xref: /netbsd-src/sys/arch/arm/sociox/if_scx.c (revision 6377aad786fe7ed14d857add35358efc3c89db94)
1 /*	$NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #define NOT_MP_SAFE	0
33 
34 /*
35  * Socionext SC2A11 SynQuacer NetSec GbE driver
36  *
37  * Multiple Tx and Rx queues exist inside and dedicated descriptor
38  * fields specifies which queue is to use. Three internal micro-processors
39  * to handle incoming frames, outgoing frames and packet data crypto
40  * processing. uP programs are stored in an external flash memory and
41  * have to be loaded by device driver.
42  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
43  * register (0x20) is known to have 0x10.36 and feature register (0x1058)
44  * reports 0x11056f37.
45  *  <24> alternative/enhanced desc format
46  *  <18> receive IP type 2 checksum offload
47  *  <16> transmit checksum offload
48  *  <11> event counter (mac management counter, MMC)
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $");
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/intr.h>
57 #include <sys/device.h>
58 #include <sys/callout.h>
59 #include <sys/mbuf.h>
60 #include <sys/errno.h>
61 #include <sys/rndsource.h>
62 #include <sys/kernel.h>
63 #include <sys/systm.h>
64 
65 #include <net/if.h>
66 #include <net/if_media.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <net/bpf.h>
72 
73 #include <dev/fdt/fdtvar.h>
74 #include <dev/acpi/acpireg.h>
75 #include <dev/acpi/acpivar.h>
76 #include <dev/acpi/acpi_intr.h>
77 
78 /* SC2A11 GbE 64-bit paddr descriptor */
79 struct tdes {
80 	uint32_t t0, t1, t2, t3;
81 };
82 struct rdes {
83 	uint32_t r0, r1, r2, r3;
84 };
85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
86 #define T0_LD		(1U<<30)	/* last descriptor in array */
87 #define T0_DRID		(24)		/* 29:24 desc ring id */
88 #define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
89 #define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
90 #define T0_CC		(1U<<15)	/* ??? */
91 #define T0_FS		(1U<<9)		/* first segment of frame */
92 #define T0_LS		(1U<<8)		/* last segment of frame */
93 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
94 #define T0_TSO		(1U<<6)		/* enable TCP segment offload */
95 #define T0_TRS		(1U<<4)		/* 5:4 "TRS" ??? */
96 /* T1 frame segment address 63:32 */
97 /* T2 frame segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
99 #define R0_OWN		(1U<<31)	/* desc is empty */
100 #define R0_LD		(1U<<30)	/* last descriptor in array */
101 #define R0_SDRID	(24)		/* 29:24 source desc ring id */
102 #define R0_FR		(1U<<23)	/* found fragmented */
103 #define R0_ER		(1U<<21)	/* Rx error indication */
104 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
105 #define R0_TDRID	(12)		/* 15:12 target desc ring id */
106 #define R0_FS		(1U<<9)		/* first segment of frame */
107 #define R0_LS		(1U<<8)		/* last segment of frame */
108 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
109 #define R0_CERR		(2U<<6)		/* 0: undone, 1: found ok, 2: bad */
110 /* R1 frame address 63:32 */
111 /* R2 frame address 31:0 */
112 /* R3 31:16 received frame length, 15:0 buffer length to receive */
113 
114 /*
115  * SC2A11 registers. 0x100 - 1204
116  */
117 #define SWRESET		0x104
118 #define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
119 #define COMINIT		0x120
120 #define  INIT_DB	(1U<<2)		/* ???; self clear when done */
121 #define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
122 #define PKTCTRL		0x140		/* pkt engine control */
123 #define  MODENRM	(1U<<28)	/* change mode to normal */
124 #define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
125 #define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
126 #define  RPTHDCOMP	(1U<<2)		/* log HD incomplete condition */
127 #define  RPTHDERR	(1U<<1)		/* log HD error */
128 #define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
129 #define xINTSR		0x200		/* aggregated interrupt status */
130 #define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
131 #define  IRQ_MAC	(1U<<19)	/* ??? */
132 #define  IRQ_PKT	(1U<<18)	/* ??? */
133 #define  IRQ_BOOTCODE	(1U<<5)		/* ??? */
134 #define  IRQ_XDONE	(1U<<4)		/* ??? mode change completed */
135 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
136 #define  IRQ_TX		(1U<<0)		/* top level Tx interrupt */
137 #define xINTAEN		0x204		/* INT_A enable */
138 #define xINTAE_SET	0x234		/* bit to set */
139 #define xINTAE_CLR	0x238		/* bit to clr */
140 #define xINTBEN		0x23c		/* INT_B enable */
141 #define xINTBE_SET	0x240		/* bit to set */
142 #define xINTBE_CLR	0x244		/* bit to clr */
143 #define TXISR		0x400		/* transmit status; W1C */
144 #define TXIEN		0x404		/* tx interrupt enable */
145 #define TXIE_SET	0x428		/* bit to set */
146 #define TXIE_CLR	0x42c		/* bit to clr */
147 #define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
148 #define  TXI_TR_ERR	(1U<<16)	/* tx error */
149 #define  TXI_TXDONE	(1U<<15)	/* tx completed */
150 #define  TXI_TMREXP	(1U<<14)	/* coalesce timer expired */
151 #define RXISR		0x440		/* receive status; W1C */
152 #define RXIEN		0x444		/* rx interrupt enable */
153 #define RXIE_SET	0x468		/* bit to set */
154 #define RXIE_CLR	0x46c		/* bit to clr */
155 #define  RXI_RC_ERR	(1U<<16)	/* rx error */
156 #define  RXI_PKTCNT	(1U<<15)	/* rx counter has new value */
157 #define  RXI_TMREXP	(1U<<14)	/* coalesce timer expired */
158 /* 13 sets of special purpose desc interrupt handling register exist */
159 #define TDBA_LO		0x408		/* tdes array base addr 31:0 */
160 #define TDBA_HI		0x434		/* tdes array base addr 63:32 */
161 #define RDBA_LO		0x448		/* rdes array base addr 31:0 */
162 #define RDBA_HI		0x474		/* rdes array base addr 63:32 */
163 /* 13 pairs of special purpose desc array base address register exist */
164 #define TXCONF		0x430
165 #define RXCONF		0x470
166 #define  DESCNF_UP	(1U<<31)	/* up-and-running */
167 #define  DESCNF_CHRST	(1U<<30)	/* channel reset */
168 #define  DESCNF_TMR	(1U<<4)		/* coalesce timer mode select */
169 #define  DESCNF_LE	(1)		/* little endian desc format */
170 #define TXSUBMIT	0x410		/* submit frame(s) to transmit */
171 #define TXCLSCMAX	0x418		/* tx intr coalesce upper bound */
172 #define RXCLSCMAX	0x458		/* rx intr coalesce upper bound */
173 #define TXITIMER	0x420		/* coalesce timer usec, MSB to use */
174 #define RXITIMER	0x460		/* coalesce timer usec, MSB to use */
175 #define TXDONECNT	0x414		/* tx completed count, auto-zero */
176 #define RXDONECNT	0x454		/* rx available count, auto-zero */
177 #define DMACTL_TMR	0x20c		/* engine DMA timer value */
178 #define UCODE_H2M	0x210		/* host2media engine ucode port */
179 #define UCODE_M2H	0x21c		/* media2host engine ucode port */
180 #define CORESTAT	0x218		/* engine run state */
181 #define  PKTSTOP	(1U<<2)
182 #define  M2HSTOP	(1U<<1)
183 #define  H2MSTOP	(1U<<0)
184 #define DMACTL_H2M	0x214		/* host2media engine control */
185 #define DMACTL_M2H	0x220		/* media2host engine control */
186 #define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
187 #define UCODE_PKT	0x0d0		/* packet engine ucode port */
188 #define CLKEN		0x100		/* clock distribution enable */
189 #define  CLK_G		(1U<<5)		/* feed clk domain E */
190 #define  CLK_C		(1U<<1)		/* feed clk domain C */
191 #define  CLK_D		(1U<<0)		/* feed clk domain D */
192 #define  CLK_ALL	0x23		/* all above; 0x24 ??? 0x3f ??? */
193 
194 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
195 #define MACDATA		0x11c0		/* gmac register rd/wr data */
196 #define MACCMD		0x11c4		/* gmac register operation */
197 #define  CMD_IOWR	(1U<<28)	/* write op */
198 #define  CMD_BUSY	(1U<<31)	/* busy bit */
199 #define MACSTAT		0x1024		/* gmac status; ??? */
200 #define MACINTE		0x1028		/* interrupt enable; ??? */
201 
202 #define FLOWTHR		0x11cc		/* flow control threshold */
203 /* 31:16 pause threshold, 15:0 resume threshold */
204 #define INTF_SEL	0x11d4		/* ??? */
205 
206 #define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
207 #define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */
208 #define MODE_TRANS	0x500		/* mode change completion status */
209 #define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
210 #define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
211 #define MACADRH		0x10c		/* ??? */
212 #define MACADRL		0x110		/* ??? */
213 #define MCVER		0x22c		/* micro controller version */
214 #define HWVER		0x230		/* hardware version */
215 
216 /*
217  * GMAC registers are mostly identical to Synopsys DesignWare Core
218  * Ethernet. These must be handled by indirect access.
219  */
220 #define GMACMCR		0x0000		/* MAC configuration */
221 #define  MCR_IBN	(1U<<30)	/* ??? */
222 #define  MCR_CST	(1U<<25)	/* strip CRC */
223 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
224 #define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
225 #define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
226 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
227 #define  MCR_DCRS	(1U<<16)	/* ignore (G)MII HDX Tx error */
228 #define  MCR_PS		(1U<<15)	/* 1: MII 10/100, 0: GMII 1000 */
229 #define  MCR_FES	(1U<<14)	/* force speed 100 */
230 #define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
231 #define  MCR_LOOP	(1U<<12)	/* run loop back */
232 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
233 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
234 #define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
235 #define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
236 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
237 #define  MCR_DC		(1U<<4)		/* report excessive tx deferral */
238 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
239 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
240 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
241 #define GMACAFR		0x0004		/* frame DA/SA address filter */
242 #define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
243 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
244 #define  AFR_SAF	(1U<<9)		/* source address filter */
245 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
246 #define  AFR_PCF	(2U<<6)		/* ??? */
247 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
248 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
249 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
250 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
251 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
252 #define  AFR_PR		(1U<<0)		/* run promisc mode */
253 #define GMACGAR		0x0010		/* MDIO operation */
254 #define  GAR_PHY	(11)		/* 15:11 mii phy */
255 #define  GAR_REG	(6)		/* 10:6 mii reg */
256 #define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
257 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
258 #define  GAR_BUSY	(1U<<0)		/* busy bit */
259 #define  GAR_MDIO_25_35MHZ	2
260 #define  GAR_MDIO_35_60MHZ	3
261 #define  GAR_MDIO_60_100MHZ	0
262 #define  GAR_MDIO_100_150MHZ	1
263 #define  GAR_MDIO_150_250MHZ	4
264 #define  GAR_MDIO_250_300MHZ	5
265 #define GMACGDR		0x0014		/* MDIO rd/wr data */
266 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
267 /* 31:16 pause timer value, 5:4 pause timer threshold */
268 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
269 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
270 #define GMACIMPL	0x0020		/* implementation id */
271 #define GMACISR		0x0038		/* interrupt status indication */
272 #define GMACIMR		0x003c		/* interrupt mask to inhibit */
273 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
274 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
275 #define  ISR_TX		(1U<<6)		/* Tx completed */
276 #define  ISR_RX		(1U<<5)		/* Rx completed */
277 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
278 #define  ISR_LC		(1U<<0)		/* link status change detected */
279 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
280 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
281 #define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
282 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
284 #define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
285 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
286 /* supplimental MAH bit-31: slot in use, no other bit is effective */
287 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
288 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
289 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
290 #define GMACVTAG	0x001c		/* VLAN tag control */
291 #define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
292 #define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
293 #define  VTAG_INV	(1U<<17)	/* run inverse match logic */
294 #define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
295 /* 15:0 concat of PRIO+CFI+VID */
296 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
297 #define GMACMIISR	0x00d8		/* resolved RGMII/SGMII link status */
298 #define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
299 #define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
300 #define  MIISR_FDX	(1U<<0)		/* fdx detected */
301 
302 #define GMACLPIS	0x0030		/* LPI control & status */
303 #define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
304 #define  LPIS_PLS	(1U<<17)
305 #define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
306 #define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
307 #define GMACLPIC	0x0034		/* LPI timer control */
308 #define  LPIC_LST	(5)		/* 16:5 ??? */
309 #define  LPIC_TWT	(0)		/* 15:0 ??? */
310 /* 0x700-764 Time Stamp control */
311 
312 #define GMACBMR		0x1000		/* DMA bus mode control */
313 /* 24    8xPBL multiply by 8 for RPBL & PBL values
314  * 23    USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
315  * 22:17 RPBL
316  * 16    FB fixed burst
317  * 15:14 priority between Rx and Tx
318  *  3    rxtx ratio 41
319  *  2    rxtx ratio 31
320  *  1    rxtx ratio 21
321  *  0    rxtx ratio 11
322  * 13:8  PBL possible DMA burst length
323  *  7    ATDS select 32-byte descriptor format for advanced features
324  *  6:2	 DSL descriptor skip length, 0 for adjuscent, counted on bus width
325  *  0    MAC reset op. self-clear
326  */
327 #define  BMR_RST	(1)		/* reset op. self clear when done */
328 #define GMACTPD		0x1004		/* write any to resume tdes */
329 #define GMACRPD		0x1008		/* write any to resume rdes */
330 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
331 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
332 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
333 #define GMACDIE		0x101c		/* DMA interrupt enable */
334 #define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
335 #define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
336 #define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
337 #define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
338 #define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
339 #define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
340 #define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
341 #define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
342 #define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
343 #define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
344 #define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
345 #define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
346 #define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
347 #define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
348 #define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
349 #define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
350 #define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
351 #define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
352 #define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
353 #define  DMAI_TU	(1U<<2)		/* Tx descriptor not available */
354 #define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
355 #define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
356 #define GMACOMR		0x1018		/* DMA operation mode */
357 #define  OMR_RSF	(1U<<25)	/* 1: Rx store&forward, 0: immed. */
358 #define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
359 #define  OMR_TTC	(14)		/* 16:14 Tx threshold */
360 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
361 #define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
362 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
363 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
364 #define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
365 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
366 #define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
367 #define GMACAXIB	0x1028		/* AXI bus mode control */
368 #define GMACAXIS	0x102c		/* AXI status report */
369 /* 0x1048 current tx desc address */
370 /* 0x104c current rx desc address */
371 /* 0x1050 current tx buffer address */
372 /* 0x1054 current rx buffer address */
373 #define HWFEA		0x1058		/* DWC feature report */
374 #define  FEA_EXDESC	(1U<<24)	/* alternative/enhanced desc layout */
375 #define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
376 #define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
377 #define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
378 #define  FEA_MMC	(1U<<11)	/* RMON event counter */
379 
380 #define GMACEVCTL	0x0100		/* event counter control */
381 #define  EVC_FHP	(1U<<5)		/* full-half preset */
382 #define  EVC_CP		(1U<<4)		/* counter preset */
383 #define  EVC_MCF	(1U<<3)		/* counter freeze */
384 #define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
385 #define  EVC_CSR	(1U<<1)		/* counter stop rollover */
386 #define  EVC_CR		(1U<<0)		/* reset counters */
387 #define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */
388 
389 /* 0x400-4ac L3/L4 control */
390 
391 /*
392  * flash memory layout
393  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
394  * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
395  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
396  * 0x10 - 13	H2M program length in 4 byte count.
397  * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
398  * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
399  * 0x1c - 13	M2H program length in 4 byte count.
400  * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
401  * 0x24 - 27	packet program length in 4 byte count.
402  *
403  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
404  */
405 
406 #define  _BMR		0x00412080	/* XXX TBD */
407 #define  _BMR0		0x00020181	/* XXX TBD */
408 /* NetSec uses local RAM to handle GMAC desc arrays and frame buffers */
409 #define  _RDLA		0x18000
410 #define  _TDLA		0x1c000
411 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
412 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
413 
414 /*
415  * all below are software constraction.
416  */
417 #define MD_NTXDESC		128
418 #define MD_NRXDESC		64
419 
420 #define MD_NTXSEGS		16
421 #define MD_TXQUEUELEN		8
422 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
423 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
424 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
425 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
426 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
427 
428 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
429 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
430 
431 struct control_data {
432 	struct tdes cd_txdescs[MD_NTXDESC];
433 	struct rdes cd_rxdescs[MD_NRXDESC];
434 };
435 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
436 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
437 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
438 
439 struct scx_txsoft {
440 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
441 	bus_dmamap_t txs_dmamap;	/* our DMA map */
442 	int txs_firstdesc;		/* first descriptor in packet */
443 	int txs_lastdesc;		/* last descriptor in packet */
444 	int txs_ndesc;			/* # of descriptors used */
445 };
446 
447 struct scx_rxsoft {
448 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
449 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
450 };
451 
452 struct scx_softc {
453 	device_t sc_dev;		/* generic device information */
454 	bus_space_tag_t sc_st;		/* bus space tag */
455 	bus_space_handle_t sc_sh;	/* bus space handle */
456 	bus_size_t sc_sz;		/* csr map size */
457 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
458 	bus_size_t sc_eesz;		/* eeprom map size */
459 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
460 	struct ethercom sc_ethercom;	/* Ethernet common data */
461 	struct mii_data sc_mii;		/* MII */
462 	callout_t sc_callout;		/* PHY monitor callout */
463 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
464 	int sc_nseg;			/* descriptor store nseg */
465 	void *sc_ih;			/* interrupt cookie */
466 	int sc_phy_id;			/* PHY address */
467 	int sc_flowflags;		/* 802.3x PAUSE flow control */
468 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
469 	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
470 	int sc_miigmii;			/* 1: MII/GMII, 0: RGMII */
471 	int sc_phandle;			/* fdt phandle */
472 	uint64_t sc_freq;
473 	uint32_t sc_maxsize;
474 
475 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
476 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
477 
478 	struct control_data *sc_control_data;
479 #define sc_txdescs	sc_control_data->cd_txdescs
480 #define sc_rxdescs	sc_control_data->cd_rxdescs
481 
482 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
483 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
484 	int sc_txfree;			/* number of free Tx descriptors */
485 	int sc_txnext;			/* next ready Tx descriptor */
486 	int sc_txsfree;			/* number of free Tx jobs */
487 	int sc_txsnext;			/* next ready Tx job */
488 	int sc_txsdirty;		/* dirty Tx jobs */
489 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
490 
491 	krndsource_t rnd_source;	/* random source */
492 #ifdef GMAC_EVENT_COUNTERS
493 	/* 80 event counters exist */
494 #endif
495 };
496 
497 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
498 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
499 
500 #define SCX_CDTXSYNC(sc, x, n, ops)					\
501 do {									\
502 	int __x, __n;							\
503 									\
504 	__x = (x);							\
505 	__n = (n);							\
506 									\
507 	/* If it will wrap around, sync to the end of the ring. */	\
508 	if ((__x + __n) > MD_NTXDESC) {				\
509 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
510 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
511 		    (MD_NTXDESC - __x), (ops));			\
512 		__n -= (MD_NTXDESC - __x);				\
513 		__x = 0;						\
514 	}								\
515 									\
516 	/* Now sync whatever is left. */				\
517 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
518 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
519 } while (/*CONSTCOND*/0)
520 
521 #define SCX_CDRXSYNC(sc, x, ops)					\
522 do {									\
523 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
524 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
525 } while (/*CONSTCOND*/0)
526 
527 #define SCX_INIT_RXDESC(sc, x)						\
528 do {									\
529 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
530 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
531 	struct mbuf *__m = __rxs->rxs_mbuf;				\
532 	bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
533 	bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
534 	__m->m_data = __m->m_ext.ext_buf;				\
535 	__rxd->r3 = htole32(__z);					\
536 	__rxd->r2 = htole32(BUS_ADDR_LO32(__p));			\
537 	__rxd->r1 = htole32(BUS_ADDR_HI32(__p));			\
538 	__rxd->r0 &= htole32(R0_LD);					\
539 	__rxd->r0 |= htole32(R0_OWN);					\
540 } while (/*CONSTCOND*/0)
541 
542 /* memory mapped CSR register access */
543 #define CSR_READ(sc,off) \
544 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
545 #define CSR_WRITE(sc,off,val) \
546 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
547 
548 /* flash memory access */
549 #define EE_READ(sc,off) \
550 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
551 
552 static int scx_fdt_match(device_t, cfdata_t, void *);
553 static void scx_fdt_attach(device_t, device_t, void *);
554 static int scx_acpi_match(device_t, cfdata_t, void *);
555 static void scx_acpi_attach(device_t, device_t, void *);
556 
557 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
558     scx_fdt_match, scx_fdt_attach, NULL, NULL);
559 
560 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
561     scx_acpi_match, scx_acpi_attach, NULL, NULL);
562 
563 static void scx_attach_i(struct scx_softc *);
564 static void scx_reset(struct scx_softc *);
565 static int scx_init(struct ifnet *);
566 static void scx_stop(struct ifnet *, int);
567 static int scx_ioctl(struct ifnet *, u_long, void *);
568 static void scx_set_rcvfilt(struct scx_softc *);
569 static void scx_start(struct ifnet *);
570 static void scx_watchdog(struct ifnet *);
571 static int scx_intr(void *);
572 static void txreap(struct scx_softc *);
573 static void rxintr(struct scx_softc *);
574 static int add_rxbuf(struct scx_softc *, int);
575 static void rxdrain(struct scx_softc *sc);
576 static void mii_statchg(struct ifnet *);
577 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
578 static int mii_readreg(device_t, int, int, uint16_t *);
579 static int mii_writereg(device_t, int, int, uint16_t);
580 static void phy_tick(void *);
581 static void dump_hwfeature(struct scx_softc *);
582 
583 static void stopuengine(struct scx_softc *);
584 static void startuengine(struct scx_softc *);
585 static void loaducode(struct scx_softc *);
586 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
587 
588 static int get_mdioclk(uint32_t);
589 
590 #define WAIT_FOR_SET(sc, reg, set, fail) \
591 	wait_for_bits(sc, reg, set, ~0, fail)
592 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
593 	wait_for_bits(sc, reg, 0, clr, fail)
594 
595 static int
596 wait_for_bits(struct scx_softc *sc, int reg,
597     uint32_t set, uint32_t clr, uint32_t fail)
598 {
599 	uint32_t val;
600 	int ntries;
601 
602 	for (ntries = 0; ntries < 1000; ntries++) {
603 		val = CSR_READ(sc, reg);
604 		if ((val & set) || !(val & clr))
605 			return 0;
606 		if (val & fail)
607 			return 1;
608 		DELAY(1);
609 	}
610 	return 1;
611 }
612 
613 /* GMAC register indirect access */
614 static int
615 mac_read(struct scx_softc *sc, int reg)
616 {
617 
618 	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
619 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
620 	return CSR_READ(sc, MACDATA);
621 }
622 
623 static void
624 mac_write(struct scx_softc *sc, int reg, int val)
625 {
626 
627 	CSR_WRITE(sc, MACDATA, val);
628 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
629 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
630 }
631 
632 /* dig and decode "clock-frequency" value for a given clkname */
633 static int
634 get_clk_freq(int phandle, const char *clkname)
635 {
636 	u_int index, n, cells;
637 	const u_int *p;
638 	int err, len, resid;
639 	unsigned int freq = 0;
640 
641 	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
642 	if (err == -1)
643 		return -1;
644 	p = fdtbus_get_prop(phandle, "clocks", &len);
645 	if (p == NULL)
646 		return -1;
647 	for (n = 0, resid = len; resid > 0; n++) {
648 		const int cc_phandle =
649 		    fdtbus_get_phandle_from_native(be32toh(p[0]));
650 		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
651 			return -1;
652 		if (n == index) {
653 			if (of_getprop_uint32(cc_phandle,
654 			    "clock-frequency", &freq))
655 				return -1;
656 			return freq;
657 		}
658 		resid -= (cells + 1) * 4;
659 		p += (cells + 1) * 4;
660 	}
661 	return -1;
662 }
663 
664 #define ATTACH_DEBUG 1
665 
666 static const struct device_compatible_entry compat_data[] = {
667 	{ .compat = "socionext,synquacer-netsec" },
668 	DEVICE_COMPAT_EOL
669 };
670 static const struct device_compatible_entry compatible[] = {
671 	{ .compat = "SCX0001" },
672 	DEVICE_COMPAT_EOL
673 };
674 
675 static int
676 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
677 {
678 	struct fdt_attach_args * const faa = aux;
679 
680 	return of_compatible_match(faa->faa_phandle, compat_data);
681 }
682 
683 static void
684 scx_fdt_attach(device_t parent, device_t self, void *aux)
685 {
686 	struct scx_softc * const sc = device_private(self);
687 	struct fdt_attach_args * const faa = aux;
688 	const int phandle = faa->faa_phandle;
689 	bus_space_handle_t bsh;
690 	bus_space_handle_t eebsh;
691 	bus_addr_t addr[2];
692 	bus_size_t size[2];
693 	void *intrh;
694 	char intrstr[128];
695 	int phy_phandle;
696 	const char *phy_mode;
697 	bus_addr_t phy_id;
698 	long ref_clk;
699 
700 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
701 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
702 		aprint_error(": unable to map registers\n");
703 		return;
704 	}
705 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
706 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
707 		aprint_error(": unable to map device eeprom\n");
708 		goto fail;
709 	}
710 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
711 		aprint_error(": failed to decode interrupt\n");
712 		goto fail;
713 	}
714 
715 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
716 	if (phy_mode == NULL)
717 		aprint_error(": missing 'phy-mode' property\n");
718 	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
719 	if (phy_phandle == -1
720 	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
721 		phy_id = MII_PHY_ANY;
722 	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
723 	if (ref_clk == -1)
724 		ref_clk = 250 * 1000 * 1000;
725 
726 #if ATTACH_DEBUG == 1
727 aprint_normal("\n");
728 aprint_normal_dev(self,
729     "[FDT] phy mode %s, phy id %d, freq %ld\n",
730     phy_mode, (int)phy_id, ref_clk);
731 aprint_normal("%s", device_xname(self));
732 #endif
733 
734 	intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
735 		NOT_MP_SAFE, scx_intr, sc);
736 	if (intrh == NULL) {
737 		aprint_error(": couldn't establish interrupt\n");
738 		goto fail;
739 	}
740 	aprint_normal(" interrupt on %s", intrstr);
741 
742 	sc->sc_dev = self;
743 	sc->sc_st = faa->faa_bst;
744 	sc->sc_sh = bsh;
745 	sc->sc_sz = size[0];
746 	sc->sc_eesh = eebsh;
747 	sc->sc_eesz = size[1];
748 	sc->sc_ih = intrh;
749 	sc->sc_dmat = faa->faa_dmat;
750 	sc->sc_phandle = phandle;
751 	sc->sc_phy_id = phy_id;
752 	sc->sc_freq = ref_clk;
753 
754 	scx_attach_i(sc);
755 
756 	return;
757  fail:
758 	if (sc->sc_eesz)
759 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
760 	if (sc->sc_sz)
761 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
762 	return;
763 }
764 
765 static int
766 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
767 {
768 	struct acpi_attach_args *aa = aux;
769 
770 	return acpi_compatible_match(aa, compatible);
771 }
772 
773 #define HWFEA_DEBUG 1
774 
775 static void
776 scx_acpi_attach(device_t parent, device_t self, void *aux)
777 {
778 	struct scx_softc * const sc = device_private(self);
779 	struct acpi_attach_args * const aa = aux;
780 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
781 	bus_space_handle_t bsh, eebsh;
782 	struct acpi_resources res;
783 	struct acpi_mem *mem, *mem1;
784 	struct acpi_irq *irq;
785 	ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
786 	ACPI_STATUS rv;
787 	void *intrh;
788 
789 	rv = acpi_resource_parse(self, handle, "_CRS",
790 	    &res, &acpi_resource_parse_ops_default);
791 	if (ACPI_FAILURE(rv))
792 		return;
793 	mem = acpi_res_mem(&res, 0);
794 	irq = acpi_res_irq(&res, 0);
795 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
796 		aprint_error(": incomplete crs resources\n");
797 		goto done;
798 	}
799 	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
800 	    &bsh) != 0) {
801 		aprint_error(": unable to map registers\n");
802 		goto done;
803 	}
804 	mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
805 	if (mem1 == NULL || mem1->ar_length == 0) {
806 		aprint_error(": incomplete eeprom resources\n");
807 		goto fail_0;
808 	}
809 	if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
810 	    &eebsh)) {
811 		aprint_error(": unable to map device eeprom\n");
812 		goto fail_0;
813 	}
814 	rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
815 	if (ACPI_FAILURE(rv))
816 		max_spd = 1000;
817 	rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
818 	if (ACPI_FAILURE(rv))
819 		max_frame = 2048;
820 	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
821 	if (ACPI_FAILURE(rv))
822 		phy_id = MII_PHY_ANY;
823 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
824 			&phy_freq);
825 	if (ACPI_FAILURE(rv))
826 		phy_freq = 250 * 1000 * 1000;
827 
828 #if ATTACH_DEBUG == 1
829 aprint_normal_dev(self,
830     "[ACPI] max-speed %d, phy id %d, freq %ld\n",
831     (int)max_spd, (int)phy_id, phy_freq);
832 aprint_normal("%s", device_xname(self));
833 #endif
834 
835 	intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
836 	    IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
837 	if (intrh == NULL) {
838 		aprint_error(": couldn't establish interrupt\n");
839 		goto fail_1;
840 	}
841 
842 	sc->sc_dev = self;
843 	sc->sc_st = aa->aa_memt;
844 	sc->sc_sh = bsh;
845 	sc->sc_sz = mem->ar_length;
846 	sc->sc_eesh = eebsh;
847 	sc->sc_eesz = mem1->ar_length;
848 	sc->sc_ih = intrh;
849 	sc->sc_dmat =
850 	    BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
851 	sc->sc_phy_id = (int)phy_id;
852 	sc->sc_freq = phy_freq;
853 	sc->sc_maxsize = max_frame;
854 
855 	scx_attach_i(sc);
856  done:
857 	acpi_resource_cleanup(&res);
858 	return;
859  fail_1:
860 	bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
861  fail_0:
862 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
863 	acpi_resource_cleanup(&res);
864 	return;
865 }
866 
867 static void
868 scx_attach_i(struct scx_softc *sc)
869 {
870 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
871 	struct mii_data * const mii = &sc->sc_mii;
872 	struct ifmedia * const ifm = &mii->mii_media;
873 	uint32_t which, dwimp, dwfea;
874 	uint8_t enaddr[ETHER_ADDR_LEN];
875 	bus_dma_segment_t seg;
876 	paddr_t paddr;
877 	uint32_t csr;
878 	int i, nseg, error = 0;
879 
880 	which = CSR_READ(sc, HWVER);	/* Socionext version 5.xx */
881 	dwimp = mac_read(sc, GMACIMPL);	/* DWC implementation XX.YY */
882 	dwfea = mac_read(sc, HWFEA);	/* DWC feature bits */
883 
884 	aprint_naive("\n");
885 	aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
886 	    "%x.%x\n", which >> 16, which & 0xffff);
887 
888 	aprint_normal_dev(sc->sc_dev,
889 	    "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
890 	    dwimp & 0xff, dwimp >> 8, dwfea);
891 	dump_hwfeature(sc);
892 
893 	/* detected PHY type */
894 	sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
895 
896 	/* fetch MAC address in flash 0:7, stored in big endian order */
897 	csr = EE_READ(sc, 0x00);
898 	enaddr[0] = csr >> 24;
899 	enaddr[1] = csr >> 16;
900 	enaddr[2] = csr >> 8;
901 	enaddr[3] = csr;
902 	csr = EE_READ(sc, 0x04);
903 	enaddr[4] = csr >> 24;
904 	enaddr[5] = csr >> 16;
905 	aprint_normal_dev(sc->sc_dev,
906 	    "Ethernet address %s\n", ether_sprintf(enaddr));
907 
908 	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
909 
910 	mii->mii_ifp = ifp;
911 	mii->mii_readreg = mii_readreg;
912 	mii->mii_writereg = mii_writereg;
913 	mii->mii_statchg = mii_statchg;
914 
915 	sc->sc_ethercom.ec_mii = mii;
916 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
917 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
918 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
919 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
920 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
921 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
922 	} else
923 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
924 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
925 
926 	/*
927 	 * Allocate the control data structures, and create and load the
928 	 * DMA map for it.
929 	 */
930 	error = bus_dmamem_alloc(sc->sc_dmat,
931 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
932 	if (error != 0) {
933 		aprint_error_dev(sc->sc_dev,
934 		    "unable to allocate control data, error = %d\n", error);
935 		goto fail_0;
936 	}
937 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
938 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
939 	    BUS_DMA_COHERENT);
940 	if (error != 0) {
941 		aprint_error_dev(sc->sc_dev,
942 		    "unable to map control data, error = %d\n", error);
943 		goto fail_1;
944 	}
945 	error = bus_dmamap_create(sc->sc_dmat,
946 	    sizeof(struct control_data), 1,
947 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
948 	if (error != 0) {
949 		aprint_error_dev(sc->sc_dev,
950 		    "unable to create control data DMA map, "
951 		    "error = %d\n", error);
952 		goto fail_2;
953 	}
954 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
955 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
956 	if (error != 0) {
957 		aprint_error_dev(sc->sc_dev,
958 		    "unable to load control data DMA map, error = %d\n",
959 		    error);
960 		goto fail_3;
961 	}
962 	for (i = 0; i < MD_TXQUEUELEN; i++) {
963 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
964 		    MD_NTXSEGS, MCLBYTES, 0, 0,
965 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
966 			aprint_error_dev(sc->sc_dev,
967 			    "unable to create tx DMA map %d, error = %d\n",
968 			    i, error);
969 			goto fail_4;
970 		}
971 	}
972 	for (i = 0; i < MD_NRXDESC; i++) {
973 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
974 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
975 			aprint_error_dev(sc->sc_dev,
976 			    "unable to create rx DMA map %d, error = %d\n",
977 			    i, error);
978 			goto fail_5;
979 		}
980 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
981 	}
982 	sc->sc_seg = seg;
983 	sc->sc_nseg = nseg;
984 #if 0
985 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
986 #endif
987 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
988 	ifp->if_softc = sc;
989 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
990 	ifp->if_ioctl = scx_ioctl;
991 	ifp->if_start = scx_start;
992 	ifp->if_watchdog = scx_watchdog;
993 	ifp->if_init = scx_init;
994 	ifp->if_stop = scx_stop;
995 	IFQ_SET_READY(&ifp->if_snd);
996 
997 	/* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
998 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
999 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1000 
1001 	sc->sc_flowflags = 0; /* track PAUSE flow caps */
1002 
1003 	if_attach(ifp);
1004 	if_deferred_start_init(ifp, NULL);
1005 	ether_ifattach(ifp, enaddr);
1006 
1007 	callout_init(&sc->sc_callout, 0);
1008 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
1009 
1010 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1011 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1012 
1013 	stopuengine(sc);
1014 	loaducode(sc);
1015 
1016 	/* feed NetSec descriptor array base addresses and timer value */
1017 	paddr = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
1018 	CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(paddr));
1019 	CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(paddr));
1020 	paddr = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
1021 	CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(paddr));
1022 	CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(paddr));
1023 	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
1024 	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
1025 	CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
1026 
1027 	startuengine(sc);
1028 
1029 	return;
1030 
1031   fail_5:
1032 	for (i = 0; i < MD_NRXDESC; i++) {
1033 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1034 			bus_dmamap_destroy(sc->sc_dmat,
1035 			    sc->sc_rxsoft[i].rxs_dmamap);
1036 	}
1037   fail_4:
1038 	for (i = 0; i < MD_TXQUEUELEN; i++) {
1039 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1040 			bus_dmamap_destroy(sc->sc_dmat,
1041 			    sc->sc_txsoft[i].txs_dmamap);
1042 	}
1043 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1044   fail_3:
1045 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1046   fail_2:
1047 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1048 	    sizeof(struct control_data));
1049   fail_1:
1050 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1051   fail_0:
1052 	if (sc->sc_phandle)
1053 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1054 	else
1055 		acpi_intr_disestablish(sc->sc_ih);
1056 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1057 	return;
1058 }
1059 
1060 static void
1061 scx_reset(struct scx_softc *sc)
1062 {
1063 	int loop = 0, busy;
1064 
1065 	mac_write(sc, GMACOMR, 0);
1066 	mac_write(sc, GMACBMR, BMR_RST);
1067 	do {
1068 		DELAY(1);
1069 		busy = mac_read(sc, GMACBMR) & BMR_RST;
1070 	} while (++loop < 3000 && busy);
1071 	mac_write(sc, GMACBMR, _BMR);
1072 	mac_write(sc, GMACAFR, 0);
1073 
1074 #if 0
1075 	CSR_WRITE(sc, CLKEN, CLK_ALL);		/* distribute clock sources */
1076 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
1077 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
1078 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1079 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1080 
1081 	CSR_WRITE(sc, TXISR, ~0);
1082 	CSR_WRITE(sc, xINTAE_CLR, ~0);
1083 #endif
1084 }
1085 
1086 static int
1087 scx_init(struct ifnet *ifp)
1088 {
1089 	struct scx_softc *sc = ifp->if_softc;
1090 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
1091 	uint32_t csr;
1092 	int i, error;
1093 
1094 	/* Cancel pending I/O. */
1095 	scx_stop(ifp, 0);
1096 
1097 	/* Reset the chip to a known state. */
1098 	scx_reset(sc);
1099 
1100 	/* build sane Tx */
1101 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1102 	sc->sc_txdescs[MD_NTXDESC - 1].t0 = T0_LD; /* tie off the ring */
1103 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1104 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1105 	sc->sc_txfree = MD_NTXDESC;
1106 	sc->sc_txnext = 0;
1107 	for (i = 0; i < MD_TXQUEUELEN; i++)
1108 		sc->sc_txsoft[i].txs_mbuf = NULL;
1109 	sc->sc_txsfree = MD_TXQUEUELEN;
1110 	sc->sc_txsnext = 0;
1111 	sc->sc_txsdirty = 0;
1112 
1113 	/* load Rx descriptors with fresh mbuf */
1114 	for (i = 0; i < MD_NRXDESC; i++) {
1115 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1116 			if ((error = add_rxbuf(sc, i)) != 0) {
1117 				aprint_error_dev(sc->sc_dev,
1118 				    "unable to allocate or map rx "
1119 				    "buffer %d, error = %d\n",
1120 				    i, error);
1121 				rxdrain(sc);
1122 				goto out;
1123 			}
1124 		}
1125 		else
1126 			SCX_INIT_RXDESC(sc, i);
1127 	}
1128 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_LD; /* tie off the ring */
1129 	sc->sc_rxptr = 0;
1130 
1131 	/* set my address in perfect match slot 0. little endian order */
1132 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
1133 	mac_write(sc, GMACMAL0, csr);
1134 	csr = (ea[5] << 8) | ea[4];
1135 	mac_write(sc, GMACMAH0, csr);
1136 
1137 	/* accept multicast frame or run promisc mode */
1138 	scx_set_rcvfilt(sc);
1139 
1140 	/* set current media */
1141 	if ((error = ether_mediachange(ifp)) != 0)
1142 		goto out;
1143 
1144 	CSR_WRITE(sc, DESC_SRST, 01);
1145 	WAIT_FOR_CLR(sc, DESC_SRST, 01, 0);
1146 
1147 	CSR_WRITE(sc, DESC_INIT, 01);
1148 	WAIT_FOR_CLR(sc, DESC_INIT, 01, 0);
1149 
1150 	/* feed local memory descriptor array base addresses */
1151 	mac_write(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
1152 	mac_write(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */
1153 
1154 	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
1155 	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */
1156 
1157 	CSR_WRITE(sc, RXIE_CLR, ~0);	/* clear Rx interrupt enable */
1158 	CSR_WRITE(sc, TXIE_CLR, ~0);	/* clear Tx interrupt enable */
1159 
1160 	CSR_WRITE(sc, RXCLSCMAX, 8);	/* Rx coalesce upper bound */
1161 	CSR_WRITE(sc, TXCLSCMAX, 8);	/* Tx coalesce upper bound */
1162 	CSR_WRITE(sc, RXITIMER, 500);	/* Rx co. timer usec */
1163 	CSR_WRITE(sc, TXITIMER, 500);	/* Tx co. timer usec */
1164 
1165 	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1166 	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1167 
1168 	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1169 #if 1
1170 	/* clear event counters, auto-zero after every read */
1171 	mac_write(sc, GMACEVCTL, EVC_CR /* | EVC_ROR */);
1172 #endif
1173 	/* kick to start GMAC engine */
1174 	csr = mac_read(sc, GMACOMR);
1175 	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1176 
1177 	ifp->if_flags |= IFF_RUNNING;
1178 
1179 	/* start one second timer */
1180 	callout_schedule(&sc->sc_callout, hz);
1181  out:
1182 	return error;
1183 }
1184 
1185 static void
1186 scx_stop(struct ifnet *ifp, int disable)
1187 {
1188 	struct scx_softc *sc = ifp->if_softc;
1189 
1190 	/* Stop the one second clock. */
1191 	callout_stop(&sc->sc_callout);
1192 
1193 	/* Down the MII. */
1194 	mii_down(&sc->sc_mii);
1195 
1196 	/* Mark the interface down and cancel the watchdog timer. */
1197 	ifp->if_flags &= ~IFF_RUNNING;
1198 	ifp->if_timer = 0;
1199 
1200 	CSR_WRITE(sc, xINTAE_CLR, ~0);
1201 	CSR_WRITE(sc, TXISR, ~0);
1202 	CSR_WRITE(sc, RXISR, ~0);
1203 }
1204 
1205 static int
1206 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1207 {
1208 	struct scx_softc *sc = ifp->if_softc;
1209 	struct ifreq *ifr = (struct ifreq *)data;
1210 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
1211 	int s, error;
1212 
1213 	s = splnet();
1214 
1215 	switch (cmd) {
1216 	case SIOCSIFMEDIA:
1217 		/* Flow control requires full-duplex mode. */
1218 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1219 		    (ifr->ifr_media & IFM_FDX) == 0)
1220 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1221 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1222 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1223 				/* We can do both TXPAUSE and RXPAUSE. */
1224 				ifr->ifr_media |=
1225 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1226 			}
1227 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1228 		}
1229 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1230 		break;
1231 	default:
1232 		error = ether_ioctl(ifp, cmd, data);
1233 		if (error != ENETRESET)
1234 			break;
1235 		error = 0;
1236 		if (cmd == SIOCSIFCAP)
1237 			error = if_init(ifp);
1238 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1239 			;
1240 		else if (ifp->if_flags & IFF_RUNNING) {
1241 			/*
1242 			 * Multicast list has changed; set the hardware filter
1243 			 * accordingly.
1244 			 */
1245 			scx_set_rcvfilt(sc);
1246 		}
1247 		break;
1248 	}
1249 
1250 	splx(s);
1251 	return error;
1252 }
1253 
1254 static uint32_t
1255 bit_reverse_32(uint32_t x)
1256 {
1257 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1258 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1259 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1260 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1261 	return (x >> 16) | (x << 16);
1262 }
1263 
1264 #define MCAST_DEBUG 0
1265 
1266 static void
1267 scx_set_rcvfilt(struct scx_softc *sc)
1268 {
1269 	struct ethercom * const ec = &sc->sc_ethercom;
1270 	struct ifnet * const ifp = &ec->ec_if;
1271 	struct ether_multistep step;
1272 	struct ether_multi *enm;
1273 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
1274 	uint32_t csr, crc;
1275 	int i;
1276 
1277 	csr = mac_read(sc, GMACAFR);
1278 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1279 	mac_write(sc, GMACAFR, csr);
1280 
1281 	/* clear 15 entry supplemental perfect match filter */
1282 	for (i = 1; i < 16; i++)
1283 		 mac_write(sc, GMACMAH(i), 0);
1284 	/* build 64 bit multicast hash filter */
1285 	crc = mchash[1] = mchash[0] = 0;
1286 
1287 	ETHER_LOCK(ec);
1288 	if (ifp->if_flags & IFF_PROMISC) {
1289 		ec->ec_flags |= ETHER_F_ALLMULTI;
1290 		ETHER_UNLOCK(ec);
1291 		/* run promisc. mode */
1292 		csr |= AFR_PR;
1293 		goto update;
1294 	}
1295 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1296 	ETHER_FIRST_MULTI(step, ec, enm);
1297 	i = 1; /* slot 0 is occupied */
1298 	while (enm != NULL) {
1299 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1300 			/*
1301 			 * We must listen to a range of multicast addresses.
1302 			 * For now, just accept all multicasts, rather than
1303 			 * trying to set only those filter bits needed to match
1304 			 * the range.  (At this time, the only use of address
1305 			 * ranges is for IP multicast routing, for which the
1306 			 * range is big enough to require all bits set.)
1307 			 */
1308 			ec->ec_flags |= ETHER_F_ALLMULTI;
1309 			ETHER_UNLOCK(ec);
1310 			/* accept all multi */
1311 			csr |= AFR_PM;
1312 			goto update;
1313 		}
1314 #if MCAST_DEBUG == 1
1315 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1316 #endif
1317 		if (i < 16) {
1318 			/* use 15 entry perfect match filter */
1319 			uint32_t addr;
1320 			uint8_t *ep = enm->enm_addrlo;
1321 			addr = (ep[3] << 24) | (ep[2] << 16)
1322 			     | (ep[1] <<  8) |  ep[0];
1323 			mac_write(sc, GMACMAL(i), addr);
1324 			addr = (ep[5] << 8) | ep[4];
1325 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
1326 		} else {
1327 			/* use hash table when too many */
1328 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1329 			crc = bit_reverse_32(~crc);
1330 			/* 1(31) 5(30:26) bit sampling */
1331 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1332 		}
1333 		ETHER_NEXT_MULTI(step, enm);
1334 		i++;
1335 	}
1336 	ETHER_UNLOCK(ec);
1337 	if (crc)
1338 		csr |= AFR_MHTE;
1339 	csr |= AFR_HPF; /* use hash+perfect */
1340 	mac_write(sc, GMACMHTH, mchash[1]);
1341 	mac_write(sc, GMACMHTL, mchash[0]);
1342  update:
1343 	/* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1344 	mac_write(sc, GMACAFR, csr);
1345 	return;
1346 }
1347 
1348 static void
1349 scx_start(struct ifnet *ifp)
1350 {
1351 	struct scx_softc *sc = ifp->if_softc;
1352 	struct mbuf *m0;
1353 	struct scx_txsoft *txs;
1354 	bus_dmamap_t dmamap;
1355 	int error, nexttx, lasttx, ofree, seg;
1356 	uint32_t tdes0;
1357 
1358 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1359 		return;
1360 
1361 	/* Remember the previous number of free descriptors. */
1362 	ofree = sc->sc_txfree;
1363 
1364 	/*
1365 	 * Loop through the send queue, setting up transmit descriptors
1366 	 * until we drain the queue, or use up all available transmit
1367 	 * descriptors.
1368 	 */
1369 	for (;;) {
1370 		IFQ_POLL(&ifp->if_snd, m0);
1371 		if (m0 == NULL)
1372 			break;
1373 
1374 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1375 			txreap(sc);
1376 			if (sc->sc_txsfree == 0)
1377 				break;
1378 		}
1379 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1380 		dmamap = txs->txs_dmamap;
1381 
1382 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1383 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1384 		if (error) {
1385 			if (error == EFBIG) {
1386 				aprint_error_dev(sc->sc_dev,
1387 				    "Tx packet consumes too many "
1388 				    "DMA segments, dropping...\n");
1389 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1390 				m_freem(m0);
1391 				if_statinc_ref(ifp, if_oerrors);
1392 				continue;
1393 			}
1394 			/* Short on resources, just stop for now. */
1395 			break;
1396 		}
1397 
1398 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1399 			/*
1400 			 * Not enough free descriptors to transmit this
1401 			 * packet.  We haven't committed anything yet,
1402 			 * so just unload the DMA map, put the packet
1403 			 * back on the queue, and punt.
1404 			 */
1405 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1406 			break;
1407 		}
1408 
1409 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1410 
1411 		/*
1412 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1413 		 */
1414 
1415 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1416 		    BUS_DMASYNC_PREWRITE);
1417 
1418 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1419 		lasttx = -1;
1420 		for (nexttx = sc->sc_txnext, seg = 0;
1421 		     seg < dmamap->dm_nsegs;
1422 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
1423 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1424 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1425 			/*
1426 			 * If this is the first descriptor we're
1427 			 * enqueueing, don't set the OWN bit just
1428 			 * yet.	 That could cause a race condition.
1429 			 * We'll do it below.
1430 			 */
1431 			tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len);
1432 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1433 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1434 			tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_LD) |
1435 					(15 << T0_TDRID) | T0_PT |
1436 					sc->sc_t0cotso | T0_TRS);
1437 			tdes0 = T0_OWN; /* 2nd and other segments */
1438 			/* NB; t0 DRID field contains zero */
1439 			lasttx = nexttx;
1440 		}
1441 
1442 		/* Write deferred 1st segment T0_OWN at the final stage */
1443 		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1444 		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1445 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1446 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1447 
1448 		/* submit one frame to xmit */
1449 		CSR_WRITE(sc, TXSUBMIT, 1);
1450 
1451 		txs->txs_mbuf = m0;
1452 		txs->txs_firstdesc = sc->sc_txnext;
1453 		txs->txs_lastdesc = lasttx;
1454 		txs->txs_ndesc = dmamap->dm_nsegs;
1455 
1456 		sc->sc_txfree -= txs->txs_ndesc;
1457 		sc->sc_txnext = nexttx;
1458 		sc->sc_txsfree--;
1459 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1460 		/*
1461 		 * Pass the packet to any BPF listeners.
1462 		 */
1463 		bpf_mtap(ifp, m0, BPF_D_OUT);
1464 	}
1465 
1466 	if (sc->sc_txfree != ofree) {
1467 		/* Set a watchdog timer in case the chip flakes out. */
1468 		ifp->if_timer = 5;
1469 	}
1470 }
1471 
1472 #define EVENT_DEBUG 1
1473 
1474 static void
1475 scx_watchdog(struct ifnet *ifp)
1476 {
1477 	struct scx_softc *sc = ifp->if_softc;
1478 
1479 	/*
1480 	 * Since we're not interrupting every packet, sweep
1481 	 * up before we report an error.
1482 	 */
1483 	txreap(sc);
1484 
1485 	if (sc->sc_txfree != MD_NTXDESC) {
1486 		aprint_error_dev(sc->sc_dev,
1487 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
1488 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1489 		if_statinc(ifp, if_oerrors);
1490 #if EVENT_DEBUG == 1
1491 aprint_error_dev(sc->sc_dev,
1492     "rx frames %d, octects %d, bcast %d, mcast %d\n",
1493     mac_read(sc, GMACEVCNT(27)),
1494     mac_read(sc, GMACEVCNT(28)),
1495     mac_read(sc, GMACEVCNT(30)),
1496     mac_read(sc, GMACEVCNT(31)));
1497 aprint_error_dev(sc->sc_dev,
1498     "tx frames %d, octects %d, bcast %d, mcast %d\n",
1499     mac_read(sc, GMACEVCNT(1)),
1500     mac_read(sc, GMACEVCNT(0)),
1501     mac_read(sc, GMACEVCNT(2)),
1502     mac_read(sc, GMACEVCNT(3)));
1503 aprint_error_dev(sc->sc_dev,
1504     "current tdes addr %x, buf addr %x\n",
1505     mac_read(sc, 0x1048), mac_read(sc, 0x1050));
1506 aprint_error_dev(sc->sc_dev,
1507     "current rdes addr %x, buf addr %x\n",
1508     mac_read(sc, 0x104c), mac_read(sc, 0x1054));
1509 #endif
1510 		/* Reset the interface. */
1511 		scx_init(ifp);
1512 	}
1513 
1514 	scx_start(ifp);
1515 }
1516 
1517 static int
1518 scx_intr(void *arg)
1519 {
1520 	struct scx_softc *sc = arg;
1521 	uint32_t enable, status;
1522 
1523 	status = CSR_READ(sc, xINTSR); /* not W1C */
1524 	enable = CSR_READ(sc, xINTAEN);
1525 	if ((status & enable) == 0)
1526 		return 0;
1527 	if (status & (IRQ_TX | IRQ_RX)) {
1528 		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1529 
1530 		status = CSR_READ(sc, RXISR);
1531 		CSR_WRITE(sc, RXISR, status);
1532 		if (status & RXI_RC_ERR)
1533 			aprint_error_dev(sc->sc_dev, "Rx error\n");
1534 		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1535 			rxintr(sc);
1536 			(void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */
1537 		}
1538 
1539 		status = CSR_READ(sc, TXISR);
1540 		CSR_WRITE(sc, TXISR, status);
1541 		if (status & TXI_TR_ERR)
1542 			aprint_error_dev(sc->sc_dev, "Tx error\n");
1543 		if (status & (TXI_TXDONE | TXI_TMREXP)) {
1544 			txreap(sc);
1545 			(void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */
1546 		}
1547 
1548 		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1549 	}
1550 	return 1;
1551 }
1552 
1553 static void
1554 txreap(struct scx_softc *sc)
1555 {
1556 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1557 	struct scx_txsoft *txs;
1558 	uint32_t txstat;
1559 	int i;
1560 
1561 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1562 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1563 		txs = &sc->sc_txsoft[i];
1564 
1565 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1566 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1567 
1568 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1569 		if (txstat & T0_OWN) /* desc is still in use */
1570 			break;
1571 
1572 		/* There is no way to tell transmission status per frame */
1573 
1574 		if_statinc(ifp, if_opackets);
1575 
1576 		sc->sc_txfree += txs->txs_ndesc;
1577 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1578 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1579 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1580 		m_freem(txs->txs_mbuf);
1581 		txs->txs_mbuf = NULL;
1582 	}
1583 	sc->sc_txsdirty = i;
1584 	if (sc->sc_txsfree == MD_TXQUEUELEN)
1585 		ifp->if_timer = 0;
1586 }
1587 
1588 static void
1589 rxintr(struct scx_softc *sc)
1590 {
1591 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1592 	struct scx_rxsoft *rxs;
1593 	struct mbuf *m;
1594 	uint32_t rxstat;
1595 	int i, len;
1596 
1597 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1598 		rxs = &sc->sc_rxsoft[i];
1599 
1600 		SCX_CDRXSYNC(sc, i,
1601 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1602 
1603 		rxstat = le32toh(sc->sc_rxdescs[i].r0);
1604 		if (rxstat & R0_OWN) /* desc is left empty */
1605 			break;
1606 
1607 		/* R0_FS | R0_LS must have been marked for this desc */
1608 
1609 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1610 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1611 
1612 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1613 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1614 		m = rxs->rxs_mbuf;
1615 
1616 		if (add_rxbuf(sc, i) != 0) {
1617 			if_statinc(ifp, if_ierrors);
1618 			SCX_INIT_RXDESC(sc, i);
1619 			bus_dmamap_sync(sc->sc_dmat,
1620 			    rxs->rxs_dmamap, 0,
1621 			    rxs->rxs_dmamap->dm_mapsize,
1622 			    BUS_DMASYNC_PREREAD);
1623 			continue;
1624 		}
1625 
1626 		m_set_rcvif(m, ifp);
1627 		m->m_pkthdr.len = m->m_len = len;
1628 
1629 		if (rxstat & R0_CSUM) {
1630 			uint32_t csum = M_CSUM_IPv4;
1631 			if (rxstat & R0_CERR)
1632 				csum |= M_CSUM_IPv4_BAD;
1633 			m->m_pkthdr.csum_flags |= csum;
1634 		}
1635 		if_percpuq_enqueue(ifp->if_percpuq, m);
1636 	}
1637 	sc->sc_rxptr = i;
1638 }
1639 
1640 static int
1641 add_rxbuf(struct scx_softc *sc, int i)
1642 {
1643 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1644 	struct mbuf *m;
1645 	int error;
1646 
1647 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1648 	if (m == NULL)
1649 		return ENOBUFS;
1650 
1651 	MCLGET(m, M_DONTWAIT);
1652 	if ((m->m_flags & M_EXT) == 0) {
1653 		m_freem(m);
1654 		return ENOBUFS;
1655 	}
1656 
1657 	if (rxs->rxs_mbuf != NULL)
1658 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1659 
1660 	rxs->rxs_mbuf = m;
1661 
1662 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1663 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1664 	if (error) {
1665 		aprint_error_dev(sc->sc_dev,
1666 		    "can't load rx DMA map %d, error = %d\n", i, error);
1667 		panic("add_rxbuf");
1668 	}
1669 
1670 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1671 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1672 	SCX_INIT_RXDESC(sc, i);
1673 
1674 	return 0;
1675 }
1676 
1677 static void
1678 rxdrain(struct scx_softc *sc)
1679 {
1680 	struct scx_rxsoft *rxs;
1681 	int i;
1682 
1683 	for (i = 0; i < MD_NRXDESC; i++) {
1684 		rxs = &sc->sc_rxsoft[i];
1685 		if (rxs->rxs_mbuf != NULL) {
1686 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1687 			m_freem(rxs->rxs_mbuf);
1688 			rxs->rxs_mbuf = NULL;
1689 		}
1690 	}
1691 }
1692 
1693 #define LINK_DEBUG 0
1694 
1695 void
1696 mii_statchg(struct ifnet *ifp)
1697 {
1698 	struct scx_softc *sc = ifp->if_softc;
1699 	struct mii_data *mii = &sc->sc_mii;
1700 	const int Mbps[4] = { 10, 100, 1000, 0 };
1701 	uint32_t miisr, mcr, fcr;
1702 	int spd;
1703 
1704 	/* decode MIISR register value */
1705 	miisr = mac_read(sc, GMACMIISR);
1706 	spd = Mbps[(miisr & MIISR_SPD) >> 1];
1707 #if LINK_DEBUG == 1
1708 	static uint32_t oldmiisr = 0;
1709 	if (miisr != oldmiisr) {
1710 		printf("MII link status (0x%x) %s",
1711 		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
1712 		if (miisr & MIISR_LUP) {
1713 			printf(" spd%d", spd);
1714 			if (miisr & MIISR_FDX)
1715 				printf(",full-duplex");
1716 		}
1717 		printf("\n");
1718 	}
1719 #endif
1720 	/* Get flow control negotiation result. */
1721 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1722 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1723 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1724 
1725 	/* Adjust speed 1000/100/10. */
1726 	mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
1727 	if (sc->sc_miigmii) {
1728 		if (spd != 1000)
1729 			mcr |= MCR_PS;
1730 	} else {
1731 		if (spd == 100)
1732 			mcr |= MCR_FES;
1733 	}
1734 	mcr |= MCR_CST | MCR_JE;
1735 	if (sc->sc_miigmii == 0)
1736 		mcr |= MCR_IBN;
1737 
1738 	/* Adjust duplexity and PAUSE flow control. */
1739 	mcr &= ~MCR_USEFDX;
1740 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1741 	if (miisr & MIISR_FDX) {
1742 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1743 			fcr |= FCR_TFE;
1744 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1745 			fcr |= FCR_RFE;
1746 		mcr |= MCR_USEFDX;
1747 	}
1748 	mac_write(sc, GMACMCR, mcr);
1749 	mac_write(sc, GMACFCR, fcr);
1750 #if LINK_DEBUG == 1
1751 	if (miisr != oldmiisr) {
1752 		printf("%ctxfe, %crxfe\n",
1753 		    (fcr & FCR_TFE) ? '+' : '-',
1754 		    (fcr & FCR_RFE) ? '+' : '-');
1755 	}
1756 	oldmiisr = miisr;
1757 #endif
1758 }
1759 
1760 static void
1761 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1762 {
1763 	struct scx_softc *sc = ifp->if_softc;
1764 	struct mii_data *mii = &sc->sc_mii;
1765 
1766 	mii_pollstat(mii);
1767 	ifmr->ifm_status = mii->mii_media_status;
1768 	ifmr->ifm_active = sc->sc_flowflags |
1769 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
1770 }
1771 
1772 static int
1773 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1774 {
1775 	struct scx_softc *sc = device_private(self);
1776 	uint32_t miia;
1777 	int ntries;
1778 
1779 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1780 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
1781 	for (ntries = 0; ntries < 1000; ntries++) {
1782 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1783 			goto unbusy;
1784 		DELAY(1);
1785 	}
1786 	return ETIMEDOUT;
1787  unbusy:
1788 	*val = mac_read(sc, GMACGDR);
1789 	return 0;
1790 }
1791 
1792 static int
1793 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1794 {
1795 	struct scx_softc *sc = device_private(self);
1796 	uint32_t miia;
1797 	uint16_t dummy;
1798 	int ntries;
1799 
1800 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1801 	mac_write(sc, GMACGDR, val);
1802 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1803 	for (ntries = 0; ntries < 1000; ntries++) {
1804 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1805 			goto unbusy;
1806 		DELAY(1);
1807 	}
1808 	return ETIMEDOUT;
1809   unbusy:
1810 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1811 	return 0;
1812 }
1813 
1814 static void
1815 phy_tick(void *arg)
1816 {
1817 	struct scx_softc *sc = arg;
1818 	struct mii_data *mii = &sc->sc_mii;
1819 	int s;
1820 
1821 	s = splnet();
1822 	mii_tick(mii);
1823 	splx(s);
1824 #ifdef GMAC_EVENT_COUNTERS
1825 	/* 80 event counters exist */
1826 #endif
1827 	callout_schedule(&sc->sc_callout, hz);
1828 }
1829 
1830 static void
1831 stopuengine(struct scx_softc *sc)
1832 {
1833 
1834 	if (CSR_READ(sc, CORESTAT) != 0) {
1835 		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1836 		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1837 		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0);
1838 		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0);
1839 	}
1840 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
1841 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
1842 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1843 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0);
1844 }
1845 
1846 static void
1847 startuengine(struct scx_softc *sc)
1848 {
1849 	int err;
1850 
1851 	CSR_WRITE(sc, CORESTAT, 0);
1852 	err = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0);
1853 	if (err) {
1854 		aprint_error_dev(sc->sc_dev, "uengine start failed\n");
1855 	}
1856 	CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1857 }
1858 
1859 /*
1860  * 3 independent uengines exist to process host2media, media2host and
1861  * packet data flows.
1862  */
1863 static void
1864 loaducode(struct scx_softc *sc)
1865 {
1866 	uint32_t up, lo, sz;
1867 	uint64_t addr;
1868 
1869 	CSR_WRITE(sc, xINTSR, IRQ_UCODE);
1870 
1871 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1872 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1873 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
1874 	sz *= 4;
1875 	addr = ((uint64_t)up << 32) | lo;
1876 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1877 	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1878 
1879 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1880 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1881 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1882 	sz *= 4;
1883 	addr = ((uint64_t)up << 32) | lo;
1884 	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1885 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1886 
1887 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1888 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
1889 	sz *= 4;
1890 	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1891 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1892 }
1893 
1894 static void
1895 injectucode(struct scx_softc *sc, int port,
1896 	bus_addr_t addr, bus_size_t size)
1897 {
1898 	bus_space_handle_t bsh;
1899 	bus_size_t off;
1900 	uint32_t ucode;
1901 
1902 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1903 		aprint_error_dev(sc->sc_dev,
1904 		    "eeprom map failure for ucode port 0x%x\n", port);
1905 		return;
1906 	}
1907 	for (off = 0; off < size; off += 4) {
1908 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
1909 		CSR_WRITE(sc, port, ucode);
1910 	}
1911 	bus_space_unmap(sc->sc_st, bsh, size);
1912 }
1913 
1914 /* GAR 5:2 MDIO frequency selection */
1915 static int
1916 get_mdioclk(uint32_t freq)
1917 {
1918 
1919 	freq /= 1000 * 1000;
1920 	if (freq < 35)
1921 		return GAR_MDIO_25_35MHZ;
1922 	if (freq < 60)
1923 		return GAR_MDIO_35_60MHZ;
1924 	if (freq < 100)
1925 		return GAR_MDIO_60_100MHZ;
1926 	if (freq < 150)
1927 		return GAR_MDIO_100_150MHZ;
1928 	if (freq < 250)
1929 		return GAR_MDIO_150_250MHZ;
1930 	return GAR_MDIO_250_300MHZ;
1931 }
1932 
1933 #define HWFEA_DEBUG 1
1934 
1935 void
1936 dump_hwfeature(struct scx_softc *sc)
1937 {
1938 #if HWFEA_DEBUG == 1
1939 	struct {
1940 		uint32_t bit;
1941 		const char *des;
1942 	} field[] = {
1943 		{ 27, "SA/VLAN insertion replacement enabled" },
1944 		{ 26, "flexible PPS enabled" },
1945 		{ 25, "time stamping with internal system enabled" },
1946 		{ 24, "alternate/enhanced descriptor enabled" },
1947 		{ 19, "rx FIFO >2048 enabled" },
1948 		{ 18, "type 2 IP checksum offload enabled" },
1949 		{ 17, "type 1 IP checksum offload enabled" },
1950 		{ 16, "Tx checksum offload enabled" },
1951 		{ 15, "AV feature enabled" },
1952 		{ 14, "EEE energy save feature enabled" },
1953 		{ 13, "1588-2008 version 2 advanced feature enabled" },
1954 		{ 12, "only 1588-2002 version 1 feature enabled" },
1955 		{ 11, "RMON event counter enabled" },
1956 		{ 10, "PMT magic packet enabled" },
1957 		{ 9,  "PMT remote wakeup enabled" },
1958 		{ 8,  "MDIO enabled", },
1959 		{ 7,  "L3/L4 filter enabled" },
1960 		{ 6,  "TBI/SGMII/RTBI support enabled" },
1961 		{ 5,  "supplimental MAC address enabled" },
1962 		{ 4,  "receive hash filter enabled" },
1963 		{ 3,  "hash size is expanded" },
1964 		{ 2,  "Half Duplex enabled" },
1965 		{ 1,  "1000 Mbps enabled" },
1966 		{ 0,  "10/100 Mbps enabled" },
1967 	};
1968 	const char *nameofmii[] = {
1969 		"GMII or MII",
1970 		"RGMII",
1971 		"SGMII",
1972 		"TBI",
1973 		"RMII",
1974 		"RTBI",
1975 		"SMII",
1976 		"RevMII"
1977 	};
1978 	uint32_t hwfea, mtype, txchan, rxchan;
1979 
1980 	hwfea = CSR_READ(sc, HWFEA);
1981 	mtype = (hwfea & __BITS(30,28)) >> 28;
1982 	aprint_normal("HWFEA 0x%08x\n", hwfea);
1983 	aprint_normal("%s <30:28>\n", nameofmii[mtype]);
1984 	for (unsigned i = 0; i < __arraycount(field); i++) {
1985 		if ((hwfea & (1U << field[i].bit)) == 0)
1986 			continue;
1987 		aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
1988 	}
1989 	if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
1990 		aprint_normal("+%d tx channel available <23,22>\n", txchan);
1991 	if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
1992 		aprint_normal("+%d rx channel available <21:20>\n", rxchan);
1993 	return;
1994 #endif
1995 }
1996