xref: /netbsd-src/sys/arch/arm/sociox/if_scx.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /*	$NetBSD: if_scx.c,v 1.25 2021/08/02 12:56:22 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 
33 /*
34  * Socionext SC2A11 SynQuacer NetSec GbE driver
35  *
36  * Multiple Tx and Rx queues exist inside and dedicated descriptor
37  * fields specifies which queue is to use. Three internal micro-processors
38  * to handle incoming frames, outgoing frames and packet data crypto
39  * processing. uP programs are stored in an external flash memory and
40  * have to be loaded by device driver.
41  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
42  * register (0x20) is known to have 0x10.36 and feature register (0x1058)
43  * to report XX.XX.
44  */
45 
46 #define NOT_MP_SAFE	0
47 
48 #include <sys/cdefs.h>
49 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.25 2021/08/02 12:56:22 andvar Exp $");
50 
51 #include <sys/param.h>
52 #include <sys/bus.h>
53 #include <sys/intr.h>
54 #include <sys/device.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/malloc.h>
58 #include <sys/errno.h>
59 #include <sys/rndsource.h>
60 #include <sys/kernel.h>
61 #include <sys/systm.h>
62 
63 #include <net/if.h>
64 #include <net/if_media.h>
65 #include <net/if_dl.h>
66 #include <net/if_ether.h>
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69 #include <net/bpf.h>
70 
71 #include <dev/fdt/fdtvar.h>
72 #include <dev/acpi/acpireg.h>
73 #include <dev/acpi/acpivar.h>
74 #include <dev/acpi/acpi_intr.h>
75 
76 /* Socionext SC2A11 descriptor format */
77 struct tdes {
78 	uint32_t t0, t1, t2, t3;
79 };
80 
81 struct rdes {
82 	uint32_t r0, r1, r2, r3;
83 };
84 
85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
86 #define T0_EOD		(1U<<30)	/* end of descriptor array */
87 #define T0_DRID		(24)		/* 29:24 D-RID */
88 #define T0_PT		(1U<<21)	/* 23:21 PT */
89 #define T0_TRID		(16)		/* 20:16 T-RID */
90 #define T0_FS		(1U<<9)		/* first segment of frame */
91 #define T0_LS		(1U<<8)		/* last segment of frame */
92 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
93 #define T0_SGOL		(1U<<6)		/* enable TCP segment offload */
94 #define T0_TRS		(1U<<4)		/* 5:4 TRS */
95 #define T0_IOC		(0)		/* XXX TBD interrupt when completed */
96 /* T1 segment address 63:32 */
97 /* T2 segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 segment length to transmit */
99 
100 #define R0_OWN		(1U<<31)	/* desc is empty */
101 #define R0_EOD		(1U<<30)	/* end of descriptor array */
102 #define R0_SRID		(24)		/* 29:24 S-RID */
103 #define R0_FR		(1U<<23)	/* FR */
104 #define R0_ER		(1U<<21)	/* Rx error indication */
105 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
106 #define R0_TDRID	(14)		/* 15:14 TD-RID */
107 #define R0_FS		(1U<<9)		/* first segment of frame */
108 #define R0_LS		(1U<<8)		/* last segment of frame */
109 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status */
110 #define R0_CERR		(2U<<6)		/* 0 (undone), 1 (found ok), 2 (bad) */
111 /* R1 frame address 63:32 */
112 /* R2 frame address 31:0 */
113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
114 
115 /*
116  * SC2A11 NetSec registers. 0x100 - 1204
117  */
118 #define SWRESET		0x104
119 #define COMINIT		0x120
120 #define xINTSR		0x200		/* aggregated interrupt status report */
121 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
122 #define  IRQ_TX		(1U<<0)		/* top level Rx interrupt */
123 #define xINTAEN		0x204		/* INT_A enable */
124 #define xINTA_SET	0x234		/* bit to set */
125 #define xINTA_CLR	0x238		/* bit to clr */
126 #define xINTBEN		0x23c		/* INT_B enable */
127 #define xINTB_SET	0x240		/* bit to set */
128 #define xINTB_CLR	0x244		/* bit to clr */
129 /* 0x00c - 048 */			/* pkt,tls,s0,s1 SR/IE/SET/CLR */
130 #define TXISR		0x400
131 #define TXIEN		0x404
132 #define TXI_SET		0x428
133 #define TXI_CLR		0x42c
134 #define  TXI_NTOWNR	(1U<<17)
135 #define  TXI_TR_ERR	(1U<<16)
136 #define  TXI_TXDONE	(1U<<15)
137 #define  TXI_TMREXP	(1U<<14)
138 #define RXISR		0x440
139 #define RXIEN		0x444
140 #define RXI_SET		0x468
141 #define RXI_CLR		0x46c
142 #define  RXI_RC_ERR	(1U<<16)
143 #define  RXI_PKTCNT	(1U<<15)
144 #define  RXI_TMREXP	(1U<<14)
145 #define TXTIMER		0x41c
146 #define RXTIMER		0x45c
147 #define TXCOUNT		0x410
148 #define RXCOUNT		0x454
149 #define H2MENG		0x210		/* DMAC host2media ucode port */
150 #define M2HENG		0x21c		/* DMAC media2host ucode port */
151 #define PKTENG		0x0d0		/* packet engine ucode port */
152 #define CLKEN		0x100		/* clock distribution enable */
153 #define  CLK_G		(1U<<5)
154 #define  CLK_ALL	0x13		/* 0x24 ??? */
155 #define MACADRH		0x10c		/* ??? */
156 #define MACADRL		0x110		/* ??? */
157 #define MCVER		0x22c		/* micro controller version */
158 #define HWVER		0x230		/* hardware version */
159 
160 /* 0x800 */		/* dec Tx  SR/EN/SET/CLR */
161 /* 0x840 */		/* enc Rx  SR/EN/SET/CLR */
162 /* 0x880 */		/* enc TLS Tx  SR/IE/SET/CLR */
163 /* 0x8c0 */		/* dec TLS Tx  SR/IE/SET/CLR */
164 /* 0x900 */		/* enc TLS Rx  SR/IE/SET/CLR */
165 /* 0x940 */		/* dec TLS Rx  SR/IE/SET/CLR */
166 /* 0x980 */		/* enc RAW Tx  SR/IE/SET/CLR */
167 /* 0x9c0 */		/* dec RAW Tx  SR/IE/SET/CLR */
168 /* 0xA00 */		/* enc RAW Rx  SR/IE/SET/CLR */
169 /* 0xA40 */		/* dec RAW Rx  SR/IE/SET/CLR */
170 
171 /* indirect GMAC registers. accessed thru MACCMD/MACDATA operation */
172 #define MACCMD		0x11c4		/* gmac operation */
173 #define  CMD_IOWR	(1U<<28)	/* write op */
174 #define  CMD_BUSY	(1U<<31)	/* busy bit */
175 #define MACSTAT		0x1024		/* gmac status */
176 #define MACDATA		0x11c0		/* gmac rd/wr data */
177 #define MACINTE		0x1028		/* interrupt enable */
178 #define DESC_INIT	0x11fc		/* desc engine init */
179 #define DESC_SRST	0x1204		/* desc engine sw reset */
180 
181 /*
182  * GMAC registers. not memory mapped, but handled by indirect access.
183  * Mostly identical to Synopsys DesignWare Core Ethernet.
184  */
185 #define GMACMCR		0x0000		/* MAC configuration */
186 #define  MCR_IBN	(1U<<30)	/* ??? */
187 #define  MCR_CST	(1U<<25)	/* strip CRC */
188 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
189 #define  MCR_JE		(1U<<20)	/* ignore oversized >9018 condition */
190 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
191 #define  MCR_DRCS	(1U<<16)	/* ignore (G)MII HDX Tx error */
192 #define  MCR_USEMII	(1U<<15)	/* 1: RMII/MII, 0: RGMII (_PS) */
193 #define  MCR_SPD100	(1U<<14)	/* force speed 100 (_FES) */
194 #define  MCR_DO		(1U<<13)	/* */
195 #define  MCR_LOOP	(1U<<12)	/* */
196 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
197 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
198 #define  MCR_ACS	(1U<<7)		/* auto pad strip CRC */
199 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
200 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
201 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
202 #define  _MCR_FDX	0x0000280c	/* XXX TBD */
203 #define  _MCR_HDX	0x0001a00c	/* XXX TBD */
204 #define GMACAFR		0x0004		/* frame DA/SA address filter */
205 #define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
206 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
207 #define  AFR_SAF	(1U<<9)		/* source address filter */
208 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
209 #define  AFR_PCF	(2U<<6)		/* */
210 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
211 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
212 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
213 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
214 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
215 #define  AFR_PR		(1U<<0)		/* run promisc mode */
216 #define GMACGAR		0x0010		/* MDIO operation */
217 #define  GAR_PHY	(11)		/* mii phy 15:11 */
218 #define  GAR_REG	(6)		/* mii reg 10:6 */
219 #define  GAR_CTL	(2)		/* control 5:2 */
220 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
221 #define  GAR_BUSY	(1U)		/* busy bit */
222 #define GMACGDR		0x0014		/* MDIO rd/wr data */
223 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
224 /* 31:16 pause timer value, 5:4 pause timer threthold */
225 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
226 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
227 #define GMACVTAG	0x001c		/* VLAN tag control */
228 #define GMACIMPL	0x0020		/* implementation number XX.YY */
229 #define GMACLPIS	0x0030		/* AXI LPI control */
230 #define GMACLPIC	0x0034		/* AXI LPI control */
231 #define GMACISR		0x0038		/* interrupt status, clear when read */
232 #define GMACIMR		0x003c		/* interrupt enable */
233 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
234 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
235 #define  ISR_TX		(1U<<6)		/* Tx completed */
236 #define  ISR_RX		(1U<<5)		/* Rx completed */
237 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
238 #define  ISR_LC		(1U<<0)		/* link status change detected */
239 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
240 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
241 #define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
242 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
243 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
244 #define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
245 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
246 /* MAH bit-31: slot in use, no other bit is effective */
247 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
248 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
249 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
250 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
251 #define GMACMIISR	0x00d8		/* resolved xMII link status */
252 /* 3: link up detected, 2:1 resolved speed (0/1/2), 1: fdx detected */
253 
254 /* 0x0700 - 0734 ??? */
255 
256 #define GMACBMR		0x1000		/* DMA bus mode control */
257 /* 24    4PBL 8???
258  * 23    USP
259  * 22:17 RPBL
260  * 16    fixed burst, or undefined b.
261  * 15:14 priority between Rx and Tx
262  *  3    rxtx ratio 41
263  *  2    rxtx ratio 31
264  *  1    rxtx ratio 21
265  *  0    rxtx ratio 11
266  * 13:8  PBL packet burst len
267  *  7    alternative des8
268  *  0    reset op. (SC)
269  */
270 #define  _BMR		0x00412080	/* XXX TBD */
271 #define  _BMR0		0x00020181	/* XXX TBD */
272 #define  BMR_RST	(1)		/* reset op. self clear when done */
273 #define GMACTPD		0x1004		/* write any to resume tdes */
274 #define GMACRPD		0x1008		/* write any to resume rdes */
275 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
276 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
277 #define  _RDLA		0x18000		/* XXX TBD system SRAM ? */
278 #define  _TDLA		0x1c000		/* XXX TBD system SRAM ? */
279 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
280 #define GMACOMR		0x1018		/* DMA operation */
281 #define  OMR_TSF	(1U<<25)	/* 1: Tx store&forword, 0: immed. */
282 #define  OMR_RSF	(1U<<21)	/* 1: Rx store&forward, 0: immed. */
283 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
284 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
285 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
286 #define  OMR_RS		(1U<<1)		/* run Rx DMA engine, 0 to stop */
287 #define GMACIE		0x101c		/* interrupt enable */
288 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
289 #define GMACRWDT	0x1024		/* receive watchdog timer count */
290 #define GMACAXIB	0x1028		/* AXI bus mode control */
291 #define GMACAXIS	0x102c		/* AXI status report */
292 /* 0x1048 - 1054 */			/* descriptor and buffer cur. address */
293 #define HWFEA		0x1058		/* feature report */
294 
295 #define GMACEVCTL	0x0100		/* event counter control */
296 #define GMACEVCNT(i)	((i)*4+0x114)	/* event counter 0x114 - 0x284 */
297 
298 /* memory mapped CSR register */
299 #define CSR_READ(sc,off) \
300 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
301 #define CSR_WRITE(sc,off,val) \
302 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
303 
304 /* flash memory access */
305 #define EE_READ(sc,off) \
306 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
307 
308 /*
309  * flash memory layout
310  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
311  * 0x08 - 0b	H->MAC xfer uengine program start addr 63:32.
312  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not relative)
313  * 0x10 - 13	H2M program length in 4 byte count.
314  * 0x14 - 0b	M->HOST xfer uengine program start addr 63:32.
315  * 0x18 - 0f	M2H program addr 31:0 (absolute, not relative)
316  * 0x1c - 13	M2H program length in 4 byte count.
317  * 0x20 - 23	packet uengine program addr 31:0, (absolute, not relative)
318  * 0x24 - 27	packet program length in 4 byte count.
319  *
320  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
321  */
322 
323 /*
324  * all below are software constraction.
325  */
326 #define MD_NTXSEGS		16		/* fixed */
327 #define MD_TXQUEUELEN		8		/* tunable */
328 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
329 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
330 #define MD_NTXDESC		128
331 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
332 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
333 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
334 
335 #define MD_NRXDESC		64		/* tunable */
336 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
337 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
338 
339 struct control_data {
340 	struct tdes cd_txdescs[MD_NTXDESC];
341 	struct rdes cd_rxdescs[MD_NRXDESC];
342 };
343 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
344 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
345 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
346 
347 struct scx_txsoft {
348 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
349 	bus_dmamap_t txs_dmamap;	/* our DMA map */
350 	int txs_firstdesc;		/* first descriptor in packet */
351 	int txs_lastdesc;		/* last descriptor in packet */
352 	int txs_ndesc;			/* # of descriptors used */
353 };
354 
355 struct scx_rxsoft {
356 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
357 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
358 };
359 
360 struct scx_softc {
361 	device_t sc_dev;		/* generic device information */
362 	bus_space_tag_t sc_st;		/* bus space tag */
363 	bus_space_handle_t sc_sh;	/* bus space handle */
364 	bus_size_t sc_sz;		/* csr map size */
365 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
366 	bus_size_t sc_eesz;		/* eeprom map size */
367 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
368 	bus_dma_tag_t sc_dmat32;
369 	struct ethercom sc_ethercom;	/* Ethernet common data */
370 	struct mii_data sc_mii;		/* MII */
371 	callout_t sc_callout;		/* PHY monitor callout */
372 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
373 	int sc_nseg;			/* descriptor store nseg */
374 	void *sc_ih;			/* interrupt cookie */
375 	int sc_phy_id;			/* PHY address */
376 	int sc_flowflags;		/* 802.3x PAUSE flow control */
377 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
378 	uint32_t sc_t0coso;		/* T0_CSUM | T0_SGOL to run */
379 	int sc_ucodeloaded;		/* ucode for H2M/M2H/PKT */
380 	int sc_100mii;			/* 1 for RMII/MII, 0 for RGMII */
381 	int sc_phandle;			/* fdt phandle */
382 	uint64_t sc_freq;
383 
384 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
385 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
386 
387 	struct control_data *sc_control_data;
388 #define sc_txdescs	sc_control_data->cd_txdescs
389 #define sc_rxdescs	sc_control_data->cd_rxdescs
390 
391 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
392 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
393 	int sc_txfree;			/* number of free Tx descriptors */
394 	int sc_txnext;			/* next ready Tx descriptor */
395 	int sc_txsfree;			/* number of free Tx jobs */
396 	int sc_txsnext;			/* next ready Tx job */
397 	int sc_txsdirty;		/* dirty Tx jobs */
398 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
399 
400 	krndsource_t rnd_source;	/* random source */
401 };
402 
403 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
404 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
405 
406 #define SCX_CDTXSYNC(sc, x, n, ops)					\
407 do {									\
408 	int __x, __n;							\
409 									\
410 	__x = (x);							\
411 	__n = (n);							\
412 									\
413 	/* If it will wrap around, sync to the end of the ring. */	\
414 	if ((__x + __n) > MD_NTXDESC) {				\
415 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
416 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
417 		    (MD_NTXDESC - __x), (ops));			\
418 		__n -= (MD_NTXDESC - __x);				\
419 		__x = 0;						\
420 	}								\
421 									\
422 	/* Now sync whatever is left. */				\
423 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
424 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
425 } while (/*CONSTCOND*/0)
426 
427 #define SCX_CDRXSYNC(sc, x, ops)					\
428 do {									\
429 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
430 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
431 } while (/*CONSTCOND*/0)
432 
433 #define SCX_INIT_RXDESC(sc, x)						\
434 do {									\
435 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
436 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
437 	struct mbuf *__m = __rxs->rxs_mbuf;				\
438 	bus_addr_t __paddr =__rxs->rxs_dmamap->dm_segs[0].ds_addr;	\
439 	__m->m_data = __m->m_ext.ext_buf;				\
440 	__rxd->r3 = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
441 	__rxd->r2 = htole32(BUS_ADDR_LO32(__paddr));			\
442 	__rxd->r1 = htole32(BUS_ADDR_HI32(__paddr));			\
443 	__rxd->r0 = R0_OWN | R0_FS | R0_LS;				\
444 	if ((x) == MD_NRXDESC - 1) __rxd->r0 |= R0_EOD;			\
445 } while (/*CONSTCOND*/0)
446 
447 static int scx_fdt_match(device_t, cfdata_t, void *);
448 static void scx_fdt_attach(device_t, device_t, void *);
449 static int scx_acpi_match(device_t, cfdata_t, void *);
450 static void scx_acpi_attach(device_t, device_t, void *);
451 
452 const CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
453     scx_fdt_match, scx_fdt_attach, NULL, NULL);
454 
455 const CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
456     scx_acpi_match, scx_acpi_attach, NULL, NULL);
457 
458 static void scx_attach_i(struct scx_softc *);
459 static void scx_reset(struct scx_softc *);
460 static int scx_init(struct ifnet *);
461 static void scx_stop(struct ifnet *, int);
462 static int scx_ioctl(struct ifnet *, u_long, void *);
463 static void scx_set_rcvfilt(struct scx_softc *);
464 static void scx_start(struct ifnet *);
465 static void scx_watchdog(struct ifnet *);
466 static int scx_intr(void *);
467 static void txreap(struct scx_softc *);
468 static void rxintr(struct scx_softc *);
469 static int add_rxbuf(struct scx_softc *, int);
470 static void rxdrain(struct scx_softc *sc);
471 static void mii_statchg(struct ifnet *);
472 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
473 static int mii_readreg(device_t, int, int, uint16_t *);
474 static int mii_writereg(device_t, int, int, uint16_t);
475 static void phy_tick(void *);
476 
477 static void loaducode(struct scx_softc *);
478 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
479 
480 static int get_mdioclk(uint32_t);
481 
482 #define WAIT_FOR_SET(sc, reg, set, fail) \
483 	wait_for_bits(sc, reg, set, ~0, fail)
484 #define WAIT_FOR_CLR(sc, reg, clr, fail) \
485 	wait_for_bits(sc, reg, 0, clr, fail)
486 
487 static int
488 wait_for_bits(struct scx_softc *sc, int reg,
489     uint32_t set, uint32_t clr, uint32_t fail)
490 {
491 	uint32_t val;
492 	int ntries;
493 
494 	for (ntries = 0; ntries < 1000; ntries++) {
495 		val = CSR_READ(sc, reg);
496 		if ((val & set) || !(val & clr))
497 			return 0;
498 		if (val & fail)
499 			return 1;
500 		DELAY(1);
501 	}
502 	return 1;
503 }
504 
505 /* GMAC register indirect access */
506 static int
507 mac_read(struct scx_softc *sc, int reg)
508 {
509 
510 	CSR_WRITE(sc, MACCMD, reg);
511 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
512 	return CSR_READ(sc, MACDATA);
513 }
514 
515 static void
516 mac_write(struct scx_softc *sc, int reg, int val)
517 {
518 
519 	CSR_WRITE(sc, MACDATA, val);
520 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR);
521 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY, 0);
522 }
523 
524 static const struct device_compatible_entry compat_data[] = {
525 	{ .compat = "socionext,synquacer-netsec" },
526 	DEVICE_COMPAT_EOL
527 };
528 
529 static int
530 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
531 {
532 	struct fdt_attach_args * const faa = aux;
533 
534 	return of_compatible_match(faa->faa_phandle, compat_data);
535 }
536 
537 static void
538 scx_fdt_attach(device_t parent, device_t self, void *aux)
539 {
540 	struct scx_softc * const sc = device_private(self);
541 	struct fdt_attach_args * const faa = aux;
542 	const int phandle = faa->faa_phandle;
543 	bus_space_tag_t bst = faa->faa_bst;
544 	bus_space_handle_t bsh;
545 	bus_space_handle_t eebsh;
546 	bus_addr_t addr[2];
547 	bus_size_t size[2];
548 	char intrstr[128];
549 	const char *phy_mode;
550 
551 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
552 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
553 		aprint_error(": unable to map device csr\n");
554 		return;
555 	}
556 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
557 		aprint_error(": failed to decode interrupt\n");
558 		goto fail;
559 	}
560 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
561 		NOT_MP_SAFE, scx_intr, sc);
562 	if (sc->sc_ih == NULL) {
563 		aprint_error_dev(self, "couldn't establish interrupt\n");
564 		goto fail;
565 	}
566 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
567 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
568 		aprint_error(": unable to map device eeprom\n");
569 		goto fail;
570 	}
571 
572 	aprint_naive("\n");
573 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
574 	aprint_normal_dev(self, "interrupt on %s\n", intrstr);
575 
576 	sc->sc_dev = self;
577 	sc->sc_st = bst;
578 	sc->sc_sh = bsh;
579 	sc->sc_sz = size[0];
580 	sc->sc_eesh = eebsh;
581 	sc->sc_eesz = size[1];
582 	sc->sc_dmat = faa->faa_dmat;
583 	sc->sc_dmat32 = faa->faa_dmat; /* XXX */
584 	sc->sc_phandle = phandle;
585 
586 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
587 	if (phy_mode == NULL)
588 		aprint_error(": missing 'phy-mode' property\n");
589 	sc->sc_100mii = (phy_mode  && strcmp(phy_mode, "rgmii") != 0);
590 
591 	scx_attach_i(sc);
592 	return;
593  fail:
594 	if (sc->sc_eesz)
595 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
596 	if (sc->sc_sz)
597 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
598 	return;
599 }
600 
601 static int
602 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
603 {
604 	static const char * compatible[] = {
605 		"SCX0001",
606 		NULL
607 	};
608 	struct acpi_attach_args *aa = aux;
609 
610 	if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE)
611 		return 0;
612 	return acpi_match_hid(aa->aa_node->ad_devinfo, compatible);
613 }
614 
615 static void
616 scx_acpi_attach(device_t parent, device_t self, void *aux)
617 {
618 	struct scx_softc * const sc = device_private(self);
619 	struct acpi_attach_args * const aa = aux;
620 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
621 	bus_space_tag_t bst = aa->aa_memt;
622 	bus_space_handle_t bsh, eebsh;
623 	struct acpi_resources res;
624 	struct acpi_mem *mem;
625 	struct acpi_irq *irq;
626 	char *phy_mode;
627 	ACPI_INTEGER acpi_phy, acpi_freq;
628 	ACPI_STATUS rv;
629 
630 	rv = acpi_resource_parse(self, handle, "_CRS",
631 	    &res, &acpi_resource_parse_ops_default);
632 	if (ACPI_FAILURE(rv))
633 		return;
634 	mem = acpi_res_mem(&res, 0);
635 	irq = acpi_res_irq(&res, 0);
636 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
637 		aprint_error(": incomplete csr resources\n");
638 		return;
639 	}
640 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &bsh) != 0) {
641 		aprint_error(": couldn't map registers\n");
642 		return;
643 	}
644 	sc->sc_sz = mem->ar_length;
645 	sc->sc_ih = acpi_intr_establish(self, (uint64_t)handle, IPL_NET,
646 	    NOT_MP_SAFE, scx_intr, sc, device_xname(self));
647 	if (sc->sc_ih == NULL) {
648 		aprint_error_dev(self, "couldn't establish interrupt\n");
649 		goto fail;
650 	}
651 	mem = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
652 	if (mem == NULL || mem->ar_length == 0) {
653 		aprint_error(": incomplete eeprom resources\n");
654 		goto fail;
655 	}
656 	if (bus_space_map(bst, mem->ar_base, mem->ar_length, 0, &eebsh) != 0) {
657 		aprint_error(": couldn't map registers\n");
658 		goto fail;
659 	}
660 	sc->sc_eesz = mem->ar_length;
661 
662 	rv = acpi_dsd_string(handle, "phy-mode", &phy_mode);
663 	if (ACPI_FAILURE(rv)) {
664 		aprint_error(": missing 'phy-mode' property\n");
665 		phy_mode = NULL;
666 	}
667 	rv = acpi_dsd_integer(handle, "phy-channel", &acpi_phy);
668 	if (ACPI_FAILURE(rv))
669 		acpi_phy = 31;
670 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
671 			&acpi_freq);
672 	if (ACPI_FAILURE(rv))
673 		acpi_freq = 999;
674 
675 	aprint_naive("\n");
676 	/* aprint_normal(": Gigabit Ethernet Controller\n"); */
677 
678 	sc->sc_dev = self;
679 	sc->sc_st = bst;
680 	sc->sc_sh = bsh;
681 	sc->sc_eesh = eebsh;
682 	sc->sc_dmat = aa->aa_dmat64;
683 	sc->sc_dmat32 = aa->aa_dmat;	/* descriptor needs dma32 */
684 
685 aprint_normal_dev(self,
686 "phy mode %s, phy id %d, freq %ld\n", phy_mode, (int)acpi_phy, acpi_freq);
687 	sc->sc_100mii = (phy_mode && strcmp(phy_mode, "rgmii") != 0);
688 	sc->sc_phy_id = (int)acpi_phy;
689 	sc->sc_freq = acpi_freq;
690 aprint_normal_dev(self,
691 "GMACGAR %08x\n", mac_read(sc, GMACGAR));
692 
693 	scx_attach_i(sc);
694 
695 	acpi_resource_cleanup(&res);
696 	return;
697  fail:
698 	if (sc->sc_eesz > 0)
699 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
700 	if (sc->sc_sz > 0)
701 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
702 	acpi_resource_cleanup(&res);
703 	return;
704 }
705 
706 static void
707 scx_attach_i(struct scx_softc *sc)
708 {
709 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
710 	struct mii_data * const mii = &sc->sc_mii;
711 	struct ifmedia * const ifm = &mii->mii_media;
712 	uint32_t hwver, dwimp, dwfea;
713 	uint8_t enaddr[ETHER_ADDR_LEN];
714 	bus_dma_segment_t seg;
715 	uint32_t csr;
716 	int i, nseg, error = 0;
717 
718 	hwver = CSR_READ(sc, HWVER);	/* Socionext version */
719 	dwimp = mac_read(sc, GMACIMPL);	/* DW EMAC XX.YY */
720 	dwfea = mac_read(sc, HWFEA);	/* DW feature */
721 	aprint_normal_dev(sc->sc_dev,
722 	    "Socionext NetSec GbE %d.%d (impl 0x%x, feature 0x%x)\n",
723 	    hwver >> 16, hwver & 0xffff,
724 	    dwimp, dwfea);
725 
726 	/* fetch MAC address in flash. stored in big endian order */
727 	csr = EE_READ(sc, 0x00);
728 	enaddr[0] = csr >> 24;
729 	enaddr[1] = csr >> 16;
730 	enaddr[2] = csr >> 8;
731 	enaddr[3] = csr;
732 	csr = bus_space_read_4(sc->sc_st, sc->sc_eesh, 4);
733 	csr = EE_READ(sc, 0x04);
734 	enaddr[4] = csr >> 24;
735 	enaddr[5] = csr >> 16;
736 	aprint_normal_dev(sc->sc_dev,
737 	    "Ethernet address %s\n", ether_sprintf(enaddr));
738 
739 	sc->sc_mdclk = get_mdioclk(sc->sc_freq); /* 5:2 clk control */
740 
741 	if (sc->sc_ucodeloaded == 0)
742 		loaducode(sc);
743 
744 	mii->mii_ifp = ifp;
745 	mii->mii_readreg = mii_readreg;
746 	mii->mii_writereg = mii_writereg;
747 	mii->mii_statchg = mii_statchg;
748 
749 	sc->sc_ethercom.ec_mii = mii;
750 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
751 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
752 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
753 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
754 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
755 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
756 	} else
757 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
758 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
759 
760 	/*
761 	 * Allocate the control data structures, and create and load the
762 	 * DMA map for it.
763 	 */
764 	error = bus_dmamem_alloc(sc->sc_dmat32,
765 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
766 	if (error != 0) {
767 		aprint_error_dev(sc->sc_dev,
768 		    "unable to allocate control data, error = %d\n", error);
769 		goto fail_0;
770 	}
771 	error = bus_dmamem_map(sc->sc_dmat32, &seg, nseg,
772 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
773 	    BUS_DMA_COHERENT);
774 	if (error != 0) {
775 		aprint_error_dev(sc->sc_dev,
776 		    "unable to map control data, error = %d\n", error);
777 		goto fail_1;
778 	}
779 	error = bus_dmamap_create(sc->sc_dmat32,
780 	    sizeof(struct control_data), 1,
781 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
782 	if (error != 0) {
783 		aprint_error_dev(sc->sc_dev,
784 		    "unable to create control data DMA map, "
785 		    "error = %d\n", error);
786 		goto fail_2;
787 	}
788 	error = bus_dmamap_load(sc->sc_dmat32, sc->sc_cddmamap,
789 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
790 	if (error != 0) {
791 		aprint_error_dev(sc->sc_dev,
792 		    "unable to load control data DMA map, error = %d\n",
793 		    error);
794 		goto fail_3;
795 	}
796 	for (i = 0; i < MD_TXQUEUELEN; i++) {
797 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
798 		    MD_NTXSEGS, MCLBYTES, 0, 0,
799 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
800 			aprint_error_dev(sc->sc_dev,
801 			    "unable to create tx DMA map %d, error = %d\n",
802 			    i, error);
803 			goto fail_4;
804 		}
805 	}
806 	for (i = 0; i < MD_NRXDESC; i++) {
807 		if ((error = bus_dmamap_create(sc->sc_dmat32, MCLBYTES,
808 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
809 			aprint_error_dev(sc->sc_dev,
810 			    "unable to create rx DMA map %d, error = %d\n",
811 			    i, error);
812 			goto fail_5;
813 		}
814 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
815 	}
816 	sc->sc_seg = seg;
817 	sc->sc_nseg = nseg;
818 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
819 
820 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
821 	ifp->if_softc = sc;
822 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 	ifp->if_ioctl = scx_ioctl;
824 	ifp->if_start = scx_start;
825 	ifp->if_watchdog = scx_watchdog;
826 	ifp->if_init = scx_init;
827 	ifp->if_stop = scx_stop;
828 	IFQ_SET_READY(&ifp->if_snd);
829 
830 	sc->sc_flowflags = 0;
831 
832 	if_attach(ifp);
833 	if_deferred_start_init(ifp, NULL);
834 	ether_ifattach(ifp, enaddr);
835 
836 	callout_init(&sc->sc_callout, 0);
837 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
838 
839 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
840 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
841 
842 	return;
843 
844   fail_5:
845 	for (i = 0; i < MD_NRXDESC; i++) {
846 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
847 			bus_dmamap_destroy(sc->sc_dmat,
848 			    sc->sc_rxsoft[i].rxs_dmamap);
849 	}
850   fail_4:
851 	for (i = 0; i < MD_TXQUEUELEN; i++) {
852 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
853 			bus_dmamap_destroy(sc->sc_dmat,
854 			    sc->sc_txsoft[i].txs_dmamap);
855 	}
856 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
857   fail_3:
858 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
859   fail_2:
860 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
861 	    sizeof(struct control_data));
862   fail_1:
863 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
864   fail_0:
865 	if (sc->sc_phandle)
866 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
867 	else
868 		acpi_intr_disestablish(sc->sc_ih);
869 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
870 	return;
871 }
872 
873 static void
874 scx_reset(struct scx_softc *sc)
875 {
876 	int loop = 0, busy;
877 
878 	mac_write(sc, GMACOMR, 0);
879 	mac_write(sc, GMACBMR, BMR_RST);
880 	do {
881 		DELAY(1);
882 		busy = mac_read(sc, GMACBMR) & BMR_RST;
883 	} while (++loop < 3000 && busy);
884 	mac_write(sc, GMACBMR, _BMR);
885 	mac_write(sc, GMACAFR, 0);
886 
887 	CSR_WRITE(sc, CLKEN, CLK_ALL);	/* distribute clock sources */
888 	CSR_WRITE(sc, SWRESET, 0);	/* reset operation */
889 	CSR_WRITE(sc, SWRESET, 1U<<31);	/* manifest run */
890 	CSR_WRITE(sc, COMINIT, 3); 	/* DB|CLS */
891 
892 	mac_write(sc, GMACEVCTL, 1);
893 }
894 
895 static int
896 scx_init(struct ifnet *ifp)
897 {
898 	struct scx_softc *sc = ifp->if_softc;
899 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
900 	uint32_t csr;
901 	int i, error;
902 
903 	/* Cancel pending I/O. */
904 	scx_stop(ifp, 0);
905 
906 	/* Reset the chip to a known state. */
907 	scx_reset(sc);
908 
909 	/* build sane Tx */
910 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
911 	sc->sc_txdescs[MD_NTXDESC - 1].t0 |= T0_EOD; /* tie off the ring */
912 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
913 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
914 	sc->sc_txfree = MD_NTXDESC;
915 	sc->sc_txnext = 0;
916 	for (i = 0; i < MD_TXQUEUELEN; i++)
917 		sc->sc_txsoft[i].txs_mbuf = NULL;
918 	sc->sc_txsfree = MD_TXQUEUELEN;
919 	sc->sc_txsnext = 0;
920 	sc->sc_txsdirty = 0;
921 
922 	/* load Rx descriptors with fresh mbuf */
923 	for (i = 0; i < MD_NRXDESC; i++) {
924 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
925 			if ((error = add_rxbuf(sc, i)) != 0) {
926 				aprint_error_dev(sc->sc_dev,
927 				    "unable to allocate or map rx "
928 				    "buffer %d, error = %d\n",
929 				    i, error);
930 				rxdrain(sc);
931 				goto out;
932 			}
933 		}
934 		else
935 			SCX_INIT_RXDESC(sc, i);
936 	}
937 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = R0_EOD;
938 	sc->sc_rxptr = 0;
939 	sc->sc_rxptr = 0;
940 
941 	/* set my address in perfect match slot 0. little endian order */
942 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
943 	mac_write(sc, GMACMAL0, csr);
944 	csr = (ea[5] << 8) | ea[4];
945 	mac_write(sc, GMACMAH0, csr);
946 
947 	/* accept multicast frame or run promisc mode */
948 	scx_set_rcvfilt(sc);
949 
950 	/* set current media */
951 	if ((error = ether_mediachange(ifp)) != 0)
952 		goto out;
953 
954 	/* XXX 32 bit paddr XXX hand Tx/Rx rings to HW XXX */
955 	mac_write(sc, GMACTDLA, SCX_CDTXADDR(sc, 0));
956 	mac_write(sc, GMACRDLA, SCX_CDRXADDR(sc, 0));
957 
958 	/* kick to start GMAC engine */
959 	CSR_WRITE(sc, RXI_CLR, ~0);
960 	CSR_WRITE(sc, TXI_CLR, ~0);
961 	csr = mac_read(sc, GMACOMR);
962 	mac_write(sc, GMACOMR, csr | OMR_RS | OMR_ST);
963 
964 	ifp->if_flags |= IFF_RUNNING;
965 	ifp->if_flags &= ~IFF_OACTIVE;
966 
967 	/* start one second timer */
968 	callout_schedule(&sc->sc_callout, hz);
969  out:
970 	return error;
971 }
972 
973 static void
974 scx_stop(struct ifnet *ifp, int disable)
975 {
976 	struct scx_softc *sc = ifp->if_softc;
977 
978 	/* Stop the one second clock. */
979 	callout_stop(&sc->sc_callout);
980 
981 	/* Down the MII. */
982 	mii_down(&sc->sc_mii);
983 
984 	/* Mark the interface down and cancel the watchdog timer. */
985 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
986 	ifp->if_timer = 0;
987 }
988 
989 static int
990 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
991 {
992 	struct scx_softc *sc = ifp->if_softc;
993 	struct ifreq *ifr = (struct ifreq *)data;
994 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
995 	int s, error;
996 
997 	s = splnet();
998 
999 	switch (cmd) {
1000 	case SIOCSIFMEDIA:
1001 		/* Flow control requires full-duplex mode. */
1002 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1003 		    (ifr->ifr_media & IFM_FDX) == 0)
1004 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1005 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1006 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1007 				/* We can do both TXPAUSE and RXPAUSE. */
1008 				ifr->ifr_media |=
1009 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1010 			}
1011 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1012 		}
1013 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1014 		break;
1015 	default:
1016 		error = ether_ioctl(ifp, cmd, data);
1017 		if (error != ENETRESET)
1018 			break;
1019 		error = 0;
1020 		if (cmd == SIOCSIFCAP)
1021 			error = (*ifp->if_init)(ifp);
1022 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1023 			;
1024 		else if (ifp->if_flags & IFF_RUNNING) {
1025 			/*
1026 			 * Multicast list has changed; set the hardware filter
1027 			 * accordingly.
1028 			 */
1029 			scx_set_rcvfilt(sc);
1030 		}
1031 		break;
1032 	}
1033 
1034 	splx(s);
1035 	return error;
1036 }
1037 
1038 static void
1039 scx_set_rcvfilt(struct scx_softc *sc)
1040 {
1041 	struct ethercom * const ec = &sc->sc_ethercom;
1042 	struct ifnet * const ifp = &ec->ec_if;
1043 	struct ether_multistep step;
1044 	struct ether_multi *enm;
1045 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
1046 	uint32_t csr, crc;
1047 	int i;
1048 
1049 	csr = mac_read(sc, GMACAFR);
1050 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1051 	mac_write(sc, GMACAFR, csr);
1052 
1053 	/* clear 15 entry supplemental perfect match filter */
1054 	for (i = 1; i < 16; i++)
1055 		 mac_write(sc, GMACMAH(i), 0);
1056 	/* build 64 bit multicast hash filter */
1057 	crc = mchash[1] = mchash[0] = 0;
1058 
1059 	ETHER_LOCK(ec);
1060 	if (ifp->if_flags & IFF_PROMISC) {
1061 		ec->ec_flags |= ETHER_F_ALLMULTI;
1062 		ETHER_UNLOCK(ec);
1063 		/* run promisc. mode */
1064 		csr |= AFR_PR;
1065 		goto update;
1066 	}
1067 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1068 	ETHER_FIRST_MULTI(step, ec, enm);
1069 	i = 1; /* slot 0 is occupied */
1070 	while (enm != NULL) {
1071 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1072 			/*
1073 			 * We must listen to a range of multicast addresses.
1074 			 * For now, just accept all multicasts, rather than
1075 			 * trying to set only those filter bits needed to match
1076 			 * the range.  (At this time, the only use of address
1077 			 * ranges is for IP multicast routing, for which the
1078 			 * range is big enough to require all bits set.)
1079 			 */
1080 			ec->ec_flags |= ETHER_F_ALLMULTI;
1081 			ETHER_UNLOCK(ec);
1082 			/* accept all multi */
1083 			csr |= AFR_PM;
1084 			goto update;
1085 		}
1086 printf("[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1087 		if (i < 16) {
1088 			/* use 15 entry perfect match filter */
1089 			uint32_t addr;
1090 			uint8_t *ep = enm->enm_addrlo;
1091 			addr = (ep[3] << 24) | (ep[2] << 16)
1092 			     | (ep[1] <<  8) |  ep[0];
1093 			mac_write(sc, GMACMAL(i), addr);
1094 			addr = (ep[5] << 8) | ep[4];
1095 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
1096 		} else {
1097 			/* use hash table when too many */
1098 			/* bit_reserve_32(~crc) !? */
1099 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1100 			/* 1(31) 5(30:26) bit sampling */
1101 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1102 		}
1103 		ETHER_NEXT_MULTI(step, enm);
1104 		i++;
1105 	}
1106 	ETHER_UNLOCK(ec);
1107 	if (crc)
1108 		csr |= AFR_MHTE;
1109 	csr |= AFR_HPF; /* use hash+perfect */
1110 	mac_write(sc, GMACMHTH, mchash[1]);
1111 	mac_write(sc, GMACMHTL, mchash[0]);
1112  update:
1113 	/* With PR or PM, MHTE/MHTL/MHTH are never consulted. really? */
1114 	mac_write(sc, GMACAFR, csr);
1115 	return;
1116 }
1117 
1118 static void
1119 scx_start(struct ifnet *ifp)
1120 {
1121 	struct scx_softc *sc = ifp->if_softc;
1122 	struct mbuf *m0, *m;
1123 	struct scx_txsoft *txs;
1124 	bus_dmamap_t dmamap;
1125 	int error, nexttx, lasttx, ofree, seg;
1126 	uint32_t tdes0;
1127 
1128 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1129 		return;
1130 
1131 	/* Remember the previous number of free descriptors. */
1132 	ofree = sc->sc_txfree;
1133 
1134 	/*
1135 	 * Loop through the send queue, setting up transmit descriptors
1136 	 * until we drain the queue, or use up all available transmit
1137 	 * descriptors.
1138 	 */
1139 	for (;;) {
1140 		IFQ_POLL(&ifp->if_snd, m0);
1141 		if (m0 == NULL)
1142 			break;
1143 
1144 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1145 			txreap(sc);
1146 			if (sc->sc_txsfree == 0)
1147 				break;
1148 		}
1149 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1150 		dmamap = txs->txs_dmamap;
1151 
1152 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1153 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1154 		if (error) {
1155 			if (error == EFBIG) {
1156 				aprint_error_dev(sc->sc_dev,
1157 				    "Tx packet consumes too many "
1158 				    "DMA segments, dropping...\n");
1159 				    IFQ_DEQUEUE(&ifp->if_snd, m0);
1160 				    m_freem(m0);
1161 				    continue;
1162 			}
1163 			/* Short on resources, just stop for now. */
1164 			break;
1165 		}
1166 
1167 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1168 			/*
1169 			 * Not enough free descriptors to transmit this
1170 			 * packet.  We haven't committed anything yet,
1171 			 * so just unload the DMA map, put the packet
1172 			 * back on the queue, and punt.	 Notify the upper
1173 			 * layer that there are not more slots left.
1174 			 */
1175 			ifp->if_flags |= IFF_OACTIVE;
1176 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1177 			break;
1178 		}
1179 
1180 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1181 
1182 		/*
1183 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1184 		 */
1185 
1186 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1187 		    BUS_DMASYNC_PREWRITE);
1188 
1189 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1190 		lasttx = -1;
1191 		for (nexttx = sc->sc_txnext, seg = 0;
1192 		     seg < dmamap->dm_nsegs;
1193 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
1194 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1195 			bus_addr_t paddr = dmamap->dm_segs[seg].ds_addr;
1196 			/*
1197 			 * If this is the first descriptor we're
1198 			 * enqueueing, don't set the OWN bit just
1199 			 * yet.	 That could cause a race condition.
1200 			 * We'll do it below.
1201 			 */
1202 			tdes->t3 = dmamap->dm_segs[seg].ds_len;
1203 			tdes->t2 = htole32(BUS_ADDR_LO32(paddr));
1204 			tdes->t1 = htole32(BUS_ADDR_HI32(paddr));
1205 			tdes->t0 = tdes0 | (tdes->t0 & T0_EOD) |
1206 					(15 << T0_TRID) | T0_PT |
1207 					sc->sc_t0coso | T0_TRS;
1208 			tdes0 = T0_OWN; /* 2nd and other segments */
1209 			lasttx = nexttx;
1210 		}
1211 		/*
1212 		 * Outgoing NFS mbuf must be unloaded when Tx completed.
1213 		 * Without T1_IC NFS mbuf is left unack'ed for excessive
1214 		 * time and NFS stops to proceed until scx_watchdog()
1215 		 * calls txreap() to reclaim the unack'ed mbuf.
1216 		 * It's painful to traverse every mbuf chain to determine
1217 		 * whether someone is waiting for Tx completion.
1218 		 */
1219 		m = m0;
1220 		do {
1221 			if ((m->m_flags & M_EXT) && m->m_ext.ext_free) {
1222 				sc->sc_txdescs[lasttx].t0 |= T0_IOC; /* !!! */
1223 				break;
1224 			}
1225 		} while ((m = m->m_next) != NULL);
1226 
1227 		/* Write deferred 1st segment T0_OWN at the final stage */
1228 		sc->sc_txdescs[lasttx].t0 |= T0_LS;
1229 		sc->sc_txdescs[sc->sc_txnext].t0 |= (T0_FS | T0_OWN);
1230 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1231 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1232 
1233 		/* Tell DMA start transmit */
1234 		mac_write(sc, GMACTPD, 1);
1235 
1236 		txs->txs_mbuf = m0;
1237 		txs->txs_firstdesc = sc->sc_txnext;
1238 		txs->txs_lastdesc = lasttx;
1239 		txs->txs_ndesc = dmamap->dm_nsegs;
1240 
1241 		sc->sc_txfree -= txs->txs_ndesc;
1242 		sc->sc_txnext = nexttx;
1243 		sc->sc_txsfree--;
1244 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1245 		/*
1246 		 * Pass the packet to any BPF listeners.
1247 		 */
1248 		bpf_mtap(ifp, m0, BPF_D_OUT);
1249 	}
1250 
1251 	if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1252 		/* No more slots left; notify upper layer. */
1253 		ifp->if_flags |= IFF_OACTIVE;
1254 	}
1255 	if (sc->sc_txfree != ofree) {
1256 		/* Set a watchdog timer in case the chip flakes out. */
1257 		ifp->if_timer = 5;
1258 	}
1259 }
1260 
1261 static void
1262 scx_watchdog(struct ifnet *ifp)
1263 {
1264 	struct scx_softc *sc = ifp->if_softc;
1265 
1266 	/*
1267 	 * Since we're not interrupting every packet, sweep
1268 	 * up before we report an error.
1269 	 */
1270 	txreap(sc);
1271 
1272 	if (sc->sc_txfree != MD_NTXDESC) {
1273 		aprint_error_dev(sc->sc_dev,
1274 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
1275 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1276 		if_statinc(ifp, if_oerrors);
1277 
1278 		/* Reset the interface. */
1279 		scx_init(ifp);
1280 	}
1281 
1282 	scx_start(ifp);
1283 }
1284 
1285 static int
1286 scx_intr(void *arg)
1287 {
1288 	struct scx_softc *sc = arg;
1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 
1291 	(void)ifp;
1292 	/* XXX decode interrupt cause to pick isr() XXX */
1293 	rxintr(sc);
1294 	txreap(sc);
1295 	return 1;
1296 }
1297 
1298 static void
1299 txreap(struct scx_softc *sc)
1300 {
1301 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1302 	struct scx_txsoft *txs;
1303 	uint32_t txstat;
1304 	int i;
1305 
1306 	ifp->if_flags &= ~IFF_OACTIVE;
1307 
1308 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1309 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1310 		txs = &sc->sc_txsoft[i];
1311 
1312 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1313 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1314 
1315 		txstat = sc->sc_txdescs[txs->txs_lastdesc].t0;
1316 		if (txstat & T0_OWN) /* desc is still in use */
1317 			break;
1318 
1319 		/* There is no way to tell transmission status per frame */
1320 
1321 		if_statinc(ifp, if_opackets);
1322 
1323 		sc->sc_txfree += txs->txs_ndesc;
1324 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1325 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1326 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1327 		m_freem(txs->txs_mbuf);
1328 		txs->txs_mbuf = NULL;
1329 	}
1330 	sc->sc_txsdirty = i;
1331 	if (sc->sc_txsfree == MD_TXQUEUELEN)
1332 		ifp->if_timer = 0;
1333 }
1334 
1335 static void
1336 rxintr(struct scx_softc *sc)
1337 {
1338 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1339 	struct scx_rxsoft *rxs;
1340 	struct mbuf *m;
1341 	uint32_t rxstat;
1342 	int i, len;
1343 
1344 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1345 		rxs = &sc->sc_rxsoft[i];
1346 
1347 		SCX_CDRXSYNC(sc, i,
1348 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1349 
1350 		rxstat = sc->sc_rxdescs[i].r0;
1351 		if (rxstat & R0_OWN) /* desc is left empty */
1352 			break;
1353 
1354 		/* R0_FS | R0_LS must have been marked for this desc */
1355 
1356 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1357 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1358 
1359 		len = sc->sc_rxdescs[i].r3 >> 16; /* 31:16 received */
1360 		len -= ETHER_CRC_LEN;	/* Trim CRC off */
1361 		m = rxs->rxs_mbuf;
1362 
1363 		if (add_rxbuf(sc, i) != 0) {
1364 			if_statinc(ifp, if_ierrors);
1365 			SCX_INIT_RXDESC(sc, i);
1366 			bus_dmamap_sync(sc->sc_dmat,
1367 			    rxs->rxs_dmamap, 0,
1368 			    rxs->rxs_dmamap->dm_mapsize,
1369 			    BUS_DMASYNC_PREREAD);
1370 			continue;
1371 		}
1372 
1373 		m_set_rcvif(m, ifp);
1374 		m->m_pkthdr.len = m->m_len = len;
1375 
1376 		if (rxstat & R0_CSUM) {
1377 			uint32_t csum = M_CSUM_IPv4;
1378 			if (rxstat & R0_CERR)
1379 				csum |= M_CSUM_IPv4_BAD;
1380 			m->m_pkthdr.csum_flags |= csum;
1381 		}
1382 		if_percpuq_enqueue(ifp->if_percpuq, m);
1383 	}
1384 	sc->sc_rxptr = i;
1385 }
1386 
1387 static int
1388 add_rxbuf(struct scx_softc *sc, int i)
1389 {
1390 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1391 	struct mbuf *m;
1392 	int error;
1393 
1394 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1395 	if (m == NULL)
1396 		return ENOBUFS;
1397 
1398 	MCLGET(m, M_DONTWAIT);
1399 	if ((m->m_flags & M_EXT) == 0) {
1400 		m_freem(m);
1401 		return ENOBUFS;
1402 	}
1403 
1404 	if (rxs->rxs_mbuf != NULL)
1405 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1406 
1407 	rxs->rxs_mbuf = m;
1408 
1409 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1410 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1411 	if (error) {
1412 		aprint_error_dev(sc->sc_dev,
1413 		    "can't load rx DMA map %d, error = %d\n", i, error);
1414 		panic("add_rxbuf");
1415 	}
1416 
1417 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1418 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1419 	SCX_INIT_RXDESC(sc, i);
1420 
1421 	return 0;
1422 }
1423 
1424 static void
1425 rxdrain(struct scx_softc *sc)
1426 {
1427 	struct scx_rxsoft *rxs;
1428 	int i;
1429 
1430 	for (i = 0; i < MD_NRXDESC; i++) {
1431 		rxs = &sc->sc_rxsoft[i];
1432 		if (rxs->rxs_mbuf != NULL) {
1433 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1434 			m_freem(rxs->rxs_mbuf);
1435 			rxs->rxs_mbuf = NULL;
1436 		}
1437 	}
1438 }
1439 
1440 void
1441 mii_statchg(struct ifnet *ifp)
1442 {
1443 	struct scx_softc *sc = ifp->if_softc;
1444 	struct mii_data *mii = &sc->sc_mii;
1445 	const int Mbps[4] = { 10, 100, 1000, 0 };
1446 	uint32_t miisr, mcr, fcr;
1447 	int spd;
1448 
1449 	/* decode MIISR register value */
1450 	miisr = mac_read(sc, GMACMIISR);
1451 	spd = Mbps[(miisr >> 1) & 03];
1452 #if 1
1453 	printf("MII link status (0x%x) %s",
1454 	    miisr, (miisr & 8) ? "up" : "down");
1455 	if (miisr & 8) {
1456 		printf(" spd%d", spd);
1457 		if (miisr & 01)
1458 			printf(",full-duplex");
1459 	}
1460 	printf("\n");
1461 #endif
1462 	/* Get flow control negotiation result. */
1463 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1464 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1465 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1466 
1467 	/* Adjust speed 1000/100/10. */
1468 	mcr = mac_read(sc, GMACMCR);
1469 	if (spd == 1000)
1470 		mcr &= ~MCR_USEMII; /* RGMII+SPD1000 */
1471 	else {
1472 		if (spd == 100 && sc->sc_100mii)
1473 			mcr |= MCR_SPD100;
1474 		mcr |= MCR_USEMII;
1475 	}
1476 	mcr |= MCR_CST | MCR_JE;
1477 	if (sc->sc_100mii == 0)
1478 		mcr |= MCR_IBN;
1479 
1480 	/* Adjust duplexity and PAUSE flow control. */
1481 	mcr &= ~MCR_USEFDX;
1482 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1483 	if (miisr & 01) {
1484 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1485 			fcr |= FCR_TFE;
1486 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1487 			fcr |= FCR_RFE;
1488 		mcr |= MCR_USEFDX;
1489 	}
1490 	mac_write(sc, GMACMCR, mcr);
1491 	mac_write(sc, GMACFCR, fcr);
1492 
1493 printf("%ctxfe, %crxfe\n",
1494      (fcr & FCR_TFE) ? '+' : '-', (fcr & FCR_RFE) ? '+' : '-');
1495 }
1496 
1497 static void
1498 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1499 {
1500 	struct scx_softc *sc = ifp->if_softc;
1501 	struct mii_data *mii = &sc->sc_mii;
1502 
1503 	mii_pollstat(mii);
1504 	ifmr->ifm_status = mii->mii_media_status;
1505 	ifmr->ifm_active = sc->sc_flowflags |
1506 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
1507 }
1508 
1509 static int
1510 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1511 {
1512 	struct scx_softc *sc = device_private(self);
1513 	uint32_t miia;
1514 	int ntries;
1515 
1516 #define CLK_150_250M (1<<2)
1517 uint32_t clk = CSR_READ(sc, CLKEN);
1518 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1519 
1520 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | CLK_150_250M;
1521 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
1522 	for (ntries = 0; ntries < 1000; ntries++) {
1523 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1524 			goto unbusy;
1525 		DELAY(1);
1526 	}
1527 	return ETIMEDOUT;
1528  unbusy:
1529 	*val = mac_read(sc, GMACGDR);
1530 	return 0;
1531 }
1532 
1533 static int
1534 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1535 {
1536 	struct scx_softc *sc = device_private(self);
1537 	uint32_t miia;
1538 	uint16_t dummy;
1539 	int ntries;
1540 
1541 uint32_t clk = CSR_READ(sc, CLKEN);
1542 CSR_WRITE(sc, CLKEN, clk | CLK_G);
1543 
1544 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1545 	mac_write(sc, GMACGDR, val);
1546 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1547 	for (ntries = 0; ntries < 1000; ntries++) {
1548 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1549 			goto unbusy;
1550 		DELAY(1);
1551 	}
1552 	return ETIMEDOUT;
1553   unbusy:
1554 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1555 	return 0;
1556 }
1557 
1558 static void
1559 phy_tick(void *arg)
1560 {
1561 	struct scx_softc *sc = arg;
1562 	struct mii_data *mii = &sc->sc_mii;
1563 	int s;
1564 
1565 	s = splnet();
1566 	mii_tick(mii);
1567 	splx(s);
1568 #ifdef SCX_EVENT_COUNTERS /* if tally counter details are made clear */
1569 #endif
1570 	callout_schedule(&sc->sc_callout, hz);
1571 }
1572 
1573 /*
1574  * 3 independent uengines exist to process host2media, media2host and
1575  * packet data flows.
1576  */
1577 static void
1578 loaducode(struct scx_softc *sc)
1579 {
1580 	uint32_t up, lo, sz;
1581 	uint64_t addr;
1582 
1583 	sc->sc_ucodeloaded = 1;
1584 
1585 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1586 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1587 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
1588 	sz *= 4;
1589 	addr = ((uint64_t)up << 32) | lo;
1590 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1591 	injectucode(sc, H2MENG, (bus_addr_t)addr, (bus_size_t)sz);
1592 
1593 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1594 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1595 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1596 	sz *= 4;
1597 	addr = ((uint64_t)up << 32) | lo;
1598 	injectucode(sc, M2HENG, (bus_addr_t)addr, (bus_size_t)sz);
1599 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1600 
1601 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1602 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
1603 	sz *= 4;
1604 	injectucode(sc, PKTENG, (bus_addr_t)lo, (bus_size_t)sz);
1605 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1606 }
1607 
1608 static void
1609 injectucode(struct scx_softc *sc, int port,
1610 	bus_addr_t addr, bus_size_t size)
1611 {
1612 	bus_space_handle_t bsh;
1613 	bus_size_t off;
1614 	uint32_t ucode;
1615 
1616 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1617 		aprint_error_dev(sc->sc_dev,
1618 		    "eeprom map failure for ucode port 0x%x\n", port);
1619 		return;
1620 	}
1621 	for (off = 0; off < size; off += 4) {
1622 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
1623 		CSR_WRITE(sc, port, ucode);
1624 	}
1625 	bus_space_unmap(sc->sc_st, bsh, size);
1626 }
1627 
1628 /* bit selection to determine MDIO speed */
1629 
1630 static int
1631 get_mdioclk(uint32_t freq)
1632 {
1633 
1634 	const struct {
1635 		uint16_t freq, bit; /* GAR 5:2 MDIO frequency selection */
1636 	} mdioclk[] = {
1637 		{ 35,	2 },	/* 25-35 MHz */
1638 		{ 60,	3 },	/* 35-60 MHz */
1639 		{ 100,	0 },	/* 60-100 MHz */
1640 		{ 150,	1 },	/* 100-150 MHz */
1641 		{ 250,	4 },	/* 150-250 MHz */
1642 		{ 300,	5 },	/* 250-300 MHz */
1643 	};
1644 	int i;
1645 
1646 	freq /= 1000 * 1000;
1647 	/* convert MDIO clk to a divisor value */
1648 	if (freq < mdioclk[0].freq)
1649 		return mdioclk[0].bit;
1650 	for (i = 1; i < __arraycount(mdioclk); i++) {
1651 		if (freq < mdioclk[i].freq)
1652 			return mdioclk[i-1].bit;
1653 	}
1654 	return mdioclk[__arraycount(mdioclk) - 1].bit << GAR_CTL;
1655 }
1656