1 /* $NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $ */ 2 3 /*- 4 * Copyright (c) 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Tohru Nishimura. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #define NOT_MP_SAFE 0 33 34 /* 35 * Socionext SC2A11 SynQuacer NetSec GbE driver 36 * 37 * Multiple Tx and Rx queues exist inside and dedicated descriptor 38 * fields specifies which queue is to use. Three internal micro-processors 39 * to handle incoming frames, outgoing frames and packet data crypto 40 * processing. uP programs are stored in an external flash memory and 41 * have to be loaded by device driver. 42 * NetSec uses Synopsys DesignWare Core EMAC. DWC implementation 43 * register (0x20) is known to have 0x10.36 and feature register (0x1058) 44 * reports 0x11056f37. 45 * <24> alternative/enhanced desc format 46 * <18> receive IP type 2 checksum offload 47 * <16> transmit checksum offload 48 * <11> event counter (mac management counter, MMC) 49 */ 50 51 #include <sys/cdefs.h> 52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.40 2023/05/21 00:35:38 nisimura Exp $"); 53 54 #include <sys/param.h> 55 #include <sys/bus.h> 56 #include <sys/intr.h> 57 #include <sys/device.h> 58 #include <sys/callout.h> 59 #include <sys/mbuf.h> 60 #include <sys/errno.h> 61 #include <sys/rndsource.h> 62 #include <sys/kernel.h> 63 #include <sys/systm.h> 64 65 #include <net/if.h> 66 #include <net/if_media.h> 67 #include <net/if_dl.h> 68 #include <net/if_ether.h> 69 #include <dev/mii/mii.h> 70 #include <dev/mii/miivar.h> 71 #include <net/bpf.h> 72 73 #include <dev/fdt/fdtvar.h> 74 #include <dev/acpi/acpireg.h> 75 #include <dev/acpi/acpivar.h> 76 #include <dev/acpi/acpi_intr.h> 77 78 /* SC2A11 GbE 64-bit paddr descriptor */ 79 struct tdes { 80 uint32_t t0, t1, t2, t3; 81 }; 82 struct rdes { 83 uint32_t r0, r1, r2, r3; 84 }; 85 #define T0_OWN (1U<<31) /* desc is ready to Tx */ 86 #define T0_LD (1U<<30) /* last descriptor in array */ 87 #define T0_DRID (24) /* 29:24 desc ring id */ 88 #define T0_PT (1U<<21) /* 23:21 "pass-through" */ 89 #define T0_TDRID (16) /* 20:16 target desc ring id: GMAC=15 */ 90 #define T0_CC (1U<<15) /* ??? */ 91 #define T0_FS (1U<<9) /* first segment of frame */ 92 #define T0_LS (1U<<8) /* last segment of frame */ 93 #define T0_CSUM (1U<<7) /* enable check sum offload */ 94 #define T0_TSO (1U<<6) /* enable TCP segment offload */ 95 #define T0_TRS (1U<<4) /* 5:4 "TRS" ??? */ 96 /* T1 frame segment address 63:32 */ 97 /* T2 frame segment address 31:0 */ 98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */ 99 #define R0_OWN (1U<<31) /* desc is empty */ 100 #define R0_LD (1U<<30) /* last descriptor in array */ 101 #define R0_SDRID (24) /* 29:24 source desc ring id */ 102 #define R0_FR (1U<<23) /* found fragmented */ 103 #define R0_ER (1U<<21) /* Rx error indication */ 104 #define R0_ERR (3U<<16) /* 18:16 receive error code */ 105 #define R0_TDRID (12) /* 15:12 target desc ring id */ 106 #define R0_FS (1U<<9) /* first segment of frame */ 107 #define R0_LS (1U<<8) /* last segment of frame */ 108 #define R0_CSUM (3U<<6) /* 7:6 checksum status */ 109 #define R0_CERR (2U<<6) /* 0: undone, 1: found ok, 2: bad */ 110 /* R1 frame address 63:32 */ 111 /* R2 frame address 31:0 */ 112 /* R3 31:16 received frame length, 15:0 buffer length to receive */ 113 114 /* 115 * SC2A11 registers. 0x100 - 1204 116 */ 117 #define SWRESET 0x104 118 #define SRST_RUN (1U<<31) /* instruct start, 0 to stop */ 119 #define COMINIT 0x120 120 #define INIT_DB (1U<<2) /* ???; self clear when done */ 121 #define INIT_CLS (1U<<1) /* ???; self clear when done */ 122 #define PKTCTRL 0x140 /* pkt engine control */ 123 #define MODENRM (1U<<28) /* change mode to normal */ 124 #define ENJUMBO (1U<<27) /* allow jumbo frame */ 125 #define RPTCSUMERR (1U<<3) /* log Rx checksum error */ 126 #define RPTHDCOMP (1U<<2) /* log HD incomplete condition */ 127 #define RPTHDERR (1U<<1) /* log HD error */ 128 #define DROPNOMATCH (1U<<0) /* drop no match frames */ 129 #define xINTSR 0x200 /* aggregated interrupt status */ 130 #define IRQ_UCODE (1U<<20) /* ucode load completed; W1C */ 131 #define IRQ_MAC (1U<<19) /* ??? */ 132 #define IRQ_PKT (1U<<18) /* ??? */ 133 #define IRQ_BOOTCODE (1U<<5) /* ??? */ 134 #define IRQ_XDONE (1U<<4) /* ??? mode change completed */ 135 #define IRQ_RX (1U<<1) /* top level Rx interrupt */ 136 #define IRQ_TX (1U<<0) /* top level Tx interrupt */ 137 #define xINTAEN 0x204 /* INT_A enable */ 138 #define xINTAE_SET 0x234 /* bit to set */ 139 #define xINTAE_CLR 0x238 /* bit to clr */ 140 #define xINTBEN 0x23c /* INT_B enable */ 141 #define xINTBE_SET 0x240 /* bit to set */ 142 #define xINTBE_CLR 0x244 /* bit to clr */ 143 #define TXISR 0x400 /* transmit status; W1C */ 144 #define TXIEN 0x404 /* tx interrupt enable */ 145 #define TXIE_SET 0x428 /* bit to set */ 146 #define TXIE_CLR 0x42c /* bit to clr */ 147 #define TXI_NTOWNR (1U<<17) /* ??? desc array got empty */ 148 #define TXI_TR_ERR (1U<<16) /* tx error */ 149 #define TXI_TXDONE (1U<<15) /* tx completed */ 150 #define TXI_TMREXP (1U<<14) /* coalesce timer expired */ 151 #define RXISR 0x440 /* receive status; W1C */ 152 #define RXIEN 0x444 /* rx interrupt enable */ 153 #define RXIE_SET 0x468 /* bit to set */ 154 #define RXIE_CLR 0x46c /* bit to clr */ 155 #define RXI_RC_ERR (1U<<16) /* rx error */ 156 #define RXI_PKTCNT (1U<<15) /* rx counter has new value */ 157 #define RXI_TMREXP (1U<<14) /* coalesce timer expired */ 158 /* 13 sets of special purpose desc interrupt handling register exist */ 159 #define TDBA_LO 0x408 /* tdes array base addr 31:0 */ 160 #define TDBA_HI 0x434 /* tdes array base addr 63:32 */ 161 #define RDBA_LO 0x448 /* rdes array base addr 31:0 */ 162 #define RDBA_HI 0x474 /* rdes array base addr 63:32 */ 163 /* 13 pairs of special purpose desc array base address register exist */ 164 #define TXCONF 0x430 165 #define RXCONF 0x470 166 #define DESCNF_UP (1U<<31) /* up-and-running */ 167 #define DESCNF_CHRST (1U<<30) /* channel reset */ 168 #define DESCNF_TMR (1U<<4) /* coalesce timer mode select */ 169 #define DESCNF_LE (1) /* little endian desc format */ 170 #define TXSUBMIT 0x410 /* submit frame(s) to transmit */ 171 #define TXCLSCMAX 0x418 /* tx intr coalesce upper bound */ 172 #define RXCLSCMAX 0x458 /* rx intr coalesce upper bound */ 173 #define TXITIMER 0x420 /* coalesce timer usec, MSB to use */ 174 #define RXITIMER 0x460 /* coalesce timer usec, MSB to use */ 175 #define TXDONECNT 0x414 /* tx completed count, auto-zero */ 176 #define RXDONECNT 0x454 /* rx available count, auto-zero */ 177 #define DMACTL_TMR 0x20c /* engine DMA timer value */ 178 #define UCODE_H2M 0x210 /* host2media engine ucode port */ 179 #define UCODE_M2H 0x21c /* media2host engine ucode port */ 180 #define CORESTAT 0x218 /* engine run state */ 181 #define PKTSTOP (1U<<2) 182 #define M2HSTOP (1U<<1) 183 #define H2MSTOP (1U<<0) 184 #define DMACTL_H2M 0x214 /* host2media engine control */ 185 #define DMACTL_M2H 0x220 /* media2host engine control */ 186 #define DMACTL_STOP (1U<<0) /* instruct stop; self-clear */ 187 #define UCODE_PKT 0x0d0 /* packet engine ucode port */ 188 #define CLKEN 0x100 /* clock distribution enable */ 189 #define CLK_G (1U<<5) /* feed clk domain E */ 190 #define CLK_C (1U<<1) /* feed clk domain C */ 191 #define CLK_D (1U<<0) /* feed clk domain D */ 192 #define CLK_ALL 0x23 /* all above; 0x24 ??? 0x3f ??? */ 193 194 /* GMAC register indirect access. thru MACCMD/MACDATA operation */ 195 #define MACDATA 0x11c0 /* gmac register rd/wr data */ 196 #define MACCMD 0x11c4 /* gmac register operation */ 197 #define CMD_IOWR (1U<<28) /* write op */ 198 #define CMD_BUSY (1U<<31) /* busy bit */ 199 #define MACSTAT 0x1024 /* gmac status; ??? */ 200 #define MACINTE 0x1028 /* interrupt enable; ??? */ 201 202 #define FLOWTHR 0x11cc /* flow control threshold */ 203 /* 31:16 pause threshold, 15:0 resume threshold */ 204 #define INTF_SEL 0x11d4 /* ??? */ 205 206 #define DESC_INIT 0x11fc /* write 1 for desc init, SC */ 207 #define DESC_SRST 0x1204 /* write 1 for desc sw reset, SC */ 208 #define MODE_TRANS 0x500 /* mode change completion status */ 209 #define N2T_DONE (1U<<20) /* normal->taiki change completed */ 210 #define T2N_DONE (1U<<19) /* taiki->normal change completed */ 211 #define MACADRH 0x10c /* ??? */ 212 #define MACADRL 0x110 /* ??? */ 213 #define MCVER 0x22c /* micro controller version */ 214 #define HWVER 0x230 /* hardware version */ 215 216 /* 217 * GMAC registers are mostly identical to Synopsys DesignWare Core 218 * Ethernet. These must be handled by indirect access. 219 */ 220 #define GMACMCR 0x0000 /* MAC configuration */ 221 #define MCR_IBN (1U<<30) /* ??? */ 222 #define MCR_CST (1U<<25) /* strip CRC */ 223 #define MCR_TC (1U<<24) /* keep RGMII PHY notified */ 224 #define MCR_WD (1U<<23) /* allow long >2048 tx frame */ 225 #define MCR_JE (1U<<20) /* allow ~9018 tx jumbo frame */ 226 #define MCR_IFG (7U<<17) /* 19:17 IFG value 0~7 */ 227 #define MCR_DCRS (1U<<16) /* ignore (G)MII HDX Tx error */ 228 #define MCR_PS (1U<<15) /* 1: MII 10/100, 0: GMII 1000 */ 229 #define MCR_FES (1U<<14) /* force speed 100 */ 230 #define MCR_DO (1U<<13) /* don't receive my own HDX Tx frames */ 231 #define MCR_LOOP (1U<<12) /* run loop back */ 232 #define MCR_USEFDX (1U<<11) /* force full duplex */ 233 #define MCR_IPCEN (1U<<10) /* handle checksum */ 234 #define MCR_DR (1U<<9) /* attempt no tx retry, send once */ 235 #define MCR_LUD (1U<<8) /* link condition report when RGMII */ 236 #define MCR_ACS (1U<<7) /* auto pad strip CRC */ 237 #define MCR_DC (1U<<4) /* report excessive tx deferral */ 238 #define MCR_TE (1U<<3) /* run Tx MAC engine, 0 to stop */ 239 #define MCR_RE (1U<<2) /* run Rx MAC engine, 0 to stop */ 240 #define MCR_PREA (3U) /* 1:0 preamble len. 0~2 */ 241 #define GMACAFR 0x0004 /* frame DA/SA address filter */ 242 #define AFR_RA (1U<<31) /* accept all irrespective of filt. */ 243 #define AFR_HPF (1U<<10) /* hash+perfect filter, or hash only */ 244 #define AFR_SAF (1U<<9) /* source address filter */ 245 #define AFR_SAIF (1U<<8) /* SA inverse filtering */ 246 #define AFR_PCF (2U<<6) /* ??? */ 247 #define AFR_DBF (1U<<5) /* reject broadcast frame */ 248 #define AFR_PM (1U<<4) /* accept all multicast frame */ 249 #define AFR_DAIF (1U<<3) /* DA inverse filtering */ 250 #define AFR_MHTE (1U<<2) /* use multicast hash table */ 251 #define AFR_UHTE (1U<<1) /* use hash table for unicast */ 252 #define AFR_PR (1U<<0) /* run promisc mode */ 253 #define GMACGAR 0x0010 /* MDIO operation */ 254 #define GAR_PHY (11) /* 15:11 mii phy */ 255 #define GAR_REG (6) /* 10:6 mii reg */ 256 #define GAR_CLK (2) /* 5:2 mdio clock tick ratio */ 257 #define GAR_IOWR (1U<<1) /* MDIO write op */ 258 #define GAR_BUSY (1U<<0) /* busy bit */ 259 #define GAR_MDIO_25_35MHZ 2 260 #define GAR_MDIO_35_60MHZ 3 261 #define GAR_MDIO_60_100MHZ 0 262 #define GAR_MDIO_100_150MHZ 1 263 #define GAR_MDIO_150_250MHZ 4 264 #define GAR_MDIO_250_300MHZ 5 265 #define GMACGDR 0x0014 /* MDIO rd/wr data */ 266 #define GMACFCR 0x0018 /* 802.3x flowcontrol */ 267 /* 31:16 pause timer value, 5:4 pause timer threshold */ 268 #define FCR_RFE (1U<<2) /* accept PAUSE to throttle Tx */ 269 #define FCR_TFE (1U<<1) /* generate PAUSE to moderate Rx lvl */ 270 #define GMACIMPL 0x0020 /* implementation id */ 271 #define GMACISR 0x0038 /* interrupt status indication */ 272 #define GMACIMR 0x003c /* interrupt mask to inhibit */ 273 #define ISR_TS (1U<<9) /* time stamp operation detected */ 274 #define ISR_CO (1U<<7) /* Rx checksum offload completed */ 275 #define ISR_TX (1U<<6) /* Tx completed */ 276 #define ISR_RX (1U<<5) /* Rx completed */ 277 #define ISR_ANY (1U<<4) /* any of above 5-7 report */ 278 #define ISR_LC (1U<<0) /* link status change detected */ 279 #define GMACMAH0 0x0040 /* my own MAC address 47:32 */ 280 #define GMACMAL0 0x0044 /* my own MAC address 31:0 */ 281 #define GMACMAH(i) ((i)*8+0x40) /* supplemental MAC addr 1-15 */ 282 #define GMACMAL(i) ((i)*8+0x44) /* 31:0 MAC address low part */ 283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */ 284 #define GMACAMAH(i) ((i)*8+0x800) /* supplemental MAC addr 16-31 */ 285 #define GMACAMAL(i) ((i)*8+0x804) /* 31: MAC address low part */ 286 /* supplimental MAH bit-31: slot in use, no other bit is effective */ 287 #define GMACMHTH 0x0008 /* 64bit multicast hash table 63:32 */ 288 #define GMACMHTL 0x000c /* 64bit multicast hash table 31:0 */ 289 #define GMACMHT(i) ((i)*4+0x500) /* 256-bit alternative mcast hash 0-7 */ 290 #define GMACVTAG 0x001c /* VLAN tag control */ 291 #define VTAG_HASH (1U<<19) /* use VLAN tag hash table */ 292 #define VTAG_SVLAN (1U<<18) /* handle type 0x88A8 SVLAN frame */ 293 #define VTAG_INV (1U<<17) /* run inverse match logic */ 294 #define VTAG_ETV (1U<<16) /* use only 12bit VID field to match */ 295 /* 15:0 concat of PRIO+CFI+VID */ 296 #define GMACVHT 0x0588 /* 16-bit VLAN tag hash */ 297 #define GMACMIISR 0x00d8 /* resolved RGMII/SGMII link status */ 298 #define MIISR_LUP (1U<<3) /* link up(1)/down(0) report */ 299 #define MIISR_SPD (3U<<1) /* 2:1 speed 10(0)/100(1)/1000(2) */ 300 #define MIISR_FDX (1U<<0) /* fdx detected */ 301 302 #define GMACLPIS 0x0030 /* LPI control & status */ 303 #define LPIS_TXA (1U<<19) /* complete Tx in progress and LPI */ 304 #define LPIS_PLS (1U<<17) 305 #define LPIS_EN (1U<<16) /* 1: enter LPI mode, 0: exit */ 306 #define LPIS_TEN (1U<<0) /* Tx LPI report */ 307 #define GMACLPIC 0x0034 /* LPI timer control */ 308 #define LPIC_LST (5) /* 16:5 ??? */ 309 #define LPIC_TWT (0) /* 15:0 ??? */ 310 /* 0x700-764 Time Stamp control */ 311 312 #define GMACBMR 0x1000 /* DMA bus mode control */ 313 /* 24 8xPBL multiply by 8 for RPBL & PBL values 314 * 23 USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx 315 * 22:17 RPBL 316 * 16 FB fixed burst 317 * 15:14 priority between Rx and Tx 318 * 3 rxtx ratio 41 319 * 2 rxtx ratio 31 320 * 1 rxtx ratio 21 321 * 0 rxtx ratio 11 322 * 13:8 PBL possible DMA burst length 323 * 7 ATDS select 32-byte descriptor format for advanced features 324 * 6:2 DSL descriptor skip length, 0 for adjuscent, counted on bus width 325 * 0 MAC reset op. self-clear 326 */ 327 #define BMR_RST (1) /* reset op. self clear when done */ 328 #define GMACTPD 0x1004 /* write any to resume tdes */ 329 #define GMACRPD 0x1008 /* write any to resume rdes */ 330 #define GMACRDLA 0x100c /* rdes base address 32bit paddr */ 331 #define GMACTDLA 0x1010 /* tdes base address 32bit paddr */ 332 #define GMACDSR 0x1014 /* DMA status detail report; W1C */ 333 #define GMACDIE 0x101c /* DMA interrupt enable */ 334 #define DMAI_LPI (1U<<30) /* LPI interrupt */ 335 #define DMAI_TTI (1U<<29) /* timestamp trigger interrupt */ 336 #define DMAI_GMI (1U<<27) /* management counter interrupt */ 337 #define DMAI_GLI (1U<<26) /* xMII link change detected */ 338 #define DMAI_EB (23) /* 25:23 DMA bus error detected */ 339 #define DMAI_TS (20) /* 22:20 Tx DMA state report */ 340 #define DMAI_RS (17) /* 29:17 Rx DMA state report */ 341 #define DMAI_NIS (1U<<16) /* normal interrupt summary; W1C */ 342 #define DMAI_AIS (1U<<15) /* abnormal interrupt summary; W1C */ 343 #define DMAI_ERI (1U<<14) /* the first Rx buffer is filled */ 344 #define DMAI_FBI (1U<<13) /* DMA bus error detected */ 345 #define DMAI_ETI (1U<<10) /* single frame Tx completed */ 346 #define DMAI_RWT (1U<<9) /* longer than 2048 frame received */ 347 #define DMAI_RPS (1U<<8) /* Rx process is now stopped */ 348 #define DMAI_RU (1U<<7) /* Rx descriptor not available */ 349 #define DMAI_RI (1U<<6) /* frame Rx completed by !R1_DIC */ 350 #define DMAI_UNF (1U<<5) /* Tx underflow detected */ 351 #define DMAI_OVF (1U<<4) /* receive buffer overflow detected */ 352 #define DMAI_TJT (1U<<3) /* longer than 2048 frame sent */ 353 #define DMAI_TU (1U<<2) /* Tx descriptor not available */ 354 #define DMAI_TPS (1U<<1) /* transmission is stopped */ 355 #define DMAI_TI (1U<<0) /* frame Tx completed by T0_IC */ 356 #define GMACOMR 0x1018 /* DMA operation mode */ 357 #define OMR_RSF (1U<<25) /* 1: Rx store&forward, 0: immed. */ 358 #define OMR_TSF (1U<<21) /* 1: Tx store&forward, 0: immed. */ 359 #define OMR_TTC (14) /* 16:14 Tx threshold */ 360 #define OMR_ST (1U<<13) /* run Tx DMA engine, 0 to stop */ 361 #define OMR_RFD (11) /* 12:11 Rx FIFO fill level */ 362 #define OMR_EFC (1U<<8) /* transmit PAUSE to throttle Rx lvl. */ 363 #define OMR_FEF (1U<<7) /* allow to receive error frames */ 364 #define OMR_SR (1U<<1) /* run Rx DMA engine, 0 to stop */ 365 #define GMACEVCS 0x1020 /* missed frame or ovf detected */ 366 #define GMACRWDT 0x1024 /* enable rx watchdog timer interrupt */ 367 #define GMACAXIB 0x1028 /* AXI bus mode control */ 368 #define GMACAXIS 0x102c /* AXI status report */ 369 /* 0x1048 current tx desc address */ 370 /* 0x104c current rx desc address */ 371 /* 0x1050 current tx buffer address */ 372 /* 0x1054 current rx buffer address */ 373 #define HWFEA 0x1058 /* DWC feature report */ 374 #define FEA_EXDESC (1U<<24) /* alternative/enhanced desc layout */ 375 #define FEA_2COE (1U<<18) /* Rx type 2 IP checksum offload */ 376 #define FEA_1COE (1U<<17) /* Rx type 1 IP checksum offload */ 377 #define FEA_TXOE (1U<<16) /* Tx checksum offload */ 378 #define FEA_MMC (1U<<11) /* RMON event counter */ 379 380 #define GMACEVCTL 0x0100 /* event counter control */ 381 #define EVC_FHP (1U<<5) /* full-half preset */ 382 #define EVC_CP (1U<<4) /* counter preset */ 383 #define EVC_MCF (1U<<3) /* counter freeze */ 384 #define EVC_ROR (1U<<2) /* auto-zero on counter read */ 385 #define EVC_CSR (1U<<1) /* counter stop rollover */ 386 #define EVC_CR (1U<<0) /* reset counters */ 387 #define GMACEVCNT(i) ((i)*4+0x114) /* 80 event counters 0x114 - 0x284 */ 388 389 /* 0x400-4ac L3/L4 control */ 390 391 /* 392 * flash memory layout 393 * 0x00 - 07 48-bit MAC station address. 4 byte wise in BE order. 394 * 0x08 - 0b H->MAC xfer engine program start addr 63:32. 395 * 0x0c - 0f H2M program addr 31:0 (these are absolute addr, not offset) 396 * 0x10 - 13 H2M program length in 4 byte count. 397 * 0x14 - 0b M->HOST xfer engine program start addr 63:32. 398 * 0x18 - 0f M2H program addr 31:0 (absolute addr, not relative) 399 * 0x1c - 13 M2H program length in 4 byte count. 400 * 0x20 - 23 packet engine program addr 31:0, (absolute addr, not offset) 401 * 0x24 - 27 packet program length in 4 byte count. 402 * 403 * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0. 404 */ 405 406 #define _BMR 0x00412080 /* XXX TBD */ 407 #define _BMR0 0x00020181 /* XXX TBD */ 408 /* NetSec uses local RAM to handle GMAC desc arrays and frame buffers */ 409 #define _RDLA 0x18000 410 #define _TDLA 0x1c000 411 #define _MCR_FDX 0x0000280c /* XXX TBD */ 412 #define _MCR_HDX 0x0001a00c /* XXX TBD */ 413 414 /* 415 * all below are software constraction. 416 */ 417 #define MD_NTXDESC 128 418 #define MD_NRXDESC 64 419 420 #define MD_NTXSEGS 16 421 #define MD_TXQUEUELEN 8 422 #define MD_TXQUEUELEN_MASK (MD_TXQUEUELEN - 1) 423 #define MD_TXQUEUE_GC (MD_TXQUEUELEN / 4) 424 #define MD_NTXDESC_MASK (MD_NTXDESC - 1) 425 #define MD_NEXTTX(x) (((x) + 1) & MD_NTXDESC_MASK) 426 #define MD_NEXTTXS(x) (((x) + 1) & MD_TXQUEUELEN_MASK) 427 428 #define MD_NRXDESC_MASK (MD_NRXDESC - 1) 429 #define MD_NEXTRX(x) (((x) + 1) & MD_NRXDESC_MASK) 430 431 struct control_data { 432 struct tdes cd_txdescs[MD_NTXDESC]; 433 struct rdes cd_rxdescs[MD_NRXDESC]; 434 }; 435 #define SCX_CDOFF(x) offsetof(struct control_data, x) 436 #define SCX_CDTXOFF(x) SCX_CDOFF(cd_txdescs[(x)]) 437 #define SCX_CDRXOFF(x) SCX_CDOFF(cd_rxdescs[(x)]) 438 439 struct scx_txsoft { 440 struct mbuf *txs_mbuf; /* head of our mbuf chain */ 441 bus_dmamap_t txs_dmamap; /* our DMA map */ 442 int txs_firstdesc; /* first descriptor in packet */ 443 int txs_lastdesc; /* last descriptor in packet */ 444 int txs_ndesc; /* # of descriptors used */ 445 }; 446 447 struct scx_rxsoft { 448 struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 449 bus_dmamap_t rxs_dmamap; /* our DMA map */ 450 }; 451 452 struct scx_softc { 453 device_t sc_dev; /* generic device information */ 454 bus_space_tag_t sc_st; /* bus space tag */ 455 bus_space_handle_t sc_sh; /* bus space handle */ 456 bus_size_t sc_sz; /* csr map size */ 457 bus_space_handle_t sc_eesh; /* eeprom section handle */ 458 bus_size_t sc_eesz; /* eeprom map size */ 459 bus_dma_tag_t sc_dmat; /* bus DMA tag */ 460 struct ethercom sc_ethercom; /* Ethernet common data */ 461 struct mii_data sc_mii; /* MII */ 462 callout_t sc_callout; /* PHY monitor callout */ 463 bus_dma_segment_t sc_seg; /* descriptor store seg */ 464 int sc_nseg; /* descriptor store nseg */ 465 void *sc_ih; /* interrupt cookie */ 466 int sc_phy_id; /* PHY address */ 467 int sc_flowflags; /* 802.3x PAUSE flow control */ 468 uint32_t sc_mdclk; /* GAR 5:2 clock selection */ 469 uint32_t sc_t0cotso; /* T0_CSUM | T0_TSO to run */ 470 int sc_miigmii; /* 1: MII/GMII, 0: RGMII */ 471 int sc_phandle; /* fdt phandle */ 472 uint64_t sc_freq; 473 uint32_t sc_maxsize; 474 475 bus_dmamap_t sc_cddmamap; /* control data DMA map */ 476 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 477 478 struct control_data *sc_control_data; 479 #define sc_txdescs sc_control_data->cd_txdescs 480 #define sc_rxdescs sc_control_data->cd_rxdescs 481 482 struct scx_txsoft sc_txsoft[MD_TXQUEUELEN]; 483 struct scx_rxsoft sc_rxsoft[MD_NRXDESC]; 484 int sc_txfree; /* number of free Tx descriptors */ 485 int sc_txnext; /* next ready Tx descriptor */ 486 int sc_txsfree; /* number of free Tx jobs */ 487 int sc_txsnext; /* next ready Tx job */ 488 int sc_txsdirty; /* dirty Tx jobs */ 489 int sc_rxptr; /* next ready Rx descriptor/descsoft */ 490 491 krndsource_t rnd_source; /* random source */ 492 #ifdef GMAC_EVENT_COUNTERS 493 /* 80 event counters exist */ 494 #endif 495 }; 496 497 #define SCX_CDTXADDR(sc, x) ((sc)->sc_cddma + SCX_CDTXOFF((x))) 498 #define SCX_CDRXADDR(sc, x) ((sc)->sc_cddma + SCX_CDRXOFF((x))) 499 500 #define SCX_CDTXSYNC(sc, x, n, ops) \ 501 do { \ 502 int __x, __n; \ 503 \ 504 __x = (x); \ 505 __n = (n); \ 506 \ 507 /* If it will wrap around, sync to the end of the ring. */ \ 508 if ((__x + __n) > MD_NTXDESC) { \ 509 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 510 SCX_CDTXOFF(__x), sizeof(struct tdes) * \ 511 (MD_NTXDESC - __x), (ops)); \ 512 __n -= (MD_NTXDESC - __x); \ 513 __x = 0; \ 514 } \ 515 \ 516 /* Now sync whatever is left. */ \ 517 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 518 SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops)); \ 519 } while (/*CONSTCOND*/0) 520 521 #define SCX_CDRXSYNC(sc, x, ops) \ 522 do { \ 523 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 524 SCX_CDRXOFF((x)), sizeof(struct rdes), (ops)); \ 525 } while (/*CONSTCOND*/0) 526 527 #define SCX_INIT_RXDESC(sc, x) \ 528 do { \ 529 struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 530 struct rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \ 531 struct mbuf *__m = __rxs->rxs_mbuf; \ 532 bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr; \ 533 bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len; \ 534 __m->m_data = __m->m_ext.ext_buf; \ 535 __rxd->r3 = htole32(__z); \ 536 __rxd->r2 = htole32(BUS_ADDR_LO32(__p)); \ 537 __rxd->r1 = htole32(BUS_ADDR_HI32(__p)); \ 538 __rxd->r0 &= htole32(R0_LD); \ 539 __rxd->r0 |= htole32(R0_OWN); \ 540 } while (/*CONSTCOND*/0) 541 542 /* memory mapped CSR register access */ 543 #define CSR_READ(sc,off) \ 544 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off)) 545 #define CSR_WRITE(sc,off,val) \ 546 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val)) 547 548 /* flash memory access */ 549 #define EE_READ(sc,off) \ 550 bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off)) 551 552 static int scx_fdt_match(device_t, cfdata_t, void *); 553 static void scx_fdt_attach(device_t, device_t, void *); 554 static int scx_acpi_match(device_t, cfdata_t, void *); 555 static void scx_acpi_attach(device_t, device_t, void *); 556 557 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc), 558 scx_fdt_match, scx_fdt_attach, NULL, NULL); 559 560 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc), 561 scx_acpi_match, scx_acpi_attach, NULL, NULL); 562 563 static void scx_attach_i(struct scx_softc *); 564 static void scx_reset(struct scx_softc *); 565 static int scx_init(struct ifnet *); 566 static void scx_stop(struct ifnet *, int); 567 static int scx_ioctl(struct ifnet *, u_long, void *); 568 static void scx_set_rcvfilt(struct scx_softc *); 569 static void scx_start(struct ifnet *); 570 static void scx_watchdog(struct ifnet *); 571 static int scx_intr(void *); 572 static void txreap(struct scx_softc *); 573 static void rxintr(struct scx_softc *); 574 static int add_rxbuf(struct scx_softc *, int); 575 static void rxdrain(struct scx_softc *sc); 576 static void mii_statchg(struct ifnet *); 577 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *); 578 static int mii_readreg(device_t, int, int, uint16_t *); 579 static int mii_writereg(device_t, int, int, uint16_t); 580 static void phy_tick(void *); 581 static void dump_hwfeature(struct scx_softc *); 582 583 static void stopuengine(struct scx_softc *); 584 static void startuengine(struct scx_softc *); 585 static void loaducode(struct scx_softc *); 586 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t); 587 588 static int get_mdioclk(uint32_t); 589 590 #define WAIT_FOR_SET(sc, reg, set, fail) \ 591 wait_for_bits(sc, reg, set, ~0, fail) 592 #define WAIT_FOR_CLR(sc, reg, clr, fail) \ 593 wait_for_bits(sc, reg, 0, clr, fail) 594 595 static int 596 wait_for_bits(struct scx_softc *sc, int reg, 597 uint32_t set, uint32_t clr, uint32_t fail) 598 { 599 uint32_t val; 600 int ntries; 601 602 for (ntries = 0; ntries < 1000; ntries++) { 603 val = CSR_READ(sc, reg); 604 if ((val & set) || !(val & clr)) 605 return 0; 606 if (val & fail) 607 return 1; 608 DELAY(1); 609 } 610 return 1; 611 } 612 613 /* GMAC register indirect access */ 614 static int 615 mac_read(struct scx_softc *sc, int reg) 616 { 617 618 CSR_WRITE(sc, MACCMD, reg | CMD_BUSY); 619 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0); 620 return CSR_READ(sc, MACDATA); 621 } 622 623 static void 624 mac_write(struct scx_softc *sc, int reg, int val) 625 { 626 627 CSR_WRITE(sc, MACDATA, val); 628 CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY); 629 (void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0); 630 } 631 632 /* dig and decode "clock-frequency" value for a given clkname */ 633 static int 634 get_clk_freq(int phandle, const char *clkname) 635 { 636 u_int index, n, cells; 637 const u_int *p; 638 int err, len, resid; 639 unsigned int freq = 0; 640 641 err = fdtbus_get_index(phandle, "clock-names", clkname, &index); 642 if (err == -1) 643 return -1; 644 p = fdtbus_get_prop(phandle, "clocks", &len); 645 if (p == NULL) 646 return -1; 647 for (n = 0, resid = len; resid > 0; n++) { 648 const int cc_phandle = 649 fdtbus_get_phandle_from_native(be32toh(p[0])); 650 if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells)) 651 return -1; 652 if (n == index) { 653 if (of_getprop_uint32(cc_phandle, 654 "clock-frequency", &freq)) 655 return -1; 656 return freq; 657 } 658 resid -= (cells + 1) * 4; 659 p += (cells + 1) * 4; 660 } 661 return -1; 662 } 663 664 #define ATTACH_DEBUG 1 665 666 static const struct device_compatible_entry compat_data[] = { 667 { .compat = "socionext,synquacer-netsec" }, 668 DEVICE_COMPAT_EOL 669 }; 670 static const struct device_compatible_entry compatible[] = { 671 { .compat = "SCX0001" }, 672 DEVICE_COMPAT_EOL 673 }; 674 675 static int 676 scx_fdt_match(device_t parent, cfdata_t cf, void *aux) 677 { 678 struct fdt_attach_args * const faa = aux; 679 680 return of_compatible_match(faa->faa_phandle, compat_data); 681 } 682 683 static void 684 scx_fdt_attach(device_t parent, device_t self, void *aux) 685 { 686 struct scx_softc * const sc = device_private(self); 687 struct fdt_attach_args * const faa = aux; 688 const int phandle = faa->faa_phandle; 689 bus_space_handle_t bsh; 690 bus_space_handle_t eebsh; 691 bus_addr_t addr[2]; 692 bus_size_t size[2]; 693 void *intrh; 694 char intrstr[128]; 695 int phy_phandle; 696 const char *phy_mode; 697 bus_addr_t phy_id; 698 long ref_clk; 699 700 if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0 701 || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) { 702 aprint_error(": unable to map registers\n"); 703 return; 704 } 705 if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0 706 || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) { 707 aprint_error(": unable to map device eeprom\n"); 708 goto fail; 709 } 710 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 711 aprint_error(": failed to decode interrupt\n"); 712 goto fail; 713 } 714 715 phy_mode = fdtbus_get_string(phandle, "phy-mode"); 716 if (phy_mode == NULL) 717 aprint_error(": missing 'phy-mode' property\n"); 718 phy_phandle = fdtbus_get_phandle(phandle, "phy-handle"); 719 if (phy_phandle == -1 720 || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0) 721 phy_id = MII_PHY_ANY; 722 ref_clk = get_clk_freq(phandle, "phy_ref_clk"); 723 if (ref_clk == -1) 724 ref_clk = 250 * 1000 * 1000; 725 726 #if ATTACH_DEBUG == 1 727 aprint_normal("\n"); 728 aprint_normal_dev(self, 729 "[FDT] phy mode %s, phy id %d, freq %ld\n", 730 phy_mode, (int)phy_id, ref_clk); 731 aprint_normal("%s", device_xname(self)); 732 #endif 733 734 intrh = fdtbus_intr_establish(phandle, 0, IPL_NET, 735 NOT_MP_SAFE, scx_intr, sc); 736 if (intrh == NULL) { 737 aprint_error(": couldn't establish interrupt\n"); 738 goto fail; 739 } 740 aprint_normal(" interrupt on %s", intrstr); 741 742 sc->sc_dev = self; 743 sc->sc_st = faa->faa_bst; 744 sc->sc_sh = bsh; 745 sc->sc_sz = size[0]; 746 sc->sc_eesh = eebsh; 747 sc->sc_eesz = size[1]; 748 sc->sc_ih = intrh; 749 sc->sc_dmat = faa->faa_dmat; 750 sc->sc_phandle = phandle; 751 sc->sc_phy_id = phy_id; 752 sc->sc_freq = ref_clk; 753 754 scx_attach_i(sc); 755 756 return; 757 fail: 758 if (sc->sc_eesz) 759 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz); 760 if (sc->sc_sz) 761 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 762 return; 763 } 764 765 static int 766 scx_acpi_match(device_t parent, cfdata_t cf, void *aux) 767 { 768 struct acpi_attach_args *aa = aux; 769 770 return acpi_compatible_match(aa, compatible); 771 } 772 773 #define HWFEA_DEBUG 1 774 775 static void 776 scx_acpi_attach(device_t parent, device_t self, void *aux) 777 { 778 struct scx_softc * const sc = device_private(self); 779 struct acpi_attach_args * const aa = aux; 780 ACPI_HANDLE handle = aa->aa_node->ad_handle; 781 bus_space_handle_t bsh, eebsh; 782 struct acpi_resources res; 783 struct acpi_mem *mem, *mem1; 784 struct acpi_irq *irq; 785 ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq; 786 ACPI_STATUS rv; 787 void *intrh; 788 789 rv = acpi_resource_parse(self, handle, "_CRS", 790 &res, &acpi_resource_parse_ops_default); 791 if (ACPI_FAILURE(rv)) 792 return; 793 mem = acpi_res_mem(&res, 0); 794 irq = acpi_res_irq(&res, 0); 795 if (mem == NULL || irq == NULL || mem->ar_length == 0) { 796 aprint_error(": incomplete crs resources\n"); 797 goto done; 798 } 799 if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0, 800 &bsh) != 0) { 801 aprint_error(": unable to map registers\n"); 802 goto done; 803 } 804 mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */ 805 if (mem1 == NULL || mem1->ar_length == 0) { 806 aprint_error(": incomplete eeprom resources\n"); 807 goto fail_0; 808 } 809 if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0, 810 &eebsh)) { 811 aprint_error(": unable to map device eeprom\n"); 812 goto fail_0; 813 } 814 rv = acpi_dsd_integer(handle, "max-speed", &max_spd); 815 if (ACPI_FAILURE(rv)) 816 max_spd = 1000; 817 rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame); 818 if (ACPI_FAILURE(rv)) 819 max_frame = 2048; 820 rv = acpi_dsd_integer(handle, "phy-channel", &phy_id); 821 if (ACPI_FAILURE(rv)) 822 phy_id = MII_PHY_ANY; 823 rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency", 824 &phy_freq); 825 if (ACPI_FAILURE(rv)) 826 phy_freq = 250 * 1000 * 1000; 827 828 #if ATTACH_DEBUG == 1 829 aprint_normal_dev(self, 830 "[ACPI] max-speed %d, phy id %d, freq %ld\n", 831 (int)max_spd, (int)phy_id, phy_freq); 832 aprint_normal("%s", device_xname(self)); 833 #endif 834 835 intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle, 836 IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self)); 837 if (intrh == NULL) { 838 aprint_error(": couldn't establish interrupt\n"); 839 goto fail_1; 840 } 841 842 sc->sc_dev = self; 843 sc->sc_st = aa->aa_memt; 844 sc->sc_sh = bsh; 845 sc->sc_sz = mem->ar_length; 846 sc->sc_eesh = eebsh; 847 sc->sc_eesz = mem1->ar_length; 848 sc->sc_ih = intrh; 849 sc->sc_dmat = 850 BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat; 851 sc->sc_phy_id = (int)phy_id; 852 sc->sc_freq = phy_freq; 853 sc->sc_maxsize = max_frame; 854 855 scx_attach_i(sc); 856 done: 857 acpi_resource_cleanup(&res); 858 return; 859 fail_1: 860 bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz); 861 fail_0: 862 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 863 acpi_resource_cleanup(&res); 864 return; 865 } 866 867 static void 868 scx_attach_i(struct scx_softc *sc) 869 { 870 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 871 struct mii_data * const mii = &sc->sc_mii; 872 struct ifmedia * const ifm = &mii->mii_media; 873 uint32_t which, dwimp, dwfea; 874 uint8_t enaddr[ETHER_ADDR_LEN]; 875 bus_dma_segment_t seg; 876 paddr_t paddr; 877 uint32_t csr; 878 int i, nseg, error = 0; 879 880 which = CSR_READ(sc, HWVER); /* Socionext version 5.xx */ 881 dwimp = mac_read(sc, GMACIMPL); /* DWC implementation XX.YY */ 882 dwfea = mac_read(sc, HWFEA); /* DWC feature bits */ 883 884 aprint_naive("\n"); 885 aprint_normal(": Socionext NetSec Gigabit Ethernet controller " 886 "%x.%x\n", which >> 16, which & 0xffff); 887 888 aprint_normal_dev(sc->sc_dev, 889 "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n", 890 dwimp & 0xff, dwimp >> 8, dwfea); 891 dump_hwfeature(sc); 892 893 /* detected PHY type */ 894 sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0); 895 896 /* fetch MAC address in flash 0:7, stored in big endian order */ 897 csr = EE_READ(sc, 0x00); 898 enaddr[0] = csr >> 24; 899 enaddr[1] = csr >> 16; 900 enaddr[2] = csr >> 8; 901 enaddr[3] = csr; 902 csr = EE_READ(sc, 0x04); 903 enaddr[4] = csr >> 24; 904 enaddr[5] = csr >> 16; 905 aprint_normal_dev(sc->sc_dev, 906 "Ethernet address %s\n", ether_sprintf(enaddr)); 907 908 sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */ 909 910 mii->mii_ifp = ifp; 911 mii->mii_readreg = mii_readreg; 912 mii->mii_writereg = mii_writereg; 913 mii->mii_statchg = mii_statchg; 914 915 sc->sc_ethercom.ec_mii = mii; 916 ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts); 917 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, 918 MII_OFFSET_ANY, MIIF_DOPAUSE); 919 if (LIST_FIRST(&mii->mii_phys) == NULL) { 920 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 921 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 922 } else 923 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 924 ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */ 925 926 /* 927 * Allocate the control data structures, and create and load the 928 * DMA map for it. 929 */ 930 error = bus_dmamem_alloc(sc->sc_dmat, 931 sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0); 932 if (error != 0) { 933 aprint_error_dev(sc->sc_dev, 934 "unable to allocate control data, error = %d\n", error); 935 goto fail_0; 936 } 937 error = bus_dmamem_map(sc->sc_dmat, &seg, nseg, 938 sizeof(struct control_data), (void **)&sc->sc_control_data, 939 BUS_DMA_COHERENT); 940 if (error != 0) { 941 aprint_error_dev(sc->sc_dev, 942 "unable to map control data, error = %d\n", error); 943 goto fail_1; 944 } 945 error = bus_dmamap_create(sc->sc_dmat, 946 sizeof(struct control_data), 1, 947 sizeof(struct control_data), 0, 0, &sc->sc_cddmamap); 948 if (error != 0) { 949 aprint_error_dev(sc->sc_dev, 950 "unable to create control data DMA map, " 951 "error = %d\n", error); 952 goto fail_2; 953 } 954 error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 955 sc->sc_control_data, sizeof(struct control_data), NULL, 0); 956 if (error != 0) { 957 aprint_error_dev(sc->sc_dev, 958 "unable to load control data DMA map, error = %d\n", 959 error); 960 goto fail_3; 961 } 962 for (i = 0; i < MD_TXQUEUELEN; i++) { 963 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 964 MD_NTXSEGS, MCLBYTES, 0, 0, 965 &sc->sc_txsoft[i].txs_dmamap)) != 0) { 966 aprint_error_dev(sc->sc_dev, 967 "unable to create tx DMA map %d, error = %d\n", 968 i, error); 969 goto fail_4; 970 } 971 } 972 for (i = 0; i < MD_NRXDESC; i++) { 973 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 974 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 975 aprint_error_dev(sc->sc_dev, 976 "unable to create rx DMA map %d, error = %d\n", 977 i, error); 978 goto fail_5; 979 } 980 sc->sc_rxsoft[i].rxs_mbuf = NULL; 981 } 982 sc->sc_seg = seg; 983 sc->sc_nseg = nseg; 984 #if 0 985 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg); 986 #endif 987 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 988 ifp->if_softc = sc; 989 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 990 ifp->if_ioctl = scx_ioctl; 991 ifp->if_start = scx_start; 992 ifp->if_watchdog = scx_watchdog; 993 ifp->if_init = scx_init; 994 ifp->if_stop = scx_stop; 995 IFQ_SET_READY(&ifp->if_snd); 996 997 /* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */ 998 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 999 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 1000 1001 sc->sc_flowflags = 0; /* track PAUSE flow caps */ 1002 1003 if_attach(ifp); 1004 if_deferred_start_init(ifp, NULL); 1005 ether_ifattach(ifp, enaddr); 1006 1007 callout_init(&sc->sc_callout, 0); 1008 callout_setfunc(&sc->sc_callout, phy_tick, sc); 1009 1010 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 1011 RND_TYPE_NET, RND_FLAG_DEFAULT); 1012 1013 stopuengine(sc); 1014 loaducode(sc); 1015 1016 /* feed NetSec descriptor array base addresses and timer value */ 1017 paddr = SCX_CDTXADDR(sc, 0); /* tdes array (ring#0) */ 1018 CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(paddr)); 1019 CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(paddr)); 1020 paddr = SCX_CDRXADDR(sc, 0); /* rdes array (ring#1) */ 1021 CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(paddr)); 1022 CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(paddr)); 1023 CSR_WRITE(sc, TXCONF, DESCNF_LE); /* little endian */ 1024 CSR_WRITE(sc, RXCONF, DESCNF_LE); /* little endian */ 1025 CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1); 1026 1027 startuengine(sc); 1028 1029 return; 1030 1031 fail_5: 1032 for (i = 0; i < MD_NRXDESC; i++) { 1033 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1034 bus_dmamap_destroy(sc->sc_dmat, 1035 sc->sc_rxsoft[i].rxs_dmamap); 1036 } 1037 fail_4: 1038 for (i = 0; i < MD_TXQUEUELEN; i++) { 1039 if (sc->sc_txsoft[i].txs_dmamap != NULL) 1040 bus_dmamap_destroy(sc->sc_dmat, 1041 sc->sc_txsoft[i].txs_dmamap); 1042 } 1043 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1044 fail_3: 1045 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1046 fail_2: 1047 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 1048 sizeof(struct control_data)); 1049 fail_1: 1050 bus_dmamem_free(sc->sc_dmat, &seg, nseg); 1051 fail_0: 1052 if (sc->sc_phandle) 1053 fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih); 1054 else 1055 acpi_intr_disestablish(sc->sc_ih); 1056 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); 1057 return; 1058 } 1059 1060 static void 1061 scx_reset(struct scx_softc *sc) 1062 { 1063 int loop = 0, busy; 1064 1065 mac_write(sc, GMACOMR, 0); 1066 mac_write(sc, GMACBMR, BMR_RST); 1067 do { 1068 DELAY(1); 1069 busy = mac_read(sc, GMACBMR) & BMR_RST; 1070 } while (++loop < 3000 && busy); 1071 mac_write(sc, GMACBMR, _BMR); 1072 mac_write(sc, GMACAFR, 0); 1073 1074 #if 0 1075 CSR_WRITE(sc, CLKEN, CLK_ALL); /* distribute clock sources */ 1076 CSR_WRITE(sc, SWRESET, 0); /* reset operation */ 1077 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */ 1078 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS); 1079 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0); 1080 1081 CSR_WRITE(sc, TXISR, ~0); 1082 CSR_WRITE(sc, xINTAE_CLR, ~0); 1083 #endif 1084 } 1085 1086 static int 1087 scx_init(struct ifnet *ifp) 1088 { 1089 struct scx_softc *sc = ifp->if_softc; 1090 const uint8_t *ea = CLLADDR(ifp->if_sadl); 1091 uint32_t csr; 1092 int i, error; 1093 1094 /* Cancel pending I/O. */ 1095 scx_stop(ifp, 0); 1096 1097 /* Reset the chip to a known state. */ 1098 scx_reset(sc); 1099 1100 /* build sane Tx */ 1101 memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC); 1102 sc->sc_txdescs[MD_NTXDESC - 1].t0 = T0_LD; /* tie off the ring */ 1103 SCX_CDTXSYNC(sc, 0, MD_NTXDESC, 1104 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1105 sc->sc_txfree = MD_NTXDESC; 1106 sc->sc_txnext = 0; 1107 for (i = 0; i < MD_TXQUEUELEN; i++) 1108 sc->sc_txsoft[i].txs_mbuf = NULL; 1109 sc->sc_txsfree = MD_TXQUEUELEN; 1110 sc->sc_txsnext = 0; 1111 sc->sc_txsdirty = 0; 1112 1113 /* load Rx descriptors with fresh mbuf */ 1114 for (i = 0; i < MD_NRXDESC; i++) { 1115 if (sc->sc_rxsoft[i].rxs_mbuf == NULL) { 1116 if ((error = add_rxbuf(sc, i)) != 0) { 1117 aprint_error_dev(sc->sc_dev, 1118 "unable to allocate or map rx " 1119 "buffer %d, error = %d\n", 1120 i, error); 1121 rxdrain(sc); 1122 goto out; 1123 } 1124 } 1125 else 1126 SCX_INIT_RXDESC(sc, i); 1127 } 1128 sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_LD; /* tie off the ring */ 1129 sc->sc_rxptr = 0; 1130 1131 /* set my address in perfect match slot 0. little endian order */ 1132 csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) | ea[0]; 1133 mac_write(sc, GMACMAL0, csr); 1134 csr = (ea[5] << 8) | ea[4]; 1135 mac_write(sc, GMACMAH0, csr); 1136 1137 /* accept multicast frame or run promisc mode */ 1138 scx_set_rcvfilt(sc); 1139 1140 /* set current media */ 1141 if ((error = ether_mediachange(ifp)) != 0) 1142 goto out; 1143 1144 CSR_WRITE(sc, DESC_SRST, 01); 1145 WAIT_FOR_CLR(sc, DESC_SRST, 01, 0); 1146 1147 CSR_WRITE(sc, DESC_INIT, 01); 1148 WAIT_FOR_CLR(sc, DESC_INIT, 01, 0); 1149 1150 /* feed local memory descriptor array base addresses */ 1151 mac_write(sc, GMACRDLA, _RDLA); /* GMAC rdes store */ 1152 mac_write(sc, GMACTDLA, _TDLA); /* GMAC tdes store */ 1153 1154 CSR_WRITE(sc, FLOWTHR, (48<<16) | 36); /* pause|resume threshold */ 1155 mac_write(sc, GMACFCR, 256 << 16); /* 31:16 pause value */ 1156 1157 CSR_WRITE(sc, RXIE_CLR, ~0); /* clear Rx interrupt enable */ 1158 CSR_WRITE(sc, TXIE_CLR, ~0); /* clear Tx interrupt enable */ 1159 1160 CSR_WRITE(sc, RXCLSCMAX, 8); /* Rx coalesce upper bound */ 1161 CSR_WRITE(sc, TXCLSCMAX, 8); /* Tx coalesce upper bound */ 1162 CSR_WRITE(sc, RXITIMER, 500); /* Rx co. timer usec */ 1163 CSR_WRITE(sc, TXITIMER, 500); /* Tx co. timer usec */ 1164 1165 CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP); 1166 CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP); 1167 1168 CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX); 1169 #if 1 1170 /* clear event counters, auto-zero after every read */ 1171 mac_write(sc, GMACEVCTL, EVC_CR /* | EVC_ROR */); 1172 #endif 1173 /* kick to start GMAC engine */ 1174 csr = mac_read(sc, GMACOMR); 1175 mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST); 1176 1177 ifp->if_flags |= IFF_RUNNING; 1178 1179 /* start one second timer */ 1180 callout_schedule(&sc->sc_callout, hz); 1181 out: 1182 return error; 1183 } 1184 1185 static void 1186 scx_stop(struct ifnet *ifp, int disable) 1187 { 1188 struct scx_softc *sc = ifp->if_softc; 1189 1190 /* Stop the one second clock. */ 1191 callout_stop(&sc->sc_callout); 1192 1193 /* Down the MII. */ 1194 mii_down(&sc->sc_mii); 1195 1196 /* Mark the interface down and cancel the watchdog timer. */ 1197 ifp->if_flags &= ~IFF_RUNNING; 1198 ifp->if_timer = 0; 1199 1200 CSR_WRITE(sc, xINTAE_CLR, ~0); 1201 CSR_WRITE(sc, TXISR, ~0); 1202 CSR_WRITE(sc, RXISR, ~0); 1203 } 1204 1205 static int 1206 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1207 { 1208 struct scx_softc *sc = ifp->if_softc; 1209 struct ifreq *ifr = (struct ifreq *)data; 1210 struct ifmedia *ifm = &sc->sc_mii.mii_media; 1211 int s, error; 1212 1213 s = splnet(); 1214 1215 switch (cmd) { 1216 case SIOCSIFMEDIA: 1217 /* Flow control requires full-duplex mode. */ 1218 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 1219 (ifr->ifr_media & IFM_FDX) == 0) 1220 ifr->ifr_media &= ~IFM_ETH_FMASK; 1221 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 1222 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 1223 /* We can do both TXPAUSE and RXPAUSE. */ 1224 ifr->ifr_media |= 1225 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 1226 } 1227 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 1228 } 1229 error = ifmedia_ioctl(ifp, ifr, ifm, cmd); 1230 break; 1231 default: 1232 error = ether_ioctl(ifp, cmd, data); 1233 if (error != ENETRESET) 1234 break; 1235 error = 0; 1236 if (cmd == SIOCSIFCAP) 1237 error = if_init(ifp); 1238 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1239 ; 1240 else if (ifp->if_flags & IFF_RUNNING) { 1241 /* 1242 * Multicast list has changed; set the hardware filter 1243 * accordingly. 1244 */ 1245 scx_set_rcvfilt(sc); 1246 } 1247 break; 1248 } 1249 1250 splx(s); 1251 return error; 1252 } 1253 1254 static uint32_t 1255 bit_reverse_32(uint32_t x) 1256 { 1257 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); 1258 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); 1259 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); 1260 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); 1261 return (x >> 16) | (x << 16); 1262 } 1263 1264 #define MCAST_DEBUG 0 1265 1266 static void 1267 scx_set_rcvfilt(struct scx_softc *sc) 1268 { 1269 struct ethercom * const ec = &sc->sc_ethercom; 1270 struct ifnet * const ifp = &ec->ec_if; 1271 struct ether_multistep step; 1272 struct ether_multi *enm; 1273 uint32_t mchash[2]; /* 2x 32 = 64 bit */ 1274 uint32_t csr, crc; 1275 int i; 1276 1277 csr = mac_read(sc, GMACAFR); 1278 csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF); 1279 mac_write(sc, GMACAFR, csr); 1280 1281 /* clear 15 entry supplemental perfect match filter */ 1282 for (i = 1; i < 16; i++) 1283 mac_write(sc, GMACMAH(i), 0); 1284 /* build 64 bit multicast hash filter */ 1285 crc = mchash[1] = mchash[0] = 0; 1286 1287 ETHER_LOCK(ec); 1288 if (ifp->if_flags & IFF_PROMISC) { 1289 ec->ec_flags |= ETHER_F_ALLMULTI; 1290 ETHER_UNLOCK(ec); 1291 /* run promisc. mode */ 1292 csr |= AFR_PR; 1293 goto update; 1294 } 1295 ec->ec_flags &= ~ETHER_F_ALLMULTI; 1296 ETHER_FIRST_MULTI(step, ec, enm); 1297 i = 1; /* slot 0 is occupied */ 1298 while (enm != NULL) { 1299 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1300 /* 1301 * We must listen to a range of multicast addresses. 1302 * For now, just accept all multicasts, rather than 1303 * trying to set only those filter bits needed to match 1304 * the range. (At this time, the only use of address 1305 * ranges is for IP multicast routing, for which the 1306 * range is big enough to require all bits set.) 1307 */ 1308 ec->ec_flags |= ETHER_F_ALLMULTI; 1309 ETHER_UNLOCK(ec); 1310 /* accept all multi */ 1311 csr |= AFR_PM; 1312 goto update; 1313 } 1314 #if MCAST_DEBUG == 1 1315 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo)); 1316 #endif 1317 if (i < 16) { 1318 /* use 15 entry perfect match filter */ 1319 uint32_t addr; 1320 uint8_t *ep = enm->enm_addrlo; 1321 addr = (ep[3] << 24) | (ep[2] << 16) 1322 | (ep[1] << 8) | ep[0]; 1323 mac_write(sc, GMACMAL(i), addr); 1324 addr = (ep[5] << 8) | ep[4]; 1325 mac_write(sc, GMACMAH(i), addr | 1U<<31); 1326 } else { 1327 /* use hash table when too many */ 1328 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1329 crc = bit_reverse_32(~crc); 1330 /* 1(31) 5(30:26) bit sampling */ 1331 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 1332 } 1333 ETHER_NEXT_MULTI(step, enm); 1334 i++; 1335 } 1336 ETHER_UNLOCK(ec); 1337 if (crc) 1338 csr |= AFR_MHTE; 1339 csr |= AFR_HPF; /* use hash+perfect */ 1340 mac_write(sc, GMACMHTH, mchash[1]); 1341 mac_write(sc, GMACMHTL, mchash[0]); 1342 update: 1343 /* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */ 1344 mac_write(sc, GMACAFR, csr); 1345 return; 1346 } 1347 1348 static void 1349 scx_start(struct ifnet *ifp) 1350 { 1351 struct scx_softc *sc = ifp->if_softc; 1352 struct mbuf *m0; 1353 struct scx_txsoft *txs; 1354 bus_dmamap_t dmamap; 1355 int error, nexttx, lasttx, ofree, seg; 1356 uint32_t tdes0; 1357 1358 if ((ifp->if_flags & IFF_RUNNING) == 0) 1359 return; 1360 1361 /* Remember the previous number of free descriptors. */ 1362 ofree = sc->sc_txfree; 1363 1364 /* 1365 * Loop through the send queue, setting up transmit descriptors 1366 * until we drain the queue, or use up all available transmit 1367 * descriptors. 1368 */ 1369 for (;;) { 1370 IFQ_POLL(&ifp->if_snd, m0); 1371 if (m0 == NULL) 1372 break; 1373 1374 if (sc->sc_txsfree < MD_TXQUEUE_GC) { 1375 txreap(sc); 1376 if (sc->sc_txsfree == 0) 1377 break; 1378 } 1379 txs = &sc->sc_txsoft[sc->sc_txsnext]; 1380 dmamap = txs->txs_dmamap; 1381 1382 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1383 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1384 if (error) { 1385 if (error == EFBIG) { 1386 aprint_error_dev(sc->sc_dev, 1387 "Tx packet consumes too many " 1388 "DMA segments, dropping...\n"); 1389 IFQ_DEQUEUE(&ifp->if_snd, m0); 1390 m_freem(m0); 1391 if_statinc_ref(ifp, if_oerrors); 1392 continue; 1393 } 1394 /* Short on resources, just stop for now. */ 1395 break; 1396 } 1397 1398 if (dmamap->dm_nsegs > sc->sc_txfree) { 1399 /* 1400 * Not enough free descriptors to transmit this 1401 * packet. We haven't committed anything yet, 1402 * so just unload the DMA map, put the packet 1403 * back on the queue, and punt. 1404 */ 1405 bus_dmamap_unload(sc->sc_dmat, dmamap); 1406 break; 1407 } 1408 1409 IFQ_DEQUEUE(&ifp->if_snd, m0); 1410 1411 /* 1412 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1413 */ 1414 1415 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1416 BUS_DMASYNC_PREWRITE); 1417 1418 tdes0 = 0; /* to postpone 1st segment T0_OWN write */ 1419 lasttx = -1; 1420 for (nexttx = sc->sc_txnext, seg = 0; 1421 seg < dmamap->dm_nsegs; 1422 seg++, nexttx = MD_NEXTTX(nexttx)) { 1423 struct tdes *tdes = &sc->sc_txdescs[nexttx]; 1424 bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr; 1425 /* 1426 * If this is the first descriptor we're 1427 * enqueueing, don't set the OWN bit just 1428 * yet. That could cause a race condition. 1429 * We'll do it below. 1430 */ 1431 tdes->t3 = htole32(dmamap->dm_segs[seg].ds_len); 1432 tdes->t2 = htole32(BUS_ADDR_LO32(paddr)); 1433 tdes->t1 = htole32(BUS_ADDR_HI32(paddr)); 1434 tdes->t0 = htole32(tdes0 | (tdes->t0 & T0_LD) | 1435 (15 << T0_TDRID) | T0_PT | 1436 sc->sc_t0cotso | T0_TRS); 1437 tdes0 = T0_OWN; /* 2nd and other segments */ 1438 /* NB; t0 DRID field contains zero */ 1439 lasttx = nexttx; 1440 } 1441 1442 /* Write deferred 1st segment T0_OWN at the final stage */ 1443 sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS); 1444 sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN); 1445 SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1446 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1447 1448 /* submit one frame to xmit */ 1449 CSR_WRITE(sc, TXSUBMIT, 1); 1450 1451 txs->txs_mbuf = m0; 1452 txs->txs_firstdesc = sc->sc_txnext; 1453 txs->txs_lastdesc = lasttx; 1454 txs->txs_ndesc = dmamap->dm_nsegs; 1455 1456 sc->sc_txfree -= txs->txs_ndesc; 1457 sc->sc_txnext = nexttx; 1458 sc->sc_txsfree--; 1459 sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext); 1460 /* 1461 * Pass the packet to any BPF listeners. 1462 */ 1463 bpf_mtap(ifp, m0, BPF_D_OUT); 1464 } 1465 1466 if (sc->sc_txfree != ofree) { 1467 /* Set a watchdog timer in case the chip flakes out. */ 1468 ifp->if_timer = 5; 1469 } 1470 } 1471 1472 #define EVENT_DEBUG 1 1473 1474 static void 1475 scx_watchdog(struct ifnet *ifp) 1476 { 1477 struct scx_softc *sc = ifp->if_softc; 1478 1479 /* 1480 * Since we're not interrupting every packet, sweep 1481 * up before we report an error. 1482 */ 1483 txreap(sc); 1484 1485 if (sc->sc_txfree != MD_NTXDESC) { 1486 aprint_error_dev(sc->sc_dev, 1487 "device timeout (txfree %d txsfree %d txnext %d)\n", 1488 sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext); 1489 if_statinc(ifp, if_oerrors); 1490 #if EVENT_DEBUG == 1 1491 aprint_error_dev(sc->sc_dev, 1492 "rx frames %d, octects %d, bcast %d, mcast %d\n", 1493 mac_read(sc, GMACEVCNT(27)), 1494 mac_read(sc, GMACEVCNT(28)), 1495 mac_read(sc, GMACEVCNT(30)), 1496 mac_read(sc, GMACEVCNT(31))); 1497 aprint_error_dev(sc->sc_dev, 1498 "tx frames %d, octects %d, bcast %d, mcast %d\n", 1499 mac_read(sc, GMACEVCNT(1)), 1500 mac_read(sc, GMACEVCNT(0)), 1501 mac_read(sc, GMACEVCNT(2)), 1502 mac_read(sc, GMACEVCNT(3))); 1503 aprint_error_dev(sc->sc_dev, 1504 "current tdes addr %x, buf addr %x\n", 1505 mac_read(sc, 0x1048), mac_read(sc, 0x1050)); 1506 aprint_error_dev(sc->sc_dev, 1507 "current rdes addr %x, buf addr %x\n", 1508 mac_read(sc, 0x104c), mac_read(sc, 0x1054)); 1509 #endif 1510 /* Reset the interface. */ 1511 scx_init(ifp); 1512 } 1513 1514 scx_start(ifp); 1515 } 1516 1517 static int 1518 scx_intr(void *arg) 1519 { 1520 struct scx_softc *sc = arg; 1521 uint32_t enable, status; 1522 1523 status = CSR_READ(sc, xINTSR); /* not W1C */ 1524 enable = CSR_READ(sc, xINTAEN); 1525 if ((status & enable) == 0) 1526 return 0; 1527 if (status & (IRQ_TX | IRQ_RX)) { 1528 CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX)); 1529 1530 status = CSR_READ(sc, RXISR); 1531 CSR_WRITE(sc, RXISR, status); 1532 if (status & RXI_RC_ERR) 1533 aprint_error_dev(sc->sc_dev, "Rx error\n"); 1534 if (status & (RXI_PKTCNT | RXI_TMREXP)) { 1535 rxintr(sc); 1536 (void)CSR_READ(sc, RXDONECNT); /* clear RXI_RXDONE */ 1537 } 1538 1539 status = CSR_READ(sc, TXISR); 1540 CSR_WRITE(sc, TXISR, status); 1541 if (status & TXI_TR_ERR) 1542 aprint_error_dev(sc->sc_dev, "Tx error\n"); 1543 if (status & (TXI_TXDONE | TXI_TMREXP)) { 1544 txreap(sc); 1545 (void)CSR_READ(sc, TXDONECNT); /* clear TXI_TXDONE */ 1546 } 1547 1548 CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX)); 1549 } 1550 return 1; 1551 } 1552 1553 static void 1554 txreap(struct scx_softc *sc) 1555 { 1556 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1557 struct scx_txsoft *txs; 1558 uint32_t txstat; 1559 int i; 1560 1561 for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN; 1562 i = MD_NEXTTXS(i), sc->sc_txsfree++) { 1563 txs = &sc->sc_txsoft[i]; 1564 1565 SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc, 1566 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1567 1568 txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0); 1569 if (txstat & T0_OWN) /* desc is still in use */ 1570 break; 1571 1572 /* There is no way to tell transmission status per frame */ 1573 1574 if_statinc(ifp, if_opackets); 1575 1576 sc->sc_txfree += txs->txs_ndesc; 1577 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1578 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1579 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1580 m_freem(txs->txs_mbuf); 1581 txs->txs_mbuf = NULL; 1582 } 1583 sc->sc_txsdirty = i; 1584 if (sc->sc_txsfree == MD_TXQUEUELEN) 1585 ifp->if_timer = 0; 1586 } 1587 1588 static void 1589 rxintr(struct scx_softc *sc) 1590 { 1591 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1592 struct scx_rxsoft *rxs; 1593 struct mbuf *m; 1594 uint32_t rxstat; 1595 int i, len; 1596 1597 for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) { 1598 rxs = &sc->sc_rxsoft[i]; 1599 1600 SCX_CDRXSYNC(sc, i, 1601 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1602 1603 rxstat = le32toh(sc->sc_rxdescs[i].r0); 1604 if (rxstat & R0_OWN) /* desc is left empty */ 1605 break; 1606 1607 /* R0_FS | R0_LS must have been marked for this desc */ 1608 1609 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1610 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1611 1612 len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */ 1613 len -= ETHER_CRC_LEN; /* Trim CRC off */ 1614 m = rxs->rxs_mbuf; 1615 1616 if (add_rxbuf(sc, i) != 0) { 1617 if_statinc(ifp, if_ierrors); 1618 SCX_INIT_RXDESC(sc, i); 1619 bus_dmamap_sync(sc->sc_dmat, 1620 rxs->rxs_dmamap, 0, 1621 rxs->rxs_dmamap->dm_mapsize, 1622 BUS_DMASYNC_PREREAD); 1623 continue; 1624 } 1625 1626 m_set_rcvif(m, ifp); 1627 m->m_pkthdr.len = m->m_len = len; 1628 1629 if (rxstat & R0_CSUM) { 1630 uint32_t csum = M_CSUM_IPv4; 1631 if (rxstat & R0_CERR) 1632 csum |= M_CSUM_IPv4_BAD; 1633 m->m_pkthdr.csum_flags |= csum; 1634 } 1635 if_percpuq_enqueue(ifp->if_percpuq, m); 1636 } 1637 sc->sc_rxptr = i; 1638 } 1639 1640 static int 1641 add_rxbuf(struct scx_softc *sc, int i) 1642 { 1643 struct scx_rxsoft *rxs = &sc->sc_rxsoft[i]; 1644 struct mbuf *m; 1645 int error; 1646 1647 MGETHDR(m, M_DONTWAIT, MT_DATA); 1648 if (m == NULL) 1649 return ENOBUFS; 1650 1651 MCLGET(m, M_DONTWAIT); 1652 if ((m->m_flags & M_EXT) == 0) { 1653 m_freem(m); 1654 return ENOBUFS; 1655 } 1656 1657 if (rxs->rxs_mbuf != NULL) 1658 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1659 1660 rxs->rxs_mbuf = m; 1661 1662 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, 1663 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); 1664 if (error) { 1665 aprint_error_dev(sc->sc_dev, 1666 "can't load rx DMA map %d, error = %d\n", i, error); 1667 panic("add_rxbuf"); 1668 } 1669 1670 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1671 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1672 SCX_INIT_RXDESC(sc, i); 1673 1674 return 0; 1675 } 1676 1677 static void 1678 rxdrain(struct scx_softc *sc) 1679 { 1680 struct scx_rxsoft *rxs; 1681 int i; 1682 1683 for (i = 0; i < MD_NRXDESC; i++) { 1684 rxs = &sc->sc_rxsoft[i]; 1685 if (rxs->rxs_mbuf != NULL) { 1686 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 1687 m_freem(rxs->rxs_mbuf); 1688 rxs->rxs_mbuf = NULL; 1689 } 1690 } 1691 } 1692 1693 #define LINK_DEBUG 0 1694 1695 void 1696 mii_statchg(struct ifnet *ifp) 1697 { 1698 struct scx_softc *sc = ifp->if_softc; 1699 struct mii_data *mii = &sc->sc_mii; 1700 const int Mbps[4] = { 10, 100, 1000, 0 }; 1701 uint32_t miisr, mcr, fcr; 1702 int spd; 1703 1704 /* decode MIISR register value */ 1705 miisr = mac_read(sc, GMACMIISR); 1706 spd = Mbps[(miisr & MIISR_SPD) >> 1]; 1707 #if LINK_DEBUG == 1 1708 static uint32_t oldmiisr = 0; 1709 if (miisr != oldmiisr) { 1710 printf("MII link status (0x%x) %s", 1711 miisr, (miisr & MIISR_LUP) ? "up" : "down"); 1712 if (miisr & MIISR_LUP) { 1713 printf(" spd%d", spd); 1714 if (miisr & MIISR_FDX) 1715 printf(",full-duplex"); 1716 } 1717 printf("\n"); 1718 } 1719 #endif 1720 /* Get flow control negotiation result. */ 1721 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1722 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) 1723 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1724 1725 /* Adjust speed 1000/100/10. */ 1726 mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES); 1727 if (sc->sc_miigmii) { 1728 if (spd != 1000) 1729 mcr |= MCR_PS; 1730 } else { 1731 if (spd == 100) 1732 mcr |= MCR_FES; 1733 } 1734 mcr |= MCR_CST | MCR_JE; 1735 if (sc->sc_miigmii == 0) 1736 mcr |= MCR_IBN; 1737 1738 /* Adjust duplexity and PAUSE flow control. */ 1739 mcr &= ~MCR_USEFDX; 1740 fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE); 1741 if (miisr & MIISR_FDX) { 1742 if (sc->sc_flowflags & IFM_ETH_TXPAUSE) 1743 fcr |= FCR_TFE; 1744 if (sc->sc_flowflags & IFM_ETH_RXPAUSE) 1745 fcr |= FCR_RFE; 1746 mcr |= MCR_USEFDX; 1747 } 1748 mac_write(sc, GMACMCR, mcr); 1749 mac_write(sc, GMACFCR, fcr); 1750 #if LINK_DEBUG == 1 1751 if (miisr != oldmiisr) { 1752 printf("%ctxfe, %crxfe\n", 1753 (fcr & FCR_TFE) ? '+' : '-', 1754 (fcr & FCR_RFE) ? '+' : '-'); 1755 } 1756 oldmiisr = miisr; 1757 #endif 1758 } 1759 1760 static void 1761 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1762 { 1763 struct scx_softc *sc = ifp->if_softc; 1764 struct mii_data *mii = &sc->sc_mii; 1765 1766 mii_pollstat(mii); 1767 ifmr->ifm_status = mii->mii_media_status; 1768 ifmr->ifm_active = sc->sc_flowflags | 1769 (mii->mii_media_active & ~IFM_ETH_FMASK); 1770 } 1771 1772 static int 1773 mii_readreg(device_t self, int phy, int reg, uint16_t *val) 1774 { 1775 struct scx_softc *sc = device_private(self); 1776 uint32_t miia; 1777 int ntries; 1778 1779 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk; 1780 mac_write(sc, GMACGAR, miia | GAR_BUSY); 1781 for (ntries = 0; ntries < 1000; ntries++) { 1782 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0) 1783 goto unbusy; 1784 DELAY(1); 1785 } 1786 return ETIMEDOUT; 1787 unbusy: 1788 *val = mac_read(sc, GMACGDR); 1789 return 0; 1790 } 1791 1792 static int 1793 mii_writereg(device_t self, int phy, int reg, uint16_t val) 1794 { 1795 struct scx_softc *sc = device_private(self); 1796 uint32_t miia; 1797 uint16_t dummy; 1798 int ntries; 1799 1800 miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk; 1801 mac_write(sc, GMACGDR, val); 1802 mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY); 1803 for (ntries = 0; ntries < 1000; ntries++) { 1804 if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0) 1805 goto unbusy; 1806 DELAY(1); 1807 } 1808 return ETIMEDOUT; 1809 unbusy: 1810 mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */ 1811 return 0; 1812 } 1813 1814 static void 1815 phy_tick(void *arg) 1816 { 1817 struct scx_softc *sc = arg; 1818 struct mii_data *mii = &sc->sc_mii; 1819 int s; 1820 1821 s = splnet(); 1822 mii_tick(mii); 1823 splx(s); 1824 #ifdef GMAC_EVENT_COUNTERS 1825 /* 80 event counters exist */ 1826 #endif 1827 callout_schedule(&sc->sc_callout, hz); 1828 } 1829 1830 static void 1831 stopuengine(struct scx_softc *sc) 1832 { 1833 1834 if (CSR_READ(sc, CORESTAT) != 0) { 1835 CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP); 1836 CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP); 1837 WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP, 0); 1838 WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP, 0); 1839 } 1840 CSR_WRITE(sc, SWRESET, 0); /* reset operation */ 1841 CSR_WRITE(sc, SWRESET, SRST_RUN); /* manifest run */ 1842 CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS); 1843 WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS), 0); 1844 } 1845 1846 static void 1847 startuengine(struct scx_softc *sc) 1848 { 1849 int err; 1850 1851 CSR_WRITE(sc, CORESTAT, 0); 1852 err = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE, 0); 1853 if (err) { 1854 aprint_error_dev(sc->sc_dev, "uengine start failed\n"); 1855 } 1856 CSR_WRITE(sc, xINTSR, IRQ_UCODE); 1857 } 1858 1859 /* 1860 * 3 independent uengines exist to process host2media, media2host and 1861 * packet data flows. 1862 */ 1863 static void 1864 loaducode(struct scx_softc *sc) 1865 { 1866 uint32_t up, lo, sz; 1867 uint64_t addr; 1868 1869 CSR_WRITE(sc, xINTSR, IRQ_UCODE); 1870 1871 up = EE_READ(sc, 0x08); /* H->M ucode addr high */ 1872 lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */ 1873 sz = EE_READ(sc, 0x10); /* H->M ucode size */ 1874 sz *= 4; 1875 addr = ((uint64_t)up << 32) | lo; 1876 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz); 1877 injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz); 1878 1879 up = EE_READ(sc, 0x14); /* M->H ucode addr high */ 1880 lo = EE_READ(sc, 0x18); /* M->H ucode addr low */ 1881 sz = EE_READ(sc, 0x1c); /* M->H ucode size */ 1882 sz *= 4; 1883 addr = ((uint64_t)up << 32) | lo; 1884 injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz); 1885 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz); 1886 1887 lo = EE_READ(sc, 0x20); /* PKT ucode addr */ 1888 sz = EE_READ(sc, 0x24); /* PKT ucode size */ 1889 sz *= 4; 1890 injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz); 1891 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz); 1892 } 1893 1894 static void 1895 injectucode(struct scx_softc *sc, int port, 1896 bus_addr_t addr, bus_size_t size) 1897 { 1898 bus_space_handle_t bsh; 1899 bus_size_t off; 1900 uint32_t ucode; 1901 1902 if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) { 1903 aprint_error_dev(sc->sc_dev, 1904 "eeprom map failure for ucode port 0x%x\n", port); 1905 return; 1906 } 1907 for (off = 0; off < size; off += 4) { 1908 ucode = bus_space_read_4(sc->sc_st, bsh, off); 1909 CSR_WRITE(sc, port, ucode); 1910 } 1911 bus_space_unmap(sc->sc_st, bsh, size); 1912 } 1913 1914 /* GAR 5:2 MDIO frequency selection */ 1915 static int 1916 get_mdioclk(uint32_t freq) 1917 { 1918 1919 freq /= 1000 * 1000; 1920 if (freq < 35) 1921 return GAR_MDIO_25_35MHZ; 1922 if (freq < 60) 1923 return GAR_MDIO_35_60MHZ; 1924 if (freq < 100) 1925 return GAR_MDIO_60_100MHZ; 1926 if (freq < 150) 1927 return GAR_MDIO_100_150MHZ; 1928 if (freq < 250) 1929 return GAR_MDIO_150_250MHZ; 1930 return GAR_MDIO_250_300MHZ; 1931 } 1932 1933 #define HWFEA_DEBUG 1 1934 1935 void 1936 dump_hwfeature(struct scx_softc *sc) 1937 { 1938 #if HWFEA_DEBUG == 1 1939 struct { 1940 uint32_t bit; 1941 const char *des; 1942 } field[] = { 1943 { 27, "SA/VLAN insertion replacement enabled" }, 1944 { 26, "flexible PPS enabled" }, 1945 { 25, "time stamping with internal system enabled" }, 1946 { 24, "alternate/enhanced descriptor enabled" }, 1947 { 19, "rx FIFO >2048 enabled" }, 1948 { 18, "type 2 IP checksum offload enabled" }, 1949 { 17, "type 1 IP checksum offload enabled" }, 1950 { 16, "Tx checksum offload enabled" }, 1951 { 15, "AV feature enabled" }, 1952 { 14, "EEE energy save feature enabled" }, 1953 { 13, "1588-2008 version 2 advanced feature enabled" }, 1954 { 12, "only 1588-2002 version 1 feature enabled" }, 1955 { 11, "RMON event counter enabled" }, 1956 { 10, "PMT magic packet enabled" }, 1957 { 9, "PMT remote wakeup enabled" }, 1958 { 8, "MDIO enabled", }, 1959 { 7, "L3/L4 filter enabled" }, 1960 { 6, "TBI/SGMII/RTBI support enabled" }, 1961 { 5, "supplimental MAC address enabled" }, 1962 { 4, "receive hash filter enabled" }, 1963 { 3, "hash size is expanded" }, 1964 { 2, "Half Duplex enabled" }, 1965 { 1, "1000 Mbps enabled" }, 1966 { 0, "10/100 Mbps enabled" }, 1967 }; 1968 const char *nameofmii[] = { 1969 "GMII or MII", 1970 "RGMII", 1971 "SGMII", 1972 "TBI", 1973 "RMII", 1974 "RTBI", 1975 "SMII", 1976 "RevMII" 1977 }; 1978 uint32_t hwfea, mtype, txchan, rxchan; 1979 1980 hwfea = CSR_READ(sc, HWFEA); 1981 mtype = (hwfea & __BITS(30,28)) >> 28; 1982 aprint_normal("HWFEA 0x%08x\n", hwfea); 1983 aprint_normal("%s <30:28>\n", nameofmii[mtype]); 1984 for (unsigned i = 0; i < __arraycount(field); i++) { 1985 if ((hwfea & (1U << field[i].bit)) == 0) 1986 continue; 1987 aprint_normal("%s <%d>\n", field[i].des, field[i].bit); 1988 } 1989 if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0) 1990 aprint_normal("+%d tx channel available <23,22>\n", txchan); 1991 if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0) 1992 aprint_normal("+%d rx channel available <21:20>\n", rxchan); 1993 return; 1994 #endif 1995 } 1996