii/mii.h>
79 #include <dev/mii/miivar.h>
80 #include <net/bpf.h>
81 
82 #include <dev/fdt/fdtvar.h>
83 #include <dev/acpi/acpireg.h>
84 #include <dev/acpi/acpivar.h>
85 #include <dev/acpi/acpi_intr.h>
86 
87 /*
88  * SC2A11 register block 0x100-0x1204?
89  */
90 #define SWRESET		0x104
91 #define COMINIT		0x120
92 #define xINTSR		0x200		/* aggregated interrupt status report */
93 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
94 #define  IRQ_TX		(1U<<0)		/* top level Rx interrupt */
95 #define xINTAEN		0x204		/* INT_A enable */
96 #define xINTA_SET	0x234		/* bit to set */
97 #define xINTA_CLR	0x238		/* bit to clr */
98 #define xINTBEN		0x23c		/* INT_B enable */
99 #define xINTB_SET	0x240		/* bit to set */
100 #define xINTB_CLR	0x244		/* bit to clr */
101 /* 0x00c-048 */		/* pkt,tls,s0,s1 SR/IE/SET/CLR */
102 #define TXISR		0x400
103 #define TXIEN		0x404
104 #define TXI_SET		0x428
105 #define TXI_CLR		0x42c
106 #define  TXI_NTOWNR	(1U<<17)
107 #define  TXI_TR_ERR	(1U<<16)
108 #define  TXI_TXDONE	(1U<<15)
109 #define  TXI_TMREXP	(1U<<14)
110 #define RXISR		0x440
111 #define RXIEN		0x444
112 #define RXI_SET		0x468
113 #define RXI_CLR		0x46c
114 #define  RXI_RC_ERR	(1U<<16)
115 #define  RXI_PKTCNT	(1U<<15)
116 #define  RXI_TMREXP	(1U<<14)
117 #define TXTIMER		0x41c
118 #define RXTIMER		0x45c
119 #define TXCOUNT		0x410
120 #define RXCOUNT		0x454
121 #define H2MENG		0x210		/* DMAC host2media ucode port */
122 #define M2HENG		0x21c		/* DMAC media2host ucode port */
123 #define PKTENG		0x0d0		/* packet engine ucode port */
124 #define CLKEN		0x100		/* clock distribution enable */
125 #define  CLK_G		(1U<<5)
126 #define  CLK_ALL	0x24
127 #define MACADRH		0x10c		/* ??? */
128 #define MACADRL		0x110		/* ??? */
129 #define MCVER		0x22c		/* micro controller version */
130 #define HWVER		0x230		/* hardware version */
131 
132 /* 0x800 */		/* dec Tx  SR/EN/SET/CLR */
133 /* 0x840 */		/* enc Rx  SR/EN/SET/CLR */
134 /* 0x880 */		/* enc TLS Tx  SR/IE/SET/CLR */
135 /* 0x8c0 */		/* dec TLS Tx  SR/IE/SET/CLR */
136 /* 0x900 */		/* enc TLS Rx  SR/IE/SET/CLR */
137 /* 0x940 */		/* dec TLS Rx  SR/IE/SET/CLR */
138 /* 0x980 */		/* enc RAW Tx  SR/IE/SET/CLR */
139 /* 0x9c0 */		/* dec RAW Tx  SR/IE/SET/CLR */
140 /* 0xA00 */		/* enc RAW Rx  SR/IE/SET/CLR */
141 /* 0xA40 */		/* dec RAW Rx  SR/IE/SET/CLR */
142 
143 #define MACCMD		0x11c4		/* gmac operation */
144 #define  CMD_IOWR	(1U<<28)	/* write op */
145 #define  CMD_BUSY	(1U<<31)	/* busy bit */
146 #define MACSTAT		0x1024		/* gmac status */
147 #define MACDATA		0x11c0		/* gmac rd/wr data */
148 #define MACINTE		0x1028		/* interrupt enable */
149 #define DESC_INIT	0x11fc		/* desc engine init */
150 #define DESC_SRST	0x1204		/* desc engine sw reset */
151 
152 /*
153  * GMAC register block. use mac_write()/mac_read() to handle
154  */
155 #define GMACMCR		0x0000		/* MAC configuration */
156 #define  MCR_IBN	(1U<<30)	/* ??? */
157 #define  MCR_CST	(1U<<25)	/* strip CRC */
158 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
159 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
160 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
161 #define  MCR_DRCS	(1U<<16)	/* ignore (G)MII HDX Tx error */
162 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII (_PS) */
163 #define  MCR_SPD100	(1U<<14)	/* force speed 100 (_FES) */
164 #define  MCR_DO		(1U<<13)	/* */
165 #define  MCR_LOOP	(1U<<12)	/* */
166 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
167 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
168 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
169 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
170 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
171 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
172 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
173 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
174 #define GMACAFR		0x0004		/* frame DA/SA address filter */
175 #define  AFR_RA		(1U<<31)	/* accept all irrecspective of filt. */
176 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
177 #define  AFR_SAF	(1U<<9)		/* source address filter */
178 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
179 #define  AFR_PCF	(2U<<6)		/* */
180 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
181 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
182 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
183 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
184 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
185 #define  AFR_PR		(1U<<0)		/* run promisc mode */
186 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
187 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
188 #define GMACGAR		0x0010		/* MDIO operation */
189 #define  GAR_PHY	(11)		/* mii phy 15:11 */
190 #define  GAR_REG	(6)		/* mii reg 10:6 */
191 #define  GAR_CTL	(2)		/* control 5:2 */
192 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
193 #define  GAR_BUSY	(1U)		/* busy bit */
194 #define GMACGDR		0x0014		/* MDIO rd/wr data */
195 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
196 					/* 31:16 pause timer value */
197 					/* 5:4 pause timer threthold */
198 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
199 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
200 #define GMACVTAG	0x001c		/* VLAN tag control */
201 #define GMACIMPL	0x0020		/* implementation number XX.YY */
202 #define GMACLPIS	0x0030		/* AXI LPI control */
203 #define GMACLPIC	0x0034		/* AXI LPI control */
204 #define GMACISR		0x0038		/* interrupt status, clear when read */
205 #define GMACIMR		0x003c		/* interrupt enable */
206 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
207 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
208 #define  ISR_TX		(1U<<6)		/* Tx completed */
209 #define  ISR_RX		(1U<<5)		/* Rx completed */
210 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
211 #define  ISR_LC		(1U<<0)		/* link status change detected */
212 #define GMACMAH0	0x0040		/* MAC address 0 47:32 */
213 #define GMACMAL0	0x0044		/* MAC address 0 31:0 */
214 #define GMACMAH(i) 	((i)*8+0x40)	/* supplimental MAC addr 1 - 15 */
215 #define GMACMAL(i) 	((i)*8+0x44)	/* bit 31 to use, 30 SA,
216 					 * 29:24 byte-wise don'care */
217 #define GMACMIISR	0x00d8		/* resolved xMII link status */
218 					/*  3   link up detected
219 					 *  2:1 resovled speed
220 					 *      0 2.5Mhz (10Mbps)
221 					 *	1 25Mhz  (100Mbps)
222 					 *	2 125Mhz (1000Mbps)
223 					 *  1   full duplex detected */
224 #define GMACEVCTL	0x0100		/* event counter control */
225 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114~284 */
226 
227 #define GMACMHT(i)	((i)*4+0x500)	/* 256bit multicast hash table 0 - 7 */
228 #define GMACVHT		0x0588		/* VLAN tag hash */
229 
230 /* 0x0700-0734 ??? */
231 #define GMACAMAH(i)	((i)*8+0x800)	/* supplimental MAC addr 16-31 */
232 #define GMACAMAL(i)	((i)*8+0x804)	/* bit 31 to use */
233 
234 #define GMACBMR		0x1000		/* DMA bus mode control
235 					 * 24    4PBL 8???
236 					 * 23    USP
237 					 * 22:17 RPBL
238 					 * 16    fixed burst, or undefined b.
239 					 * 15:14 priority between Rx and Tx
240 					 *  3    rxtx ratio 41
241 					 *  2    rxtx ratio 31
242 					 *  1    rxtx ratio 21
243 					 *  0    rxtx ratio 11
244 					 * 13:8  PBL possible DMA burst len
245 					 *  7    alternative des8
246 					 *  0    reset op. self clear
247 					 */
248 #define  _BMR		0x00412080	/* XXX TBD */
249 #define  _BMR0		0x00020181	/* XXX TBD */
250 #define  BMR_RST	(1)		/* reset op. self clear when done */
251 #define GMACTPD		0x1004		/* write any to resume tdes */
252 #define GMACRPD		0x1008		/* write any to resume rdes */
253 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
254 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
255 #define  _RDLA		0x18000		/* XXX TBD system SRAM with CC ? */
256 #define  _TDLA		0x1c000		/* XXX TBD system SRAM with CC ? */
257 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
258 #define GMACOMR		0x1018		/* DMA operation */
259 #define  OMR_TSF	(1U<<25)	/* 1: Tx store&forword, 0: immed. */
260 #define  OMR_RSF	(1U<<21)	/* 1: Rx store&forward, 0: immed. */
261 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
262 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
263 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
264 #define  OMR_RS		(1U<<1)		/* run Rx DMA engine, 0 to stop */
265 #define GMACIE		0x101c		/* interrupt enable */
266 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
267 #define GMACRWDT	0x1024		/* receive watchdog timer count */
268 #define GMACAXIB	0x1028		/* AXI bus mode control */
269 #define GMACAXIS	0x102c		/* AXI status report */
270 /* 0x1048-1054 */			/* descriptor and buffer cur. address */
271 #define HWFEA		0x1058		/* feature report */
272 
273 /* descriptor format definition */
274 struct tdes {
275 	uint32_t t0, t1, t2, t3;
276 };
277 
278 struct rdes {
279 	uint32_t r0, r1, r2, r3;
280 };
281 
282 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
283 #define T0_EOD		(1U<<30)	/* end of descriptor array */
284 #define T0_DRID		(24)		/* 29:24 D-RID */
285 #define T0_PT		(1U<<21)	/* 23:21 PT */
286 #define T0_TRID		(16)		/* 20:16 T-RID */
287 #define T0_FS		(1U<<9)		/* first segment of frame */
288 #define T0_LS		(1U<<8)		/* last segment of frame */
289 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
290 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
291 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
292 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
293 /* T1 segment address 63:32 */
294 /* T2 segment address 31:0 */
295 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
296 #define R0_OWN		(1U<<31)	/* desc is empty */
297 #define R0_EOD		(1U<<30)	/* end of descriptor array */
298 #define R0_SRID		(24)		/* 29:24 S-RID */
299 #define R0_FR		(1U<<23)	/* FR */
300 #define R0_ER		(1U<<21)	/* Rx error indication */
301 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
302 #define R0_TDRID	(14)		/* 15:14 TD-RID */
303 #define R0_FS		(1U<<9)		/* first segment of frame */
304 #define R0_LS		(1U<<8)		/* last segment of frame */
305 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
306 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
307 /* R1 frame address 63:32 */
308 /* R2 frame address 31:0 */
309 /* R3 31:16 received frame length, 15:0 buffer length to receive */
310 
311 /*
312  * software constraction
313  */
314 #define MD_NTXSEGS		16		/* fixed */
315 #define MD_TXQUEUELEN		16		/* tunable */
316 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
317 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
318 #define MD_NTXDESC		(MD_TXQUEUELEN * MD_NTXSEGS)
319 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
320 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
321 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
322 
323 #define MD_NRXDESC		64		/* tunable */
324 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
325 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
326 
327 #define SCX_INIT_RXDESC(sc, x)						\
328 do {									\
329 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
330 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
331 	struct mbuf *__m = __rxs->rxs_mbuf;				\
332 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
333 	__m->m_data = __m->m_ext.ext_buf;				\
334 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
335 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
336 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
337 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
338 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
339 } while (/*CONSTCOND*/0)
340 
341 struct control_data {
342 	struct tdes cd_txdescs[MD_NTXDESC];
343 	struct rdes cd_rxdescs[MD_NRXDESC];
344 };
345 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
346 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
347 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
348 
349 struct scx_txsoft {
350 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
351 	bus_dmamap_t txs_dmamap;	/* our DMA map */
352 	int txs_firstdesc;		/* first descriptor in packet */
353 	int txs_lastdesc;		/* last descriptor in packet */
354 	int txs_ndesc;			/* # of descriptors used */
355 };
356 
357 struct scx_rxsoft {
358 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
359 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
360 };
361 
362 struct scx_softc {
363 	device_t sc_dev;		/* generic device information */
364 	bus_space_tag_t sc_st;		/* bus space tag */
365 	bus_space_handle_t sc_sh;	/* bus space handle */
366 	bus_size_t sc_sz;		/* csr map size */
367 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
368 	bus_size_t sc_eesz;		/* eeprom map size */
369 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
370 	bus_dma_tag_t sc_dmat32;
371 	struct ethercom sc_ethercom;	/* Ethernet common data */
372 	struct mii_data sc_mii;		/* MII */
373 	callout_t sc_tick_ch;		/* PHY monitor callout */
374 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
375 	int sc_nseg;			/* descriptor store nseg */
376 	void *sc_ih;			/* interrupt cookie */
377 	int sc_phy_id;			/* PHY address */
378 	int sc_flowflags;		/* 802.3x PAUSE flow control */
379 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
380 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
381 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
382 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
383 	int sc_phandle;			/* fdt phandle */
384 	uint64_t sc_freq;
385 
386 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
387 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
388 
389 	struct control_data *sc_control_data;
390 #define sc_txdescs	sc_control_data->cd_txdescs
391 #define sc_rxdescs	sc_control_data->cd_rxdescs
392 
393 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
394 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
395 	int sc_txfree;			/* number of free Tx descriptors */
396 	int sc_txnext;			/* next ready Tx descriptor */
397 	int sc_txsfree;			/* number of free Tx jobs */
398 	int sc_txsnext;			/* next ready Tx job */
399 	int sc_txsdirty;		/* dirty Tx jobs */
400 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
401 
402 	krndsource_t rnd_source;	/* random source */
403 };
404 
405 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
406 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
407 
408 #define SCX_CDTXSYNC(sc, x, n, ops)					\
409 do {									\
410 	int __x, __n;							\
411 									\
412 	__x = (x);							\
413 	__n = (n);							\
414 									\
415 	/* If it will wrap around, sync to the end of the ring. */	\
416 	if ((__x + __n) > MD_NTXDESC) {				\
417 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
418 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
419 		    (MD_NTXDESC - __x), (ops));			\
420 		__n -= (MD_NTXDESC - __x);				\
421 		__x = 0;						\
422 	}								\
423 									\
424 	/* Now sync whatever is left. */				\
425 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
426 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
427 } while (/*CONSTCOND*/0)
428 
429 #define SCX_CDRXSYNC(sc, x, ops)					\
430 do {									\
431 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
432 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
433 } while (/*CONSTCOND*/0)
434 
435 static int scx_fdt_match(device_t, cfdata_t, void *);
436 static void scx_fdt_attach(device_t, device_t, void *);
437 static int scx_acpi_match(device_t, cfdata_t, void *);
438 static void scx_acpi_attach(device_t, device_t, void *);
439 
440 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
441     scx_fdt_match, scx_fdt_attach, NULL, NULL);
442 
443 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
444     scx_acpi_match, scx_acpi_attach, NULL, NULL);
445 
446 static void scx_attach_i(struct scx_softc *);
447 static void scx_reset(struct scx_softc *);
448 static int scx_init(struct ifnet *);
449 static void scx_start(struct ifnet *);
450 static void scx_stop(struct ifnet *, int);
451 static void scx_watchdog(struct ifnet *);
452 static int scx_ioctl(struct ifnet *, u_long, void *);
453 static void scx_set_rcvfilt(struct scx_softc *);
454 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
455 static void mii_statchg(struct ifnet *);
456 static void phy_tick(void *);
457 static int mii_readreg(device_t, int, int, uint16_t *);
458 static int mii_writereg(device_t, int, int, uint16_t);
459 static int scx_intr(void *);
460 static void txreap(struct scx_softc *);
461 static void rxintr(struct scx_softc *);
462 static int add_rxbuf(struct scx_softc *, int);
463 
464 static int spin_waitfor(struct scx_softc *, int, int);
465 static int mac_read(struct scx_softc *, int);
466 static void mac_write(struct scx_softc *, int, int);
467 static void loaducode(struct scx_softc *);
468 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
469 static int get_mdioclk(uint32_t);
470 
471 #define CSR_READ(sc,off) \
472 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
473 #define CSR_WRITE(sc,off,val) \
474 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
475 #define EE_READ(sc,off) \
476 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
477 
478 static int
479 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
480 {
481 	static const char * compatible[] = {
482 		"socionext,synquacer-netsec",
483 		NULL
484 	};
485 	struct fdt_attach_args * const faa = aux;
486 
487 	return of_match_compatible(faa->faa_phandle, compatible);
488 }
489 
490 static void
491 scx_fdt_attach(device_t parent, device_t self, void *aux)
492 {
493 	struct scx_softc * const sc = device_private(self);
494 	struct fdt_attach_args * const faa = aux;
495 	const int phandle = faa->faa_phandle;
496 	bus_space_tag_t bst = faa->faa_bst;
497 	bus_space_handle_t bsh;
498 	bus_space_handle_t eebsh;
499 	bus_addr_t addr[2];
500 	bus_size_t size[2];
501 	char intrstr[128];
502 	const char *phy_mode;
503 
504 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
505 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
506 		aprint_error(": unable to map device csr\n");
507 		return;
508 	}
509 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
510 		aprint_error(": failed to decode interrupt\n");
511 		goto fail;
512 	}
513 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
514 		NOT_MP_SAFE, scx_intr, sc);
515 	if (sc->sc_ih == NULL) {
516 		aprint_error_dev(self, "couldn't establish interrupt\n");
517 		goto fail;
518 	}
519 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
520 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
521 		aprint_error(": unable to map device eeprom\n");
522 		goto fail;
523 	}
524 
525 	aprint_naive("\n");
526 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
527 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
528 
529 	sc->sc_dev = self;
530 	sc->sc_st = bst;
531 	sc->sc_sh = bsh;
532 	sc->sc_sz = size[0];
533 	sc->sc_eesh = eebsh;
534 	sc->sc_eesz = size[1];
535 	sc->sc_dmat = faa->faa_dmat;
536 	sc->sc_dmat32 = faa->faa_dmat; /* XXX */
537 	sc->sc_phandle = phandle;
538 
539 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
540 	if (phy_mode == NULL)
541 		aprint_error(": missing 'phy-mode' property\n");
542 	sc->sc_100mii = (phy_mode  && strcmp(phy_mode, "rgmii") != 0);
543 sc->sc_phy_id = 7; /* XXX */
544 sc->sc_freq = 125 * 1000 * 1000; /* XXX */
545 aprint_normal_dev(self,
546 "phy mode %s, phy id %d, freq %ld\n", phy_mode, sc->sc_phy_id, sc->sc_freq);
547 
548 	scx_attach_i(sc);
549 	return;
550  fail:
551 	if (sc->sc_eesz)
552 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
553 	if (sc->sc_sz)
554 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
555 	return;
556 }
557 
558 static int
559 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
560 {
561 	static const char * compatible[] = {
562 		"SCX0001",
563 		NULL
564 	};
565 	struct acpi_attach_args *aa = aux;
566 
567 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
568 		return 0;
569 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
570 }
571 
572 static void
573 scx_acpi_attach(device_t parent, device_t self, void *aux)
574 {
575 	struct scx_softc * const sc = device_private(self);
576 	struct acpi_attach_args * const aa = aux;
577 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
578 	bus_space_tag_t bst = aa->aa_memt;
579 	bus_space_handle_t bsh, eebsh;
580 	struct acpi_resources res;
581 	struct acpi_mem *mem;
582 	struct acpi_irq *irq;
583 	char *phy_mode;
584 	ACPI_INTEGER acpi_phy, acpi_freq;
585 	ACPI_STATUS rv;
586 
587 	rv = acpi_resource_parse(self, handle, "_CRS",
588 	    &res, &acpi_resource_parse_ops_default);
589 	if (ACPI_FAILURE(rv))
590 		return;
591 	mem = acpi_res_mem(&res, 0);
592 	irq = acpi_res_irq(&res, 0);
593 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
594 		aprint_error(": incomplete csr resources\n");
595 		return;
596 	}
597 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
598 		aprint_error(": couldn't map registers\n");
599 		return;
600 	}
601 	sc->sc_sz = mem->ar_length;
602 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
603 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
604 	if (sc->sc_ih == NULL) {
605 		aprint_error_dev(self, "couldn't establish interrupt\n");
606 		goto fail;
607 	}
608 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
609 	if (mem == NULL || mem->ar_length == 0) {
610 		aprint_error(": incomplete eeprom resources\n");
611 		goto fail;
612 	}
613 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
614 		aprint_error(": couldn't map registers\n");
615 		goto fail;
616 	}
617 	sc->sc_eesz = mem->ar_length;
618 
619 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
620 	if (ACPI_FAILURE(rv)) {
621 		aprint_error(": missing 'phy-mode' property\n");
622 		phy_mode = NULL;
623 	}
624 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
625 	if (ACPI_FAILURE(rv))
626 		acpi_phy = 31;
627 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
628 			&acpi_freq);
629 	if (ACPI_FAILURE(rv))
630 		acpi_freq = 999;
631 
632 	aprint_naive("\n");
633 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
634 
635 	sc->sc_dev = self;
636 	sc->sc_st = bst;
637 	sc->sc_sh = bsh;
638 	sc->sc_eesh = eebsh;
639 	sc->sc_dmat = aa->aa_dmat64;
640 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
641 
642 aprint_normal_dev(self,
643 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
644 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
645 	sc->sc_phy_id = (int)acpi_phy;
646 	sc->sc_freq = acpi_freq;
647 aprint_normal_dev(self,
648 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
649 
650 	scx_attach_i(sc);
651 
652 	acpi_resource_cleanup(&res);
653 	return;
654  fail:
655 	if (sc->sc_eesz > 0)
656 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
657 	if (sc->sc_sz > 0)
658 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
659 	acpi_resource_cleanup(&res);
660 	return;
661 }
662 
663 static void
664 scx_attach_i(struct scx_softc *sc)
665 {
666 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
667 	struct mii_data * const mii = &sc->sc_mii;
668 	struct ifmedia * const ifm = &mii->mii_media;
669 	uint32_t hwver, dwimp;
670 	uint8_t enaddr[ETHER_ADDR_LEN];
671 	bus_dma_segment_t seg;
672 	uint32_t csr;
673 	int i, nseg, error = 0;
674 
675 	hwver = CSR_READ(sc, HWVER);	/* Socionext HW */
676 	dwimp = mac_read(sc, GMACIMPL);	/* DW EMAC XX.YY */
677 	aprint_normal_dev(sc->sc_dev,
678 	    "Socionext NetSec GbE hw %d.%d impl 0x%x\n",
679 	    hwver >> 16, hwver & 0xffff, dwimp);
680 
681 	/* fetch MAC address in flash. stored in big endian order */
682 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 0);
683 	enaddr[0] = csr >> 24;
684 	enaddr[1] = csr >> 16;
685 	enaddr[2] = csr >> 8;
686 	enaddr[3] = csr;
687 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
688 	enaddr[4] = csr >> 24;
689 	enaddr[5] = csr >> 16;
690 	aprint_normal_dev(sc->sc_dev,
691 	    "Ethernet address %s\n", ether_sprintf(enaddr));
692 
693 sc->sc_phy_id = MII_PHY_ANY;
694 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
695 sc->sc_mdclk = 5; /* XXX */
696 aprint_normal_dev(sc->sc_dev, "using %d for mdclk\n", sc->sc_mdclk);
697 sc->sc_mdclk <<= 2;
698 
699 	sc->sc_flowflags = 0;
700 
701 	if (sc->sc_ucodeloaded == 0)
702 		loaducode(sc);
703 
704 	mii->mii_ifp = ifp;
705 	mii->mii_readreg = mii_readreg;
706 	mii->mii_writereg = mii_writereg;
707 	mii->mii_statchg = mii_statchg;
708 
709 	sc->sc_ethercom.ec_mii = mii;
710 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
711 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
712 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
713 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
714 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
715 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
716 	} else
717 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
718 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
719 
720 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
721 	ifp->if_softc = sc;
722 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
723 	ifp->if_ioctl = scx_ioctl;
724 	ifp->if_start = scx_start;
725 	ifp->if_watchdog = scx_watchdog;
726 	ifp->if_init = scx_init;
727 	ifp->if_stop = scx_stop;
728 	IFQ_SET_READY(&ifp->if_snd);
729 
730 	if_attach(ifp);
731 	if_deferred_start_init(ifp, NULL);
732 	ether_ifattach(ifp, enaddr);
733 
734 	callout_init(&sc->sc_tick_ch, 0);
735 	callout_setfunc(&sc->sc_tick_ch, phy_tick, sc);
736 
737 	/*
738 	 * Allocate the control data structures, and create and load the
739 	 * DMA map for it.
740 	 */
741 	error = bus_dmamem_alloc(sc->sc_dmat32,
742 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
743 	if (error != 0) {
744 		aprint_error_dev(sc->sc_dev,
745 		    "unable to allocate control data, error = %d\n", error);
746 		goto fail_0;
747 	}
748 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
749 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
750 	    BUS_DMA_COHERENT);
751 	if (error != 0) {
752 		aprint_error_dev(sc->sc_dev,
753 		    "unable to map control data, error = %d\n", error);
754 		goto fail_1;
755 	}
756 	error = bus_dmamap_create(sc->sc_dmat32,
757 	    sizeof(struct control_data), 1,
758 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
759 	if (error != 0) {
760 		aprint_error_dev(sc->sc_dev,
761 		    "unable to create control data DMA map, "
762 		    "error = %d\n", error);
763 		goto fail_2;
764 	}
765 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
766 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
767 	if (error != 0) {
768 		aprint_error_dev(sc->sc_dev,
769 		    "unable to load control data DMA map, error = %d\n",
770 		    error);
771 		goto fail_3;
772 	}
773 	for (i = 0; i < MD_TXQUEUELEN; i++) {
774 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
775 		    MD_NTXSEGS, MCLBYTES, 0, 0,
776 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
777 			aprint_error_dev(sc->sc_dev,
778 			    "unable to create tx DMA map %d, error = %d\n",
779 			    i, error);
780 			goto fail_4;
781 		}
782 	}
783 	for (i = 0; i < MD_NRXDESC; i++) {
784 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
785 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
786 			aprint_error_dev(sc->sc_dev,
787 			    "unable to create rx DMA map %d, error = %d\n",
788 			    i, error);
789 			goto fail_5;
790 		}
791 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
792 	}
793 	sc->sc_seg = seg;
794 	sc->sc_nseg = nseg;
795 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
796 
797 	if (pmf_device_register(sc->sc_dev, NULL, NULL))
798 		pmf_class_network_register(sc->sc_dev, ifp);
799 	else
800 		aprint_error_dev(sc->sc_dev,
801 			"couldn't establish power handler\n");
802 
803 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
804 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
805 
806 	return;
807 
808   fail_5:
809 	for (i = 0; i < MD_NRXDESC; i++) {
810 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
811 			bus_dmamap_destroy(sc->sc_dmat,
812 			    sc->sc_rxsoft[i].rxs_dmamap);
813 	}
814   fail_4:
815 	for (i = 0; i < MD_TXQUEUELEN; i++) {
816 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
817 			bus_dmamap_destroy(sc->sc_dmat,
818 			    sc->sc_txsoft[i].txs_dmamap);
819 	}
820 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
821   fail_3:
822 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
823   fail_2:
824 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
825 	    sizeof(struct control_data));
826   fail_1:
827 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
828   fail_0:
829 	if (sc->sc_phandle)
830 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
831 	else
832 		acpi_intr_disestablish(sc->sc_ih);
833 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
834 	return;
835 }
836 
837 static void
838 scx_reset(struct scx_softc *sc)
839 {
840 	int loop = 0, busy;
841 
842 	mac_write(sc, GMACOMR, 0);
843 	mac_write(sc, GMACBMR, BMR_RST);
844 	do {
845 		DELAY(1);
846 		busy = mac_read(sc, GMACBMR) & BMR_RST;
847 	} while (++loop < 3000 && busy);
848 	mac_write(sc, GMACBMR, _BMR);
849 	mac_write(sc, GMACAFR, 0);
850 
851 	CSR_WRITE(sc, CLKEN, CLK_ALL);	/* distribute clock sources */
852 	CSR_WRITE(sc, SWRESET, 0);	/* reset operation */
853 	CSR_WRITE(sc, SWRESET, 1U<<31);	/* manifest run */
854 	CSR_WRITE(sc, COMINIT, 3); 	/* DB|CLS*/
855 
856 	mac_write(sc, GMACEVCTL, 1);
857 }
858 
859 static int
860 scx_init(struct ifnet *ifp)
861 {
862 	struct scx_softc *sc = ifp->if_softc;
863 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
864 	uint32_t csr;
865 	int i;
866 
867 	/* Cancel pending I/O. */
868 	scx_stop(ifp, 0);
869 
870 	/* Reset the chip to a known state. */
871 	scx_reset(sc);
872 
873 	/* set my address in perfect match slot 0. little endin order */
874 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
875 	mac_write(sc, GMACMAL0, csr);
876 	csr = (ea[5] << 8) | ea[4];
877 	mac_write(sc, GMACMAH0, csr);
878 
879 	/* accept multicast frame or run promisc mode */
880 	scx_set_rcvfilt(sc);
881 
882 	(void)ether_mediachange(ifp);
883 
884 	/* build sane Tx */
885 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
886 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
887 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
888 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
889 	sc->sc_txfree = MD_NTXDESC;
890 	sc->sc_txnext = 0;
891 	for (i = 0; i < MD_TXQUEUELEN; i++)
892 		sc->sc_txsoft[i].txs_mbuf = NULL;
893 	sc->sc_txsfree = MD_TXQUEUELEN;
894 	sc->sc_txsnext = 0;
895 	sc->sc_txsdirty = 0;
896 
897 	/* load Rx descriptors with fresh mbuf */
898 	for (i = 0; i < MD_NRXDESC; i++)
899 		(void)add_rxbuf(sc, i);
900 	sc->sc_rxptr = 0;
901 
902 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
903 	mac_write(sc, GMACTDLA, SCX_CDTXADDR(sc, 0));
904 	mac_write(sc, GMACRDLA, SCX_CDRXADDR(sc, 0));
905 
906 	/* kick to start GMAC engine */
907 	CSR_WRITE(sc, RXI_CLR, ~0);
908 	CSR_WRITE(sc, TXI_CLR, ~0);
909 	csr = mac_read(sc, GMACOMR);
910 	mac_write(sc, GMACOMR, csr | OMR_RS | OMR_ST);
911 
912 	ifp->if_flags |= IFF_RUNNING;
913 	ifp->if_flags &= ~IFF_OACTIVE;
914 
915 	/* start one second timer */
916 	callout_schedule(&sc->sc_tick_ch, hz);
917 
918 	return 0;
919 }
920 
921 static void
922 scx_stop(struct ifnet *ifp, int disable)
923 {
924 	struct scx_softc *sc = ifp->if_softc;
925 
926 	/* Stop the one second clock. */
927 	callout_stop(&sc->sc_tick_ch);
928 
929 	/* Down the MII. */
930 	mii_down(&sc->sc_mii);
931 
932 	/* Mark the interface down and cancel the watchdog timer. */
933 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
934 	ifp->if_timer = 0;
935 }
936 
937 static void
938 scx_watchdog(struct ifnet *ifp)
939 {
940 	struct scx_softc *sc = ifp->if_softc;
941 
942 	/*
943 	 * Since we're not interrupting every packet, sweep
944 	 * up before we report an error.
945 	 */
946 	txreap(sc);
947 
948 	if (sc->sc_txfree != MD_NTXDESC) {
949 		aprint_error_dev(sc->sc_dev,
950 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
951 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
952 		if_statinc(ifp, if_oerrors);
953 
954 		/* Reset the interface. */
955 		scx_init(ifp);
956 	}
957 
958 	scx_start(ifp);
959 }
960 
961 static int
962 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
963 {
964 	struct scx_softc *sc = ifp->if_softc;
965 	struct ifreq *ifr = (struct ifreq *)data;
966 	struct ifmedia *ifm;
967 	int s, error;
968 
969 	s = splnet();
970 
971 	switch (cmd) {
972 	case SIOCSIFMEDIA:
973 		/* Flow control requires full-duplex mode. */
974 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
975 		    (ifr->ifr_media & IFM_FDX) == 0)
976 			ifr->ifr_media &= ~IFM_ETH_FMASK;
977 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
978 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
979 				/* We can do both TXPAUSE and RXPAUSE. */
980 				ifr->ifr_media |=
981 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
982 			}
983 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
984 		}
985 		ifm = &sc->sc_mii.mii_media;
986 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
987 		break;
988 	default:
989 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
990 			break;
991 
992 		error = 0;
993 
994 		if (cmd == SIOCSIFCAP)
995 			error = (*ifp->if_init)(ifp);
996 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
997 			;
998 		else if (ifp->if_flags & IFF_RUNNING) {
999 			/*
1000 			 * Multicast list has changed; set the hardware filter
1001 			 * accordingly.
1002 			 */
1003 			scx_set_rcvfilt(sc);
1004 		}
1005 		break;
1006 	}
1007 
1008 	splx(s);
1009 	return error;
1010 }
1011 
1012 static void
1013 scx_set_rcvfilt(struct scx_softc *sc)
1014 {
1015 	struct ethercom * const ec = &sc->sc_ethercom;
1016 	struct ifnet * const ifp = &ec->ec_if;
1017 	struct ether_multistep step;
1018 	struct ether_multi *enm;
1019 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
1020 	uint32_t csr, crc;
1021 	int i;
1022 
1023 	csr = mac_read(sc, GMACAFR);
1024 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1025 	mac_write(sc, GMACAFR, csr);
1026 
1027 	/* clear 15 entry supplimental perfect match filter */
1028 	for (i = 1; i < 16; i++)
1029 		 mac_write(sc, GMACMAH(i), 0);
1030 	/* build 64 bit multicast hash filter */
1031 	crc = mchash[1] = mchash[0] = 0;
1032 
1033 	ETHER_LOCK(ec);
1034 	if (ifp->if_flags & IFF_PROMISC) {
1035 		ec->ec_flags |= ETHER_F_ALLMULTI;
1036 		ETHER_UNLOCK(ec);
1037 		/* run promisc. mode */
1038 		csr |= AFR_PR;
1039 		goto update;
1040 	}
1041 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1042 	ETHER_FIRST_MULTI(step, ec, enm);
1043 	i = 1; /* slot 0 is occupied */
1044 	while (enm != NULL) {
1045 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1046 			/*
1047 			 * We must listen to a range of multicast addresses.
1048 			 * For now, just accept all multicasts, rather than
1049 			 * trying to set only those filter bits needed to match
1050 			 * the range.  (At this time, the only use of address
1051 			 * ranges is for IP multicast routing, for which the
1052 			 * range is big enough to require all bits set.)
1053 			 */
1054 			ec->ec_flags |= ETHER_F_ALLMULTI;
1055 			ETHER_UNLOCK(ec);
1056 			/* accept all multi */
1057 			csr |= AFR_PM;
1058 			goto update;
1059 		}
1060 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1061 		if (i < 16) {
1062 			/* use 15 entry perfect match filter */
1063 			uint32_t addr;
1064 			uint8_t *ep = enm->enm_addrlo;
1065 			addr = (ep[3] << 24) | (ep[2] << 16)
1066 			     | (ep[1] <<  8) |  ep[0];
1067 			mac_write(sc, GMACMAL(i), addr);
1068 			addr = (ep[5] << 8) | ep[4];
1069 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
1070 		} else {
1071 			/* use hash table when too many */
1072 			/* bit_reserve_32(~crc) !? */
1073 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1074 			/* 1(31) 5(30:26) bit sampling */
1075 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1076 		}
1077 		ETHER_NEXT_MULTI(step, enm);
1078 		i++;
1079 	}
1080 	ETHER_UNLOCK(ec);
1081 	if (crc)
1082 		csr |= AFR_MHTE;
1083 	csr |= AFR_HPF; /* use hash+perfect */
1084 	mac_write(sc, GMACMHTH, mchash[1]);
1085 	mac_write(sc, GMACMHTL, mchash[0]);
1086  update:
1087 	/* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1088 	mac_write(sc, GMACAFR, csr);
1089 	return;
1090 }
1091 
1092 static void
1093 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1094 {
1095 	struct scx_softc *sc = ifp->if_softc;
1096 	struct mii_data *mii = &sc->sc_mii;
1097 
1098 	mii_pollstat(mii);
1099 	ifmr->ifm_status = mii->mii_media_status;
1100 	ifmr->ifm_active = sc->sc_flowflags |
1101 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
1102 }
1103 
1104 void
1105 mii_statchg(struct ifnet *ifp)
1106 {
1107 	struct scx_softc *sc = ifp->if_softc;
1108 	struct mii_data *mii = &sc->sc_mii;
1109 	const int Mbps[4] = { 10, 100, 1000, 0 };
1110 	uint32_t miisr, mcr, fcr;
1111 	int spd;
1112 
1113 	/* decode MIISR register value */
1114 	miisr = mac_read(sc, GMACMIISR);
1115 	spd = Mbps[(miisr >> 1) & 03];
1116 #if 1
1117 	printf("MII link status (0x%x) %s",
1118 	    miisr, (miisr & 8) ? "up" : "down");
1119 	if (miisr & 8) {
1120 		printf(" spd%d", spd);
1121 		if (miisr & 01)
1122 			printf(",full-duplex");
1123 	}
1124 	printf("\n");
1125 #endif
1126 	/* Get flow control negotiation result. */
1127 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1128 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1129 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1130 
1131 	/* Adjust speed 1000/100/10. */
1132 	mcr = mac_read(sc, GMACMCR);
1133 	if (spd == 1000)
1134 		mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1135 	else {
1136 		if (spd == 100 && sc->sc_100mii)
1137 			mcr |= MCR_SPD100;
1138 		mcr |= MCR_USEMII;
1139 	}
1140 	mcr |= MCR_CST | MCR_JE;
1141 	if (sc->sc_100mii == 0)
1142 		mcr |= MCR_IBN;
1143 
1144 	/* Adjust duplexity and PAUSE flow control. */
1145 	mcr &= ~MCR_USEFDX;
1146 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1147 	if (miisr & 01) {
1148 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1149 			fcr |= FCR_TFE;
1150 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1151 			fcr |= FCR_RFE;
1152 		mcr |= MCR_USEFDX;
1153 	}
1154 	mac_write(sc, GMACMCR, mcr);
1155 	mac_write(sc, GMACFCR, fcr);
1156 
1157 printf("%ctxfe, %crxfe\n",
1158      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1159 }
1160 
1161 static void
1162 phy_tick(void *arg)
1163 {
1164 	struct scx_softc *sc = arg;
1165 	struct mii_data *mii = &sc->sc_mii;
1166 	int s;
1167 
1168 	s = splnet();
1169 	mii_tick(mii);
1170 	splx(s);
1171 
1172 	callout_schedule(&sc->sc_tick_ch, hz);
1173 }
1174 
1175 static int
1176 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1177 {
1178 	struct scx_softc *sc = device_private(self);
1179 	uint32_t miia;
1180 	int error;
1181 
1182 uint32_t clk = CSR_READ(sc, CLKEN);
1183 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1184 
1185 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1186 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
1187 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1188 	if (error)
1189 		return error;
1190 	*val = mac_read(sc, GMACGDR);
1191 	return 0;
1192 }
1193 
1194 static int
1195 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1196 {
1197 	struct scx_softc *sc = device_private(self);
1198 	uint32_t miia;
1199 	uint16_t dummy;
1200 	int error;
1201 
1202 uint32_t clk = CSR_READ(sc, CLKEN);
1203 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1204 
1205 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1206 	mac_write(sc, GMACGDR, val);
1207 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1208 	error = spin_waitfor(sc, GMACGAR, GAR_BUSY);
1209 	if (error)
1210 		return error;
1211 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1212 	return 0;
1213 }
1214 
1215 static void
1216 scx_start(struct ifnet *ifp)
1217 {
1218 	struct scx_softc *sc = ifp->if_softc;
1219 	struct mbuf *m0, *m;
1220 	struct scx_txsoft *txs;
1221 	bus_dmamap_t dmamap;
1222 	int error, nexttx, lasttx, ofree, seg;
1223 	uint32_t tdes0;
1224 
1225 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1226 		return;
1227 
1228 	/* Remember the previous number of free descriptors. */
1229 	ofree = sc->sc_txfree;
1230 
1231 	/*
1232 	 * Loop through the send queue, setting up transmit descriptors
1233 	 * until we drain the queue, or use up all available transmit
1234 	 * descriptors.
1235 	 */
1236 	for (;;) {
1237 		IFQ_POLL(&ifp->if_snd, m0);
1238 		if (m0 == NULL)
1239 			break;
1240 
1241 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1242 			txreap(sc);
1243 			if (sc->sc_txsfree == 0)
1244 				break;
1245 		}
1246 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1247 		dmamap = txs->txs_dmamap;
1248 
1249 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1250 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1251 		if (error) {
1252 			if (error == EFBIG) {
1253 				aprint_error_dev(sc->sc_dev,
1254 				    "Tx packet consumes too many "
1255 				    "DMA segments, dropping...\n");
1256 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
1257 				    m_freem(m0);
1258 				    continue;
1259 			}
1260 			/* Short on resources, just stop for now. */
1261 			break;
1262 		}
1263 
1264 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1265 			/*
1266 			 * Not enough free descriptors to transmit this
1267 			 * packet.  We haven't committed anything yet,
1268 			 * so just unload the DMA map, put the packet
1269 			 * back on the queue, and punt.	 Notify the upper
1270 			 * layer that there are not more slots left.
1271 			 */
1272 			ifp->if_flags |= IFF_OACTIVE;
1273 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1274 			break;
1275 		}
1276 
1277 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1278 
1279 		/*
1280 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1281 		 */
1282 
1283 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1284 		    BUS_DMASYNC_PREWRITE);
1285 
1286 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1287 		lasttx = -1;
1288 		for (nexttx = sc->sc_txnext, seg = 0;
1289 		     seg < dmamap->dm_nsegs;
1290 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
1291 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1292 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1293 			/*
1294 			 * If this is the first descriptor we're
1295 			 * enqueueing, don't set the OWN bit just
1296 			 * yet.	 That could cause a race condition.
1297 			 * We'll do it below.
1298 			 */
1299 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
1300 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1301 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1302 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1303 					(15 << T0_TRID) | T0_PT |
1304 					sc->sc_t0coso | T0_TRS;
1305 			tdes0 = T0_OWN; /* 2nd and other segments */
1306 			lasttx = nexttx;
1307 		}
1308 		/*
1309 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
1310 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
1311 		 * time and NFS stops to proceed until scx_watchdog()
1312 		 * calls txreap() to reclaim the unack'ed mbuf.
1313 		 * It's painful to traverse every mbuf chain to determine
1314 		 * whether someone is waiting for Tx completion.
1315 		 */
1316 		m = m0;
1317 		do {
1318 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1319 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1320 				break;
1321 			}
1322 		} while ((m = m->m_next) != NULL);
1323 
1324 		/* Write deferred 1st segment T0_OWN at the final stage */
1325 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
1326 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1327 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1328 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1329 
1330 		/* Tell DMA start transmit */
1331 		mac_write(sc, GMACTPD, 1);
1332 
1333 		txs->txs_mbuf = m0;
1334 		txs->txs_firstdesc = sc->sc_txnext;
1335 		txs->txs_lastdesc = lasttx;
1336 		txs->txs_ndesc = dmamap->dm_nsegs;
1337 
1338 		sc->sc_txfree -= txs->txs_ndesc;
1339 		sc->sc_txnext = nexttx;
1340 		sc->sc_txsfree--;
1341 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1342 		/*
1343 		 * Pass the packet to any BPF listeners.
1344 		 */
1345 		bpf_mtap(ifp, m0, BPF_D_OUT);
1346 	}
1347 
1348 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1349 		/* No more slots left; notify upper layer. */
1350 		ifp->if_flags |= IFF_OACTIVE;
1351 	}
1352 	if (sc->sc_txfree != ofree) {
1353 		/* Set a watchdog timer in case the chip flakes out. */
1354 		ifp->if_timer = 5;
1355 	}
1356 }
1357 
1358 static int
1359 scx_intr(void *arg)
1360 {
1361 	struct scx_softc *sc = arg;
1362 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1363 
1364 	(void)ifp;
1365 	/* XXX decode interrupt cause to pick isr() XXX */
1366 	rxintr(sc);
1367 	txreap(sc);
1368 	return 1;
1369 }
1370 
1371 static void
1372 txreap(struct scx_softc *sc)
1373 {
1374 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1375 	struct scx_txsoft *txs;
1376 	uint32_t txstat;
1377 	int i;
1378 
1379 	ifp->if_flags &= ~IFF_OACTIVE;
1380 
1381 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1382 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1383 		txs = &sc->sc_txsoft[i];
1384 
1385 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1386 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1387 
1388 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1389 		if (txstat & T0_OWN) /* desc is still in use */
1390 			break;
1391 
1392 		/* There is no way to tell transmission status per frame */
1393 
1394 		if_statinc(ifp, if_opackets);
1395 
1396 		sc->sc_txfree += txs->txs_ndesc;
1397 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1398 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1399 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1400 		m_freem(txs->txs_mbuf);
1401 		txs->txs_mbuf = NULL;
1402 	}
1403 	sc->sc_txsdirty = i;
1404 	if (sc->sc_txsfree == MD_TXQUEUELEN)
1405 		ifp->if_timer = 0;
1406 }
1407 
1408 static void
1409 rxintr(struct scx_softc *sc)
1410 {
1411 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1412 	struct scx_rxsoft *rxs;
1413 	struct mbuf *m;
1414 	uint32_t rxstat;
1415 	int i, len;
1416 
1417 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1418 		rxs = &sc->sc_rxsoft[i];
1419 
1420 		SCX_CDRXSYNC(sc, i,
1421 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1422 
1423 		rxstat = sc->sc_rxdescs[i].r0;
1424 		if (rxstat & R0_OWN) /* desc is left empty */
1425 			break;
1426 
1427 		/* R0_FS | R0_LS must have been marked for this desc */
1428 
1429 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1430 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1431 
1432 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1433 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1434 		m = rxs->rxs_mbuf;
1435 
1436 		if (add_rxbuf(sc, i) != 0) {
1437 			if_statinc(ifp, if_ierrors);
1438 			SCX_INIT_RXDESC(sc, i);
1439 			bus_dmamap_sync(sc->sc_dmat,
1440 			    rxs->rxs_dmamap, 0,
1441 			    rxs->rxs_dmamap->dm_mapsize,
1442 			    BUS_DMASYNC_PREREAD);
1443 			continue;
1444 		}
1445 
1446 		m_set_rcvif(m, ifp);
1447 		m->m_pkthdr.len = m->m_len = len;
1448 
1449 		if (rxstat & R0_CSUM) {
1450 			uint32_t csum = M_CSUM_IPv4;
1451 			if (rxstat & R0_CERR)
1452 				csum |= M_CSUM_IPv4_BAD;
1453 			m->m_pkthdr.csum_flags |= csum;
1454 		}
1455 		if_percpuq_enqueue(ifp->if_percpuq, m);
1456 	}
1457 	sc->sc_rxptr = i;
1458 }
1459 
1460 static int
1461 add_rxbuf(struct scx_softc *sc, int i)
1462 {
1463 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1464 	struct mbuf *m;
1465 	int error;
1466 
1467 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1468 	if (m == NULL)
1469 		return ENOBUFS;
1470 
1471 	MCLGET(m, M_DONTWAIT);
1472 	if ((m->m_flags & M_EXT) == 0) {
1473 		m_freem(m);
1474 		return ENOBUFS;
1475 	}
1476 
1477 	if (rxs->rxs_mbuf != NULL)
1478 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1479 
1480 	rxs->rxs_mbuf = m;
1481 
1482 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1483 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1484 	if (error) {
1485 		aprint_error_dev(sc->sc_dev,
1486 		    "can't load rx DMA map %d, error = %d\n", i, error);
1487 		panic("add_rxbuf");
1488 	}
1489 
1490 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1491 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1492 	SCX_INIT_RXDESC(sc, i);
1493 
1494 	return 0;
1495 }
1496 
1497 static int
1498 spin_waitfor(struct scx_softc *sc, int reg, int exist)
1499 {
1500 	int busy, loop;
1501 
1502 	busy = CSR_READ(sc, reg) & exist;
1503 	if (busy == 0)
1504 		return 0;
1505 	loop = 30000;
1506 	do {
1507 		DELAY(10);
1508 		busy = CSR_READ(sc, reg) & exist;
1509 	} while (--loop > 0 && busy);
1510 	return (loop > 0) ? 0 : ETIMEDOUT;
1511 }
1512 
1513 /* GMAC register needs to use indirect rd/wr via memory mapped registers. */
1514 
1515 static int
1516 mac_read(struct scx_softc *sc, int reg)
1517 {
1518 
1519 	CSR_WRITE(sc, MACCMD, reg);
1520 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1521 	return CSR_READ(sc, MACDATA);
1522 }
1523 
1524 static void
1525 mac_write(struct scx_softc *sc, int reg, int val)
1526 {
1527 
1528 	CSR_WRITE(sc, MACDATA, val);
1529 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
1530 	(void)spin_waitfor(sc, MACCMD, CMD_BUSY);
1531 }
1532 
1533 /*
1534  * 3 independent uengines exist * to process host2media, media2host and
1535  * packet data flows.
1536  */
1537 static void
1538 loaducode(struct scx_softc *sc)
1539 {
1540 	uint32_t up, lo, sz;
1541 	uint64_t addr;
1542 
1543 	sc->sc_ucodeloaded = 1;
1544 
1545 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1546 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1547 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
1548 	sz *= 4;
1549 	addr = ((uint64_t)up << 32) | lo;
1550 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1551 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1552 
1553 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1554 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1555 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1556 	sz *= 4;
1557 	addr = ((uint64_t)up << 32) | lo;
1558 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1559 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1560 
1561 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1562 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
1563 	sz *= 4;
1564 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1565 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1566 }
1567 
1568 static void
1569 injectucode(struct scx_softc *sc, int port,
1570 	bus_addr_t addr, bus_size_t size)
1571 {
1572 	bus_space_handle_t bsh;
1573 	bus_size_t off;
1574 	uint32_t ucode;
1575 
1576 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1577 		aprint_error_dev(sc->sc_dev,
1578 		    "eeprom map failure for ucode port 0x%x\n", port);
1579 		return;
1580 	}
1581 	for (off = 0; off < size; off += 4) {
1582 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
1583 		CSR_WRITE(sc, port, ucode);
1584 	}
1585 	bus_space_unmap(sc->sc_st, bsh, size);
1586 }
1587 
1588 /* bit selection to determine MDIO speed */
1589 
1590 static int
1591 get_mdioclk(uint32_t freq)
1592 {
1593 
1594 	const struct {
1595 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1596 	} mdioclk[] = {
1597 		{ 35,	2 },	/* 25-35 MHz */
1598 		{ 60,	3 },	/* 35-60 MHz */
1599 		{ 100,	0 },	/* 60-100 MHz */
1600 		{ 150,	1 },	/* 100-150 MHz */
1601 		{ 250,	4 },	/* 150-250 MHz */
1602 		{ 300,	5 },	/* 250-300 MHz */
1603 	};
1604 	int i;
1605 
1606 	freq /= 1000 * 1000;
1607 	/* convert MDIO clk to a divisor value */
1608 	if (freq < mdioclk[0].freq)
1609 		return mdioclk[0].bit;
1610 	for (i = 1; i < __arraycount(mdioclk); i++) {
1611 		if (freq < mdioclk[i].freq)
1612 			return mdioclk[i-1].bit;
1613 	}
1614 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1615 }
1616