1 /* $NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $ */ 2 3 /* 4 * Copyright (c) 2019 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Tobias Nygren. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.7 2021/05/15 08:46:00 mrg Exp $"); 34 35 #include <sys/param.h> 36 #include <sys/device.h> 37 #include <sys/systm.h> 38 #include <sys/bus.h> 39 #include <sys/intr.h> 40 #include <sys/kernel.h> 41 #include <sys/bitops.h> 42 #include <dev/spi/spivar.h> 43 #include <dev/fdt/fdtvar.h> 44 #include <arm/fdt/arm_fdtvar.h> 45 46 #define SPI_CTRLR0 0x00 47 #define SPI_CTRLR0_MTM __BIT(21) 48 #define SPI_CTRLR0_OPM __BIT(20) 49 #define SPI_CTRLR0_XFM __BITS(19, 18) 50 #define SPI_CTRLR0_FRF __BITS(17, 16) 51 #define SPI_CTRLR0_RSD __BITS(15, 14) 52 #define SPI_CTRLR0_BHT __BIT(13) 53 #define SPI_CTRLR0_FBM __BIT(12) 54 #define SPI_CTRLR0_EM __BIT(11) 55 #define SPI_CTRLR0_RW __BIT(10) 56 #define SPI_CTRLR0_CSM __BITS(9, 8) 57 #define SPI_CTRLR0_SCPOL __BIT(7) 58 #define SPI_CTRLR0_SCPH __BIT(6) 59 #define SPI_CTRLR0_CFS __BITS(5, 2) 60 #define SPI_CTRLR0_DFS __BITS(1, 0) 61 #define SPI_CTRLR0_DFS_4BIT 0x0 62 #define SPI_CTRLR0_DFS_8BIT 0x1 63 #define SPI_CTRLR0_DFS_16BIT 0x2 64 65 #define SPI_CTRLR1 0x04 66 #define SPI_CTRLR1_NDM __BITS(15, 0) 67 68 #define SPI_ENR 0x08 69 #define SPI_ENR_ENR __BIT(0) 70 71 #define SPI_SER 0x0c 72 #define SPI_SER_SER1 __BIT(1) 73 #define SPI_SER_SER0 __BIT(0) 74 75 #define SPI_BAUDR 0x10 76 #define SPI_BAUDR_BAUDR __BITS(15, 0) 77 78 #define SPI_TXFTLR 0x14 79 #define SPI_TXFTLR_TXFLTR __BITS(4, 0) 80 81 #define SPI_RXFTLR 0x18 82 #define SPI_RXFLTR_RXFLTR __BITS(4, 0) 83 84 #define SPI_TXFLR 0x1c 85 #define SPI_TXFLR_TXFLR __BITS(5, 0) 86 87 #define SPI_RXFLR 0x20 88 #define SPI_RXFLR_RXFLR __BITS(5, 0) 89 90 #define SPI_SR 0x24 91 #define SPI_SR_RFF __BIT(4) 92 #define SPI_SR_RFE __BIT(3) 93 #define SPI_SR_TFE __BIT(2) 94 #define SPI_SR_TFF __BIT(1) 95 #define SPI_SR_BSF __BIT(0) 96 97 #define SPI_IPR 0x28 98 #define SPI_IPR_IPR __BIT(0) 99 100 #define SPI_IMR 0x2c 101 #define SPI_IMR_RFFIM __BIT(4) 102 #define SPI_IMR_RFOIM __BIT(3) 103 #define SPI_IMR_RFUIM __BIT(2) 104 #define SPI_IMR_TFOIM __BIT(1) 105 #define SPI_IMR_TFEIM __BIT(0) 106 107 #define SPI_ISR 0x30 108 #define SPI_ISR_RFFIS __BIT(4) 109 #define SPI_ISR_RFOIS __BIT(3) 110 #define SPI_ISR_RFUIS __BIT(2) 111 #define SPI_ISR_TFOIS __BIT(1) 112 #define SPI_ISR_TFEIS __BIT(0) 113 114 #define SPI_RISR 0x34 115 #define SPI_RISR_RFFRIS __BIT(4) 116 #define SPI_RISR_RFORIS __BIT(3) 117 #define SPI_RISR_RFURIS __BIT(2) 118 #define SPI_RISR_TFORIS __BIT(1) 119 #define SPI_RISR_TFERIS __BIT(0) 120 121 #define SPI_ICR 0x38 122 #define SPI_ICR_CTFOI __BIT(3) 123 #define SPI_ICR_CRFOI __BIT(2) 124 #define SPI_ICR_CRFUI __BIT(1) 125 #define SPI_ICR_CCI __BIT(0) 126 #define SPI_ICR_ALL __BITS(3, 0) 127 128 #define SPI_DMACR 0x3c 129 #define SPI_DMACR_TDE __BIT(1) 130 #define SPI_DMACR_RDE __BIT(0) 131 132 #define SPI_DMATDLR 0x40 133 #define SPI_DMATDLR_TDL __BITS(4, 0) 134 135 #define SPI_DMARDLR 0x44 136 #define SPI_DMARDLR_RDL __BITS(4, 0) 137 138 #define SPI_TXDR 0x400 139 #define SPI_TXDR_TXDR __BITS(15, 0) 140 141 #define SPI_RXDR 0x800 142 #define SPI_RXDR_RXDR __BITS(15, 0) 143 144 #define SPI_FIFOLEN 32 145 146 static const struct device_compatible_entry compat_data[] = { 147 { .compat = "rockchip,rk3066-spi" }, 148 { .compat = "rockchip,rk3328-spi" }, 149 { .compat = "rockchip,rk3399-spi" }, 150 DEVICE_COMPAT_EOL 151 }; 152 153 struct rk_spi_softc { 154 device_t sc_dev; 155 bus_space_tag_t sc_bst; 156 bus_space_handle_t sc_bsh; 157 void *sc_ih; 158 u_int sc_spi_freq; 159 struct spi_controller sc_spi; 160 SIMPLEQ_HEAD(,spi_transfer) sc_q; 161 struct spi_transfer *sc_transfer; 162 struct spi_chunk *sc_rchunk, *sc_wchunk; 163 volatile bool sc_running; 164 }; 165 166 #define SPIREG_READ(sc, reg) \ 167 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 168 #define SPIREG_WRITE(sc, reg, val) \ 169 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 170 171 static struct spi_controller *rk_spi_get_controller(device_t); 172 static int rk_spi_match(device_t, cfdata_t, void *); 173 static void rk_spi_attach(device_t, device_t, void *); 174 175 static int rk_spi_configure(void *, int, int, int); 176 static int rk_spi_transfer(void *, struct spi_transfer *); 177 178 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t); 179 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t); 180 static void rk_spi_rxtx(struct rk_spi_softc * const); 181 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const); 182 static void rk_spi_start(struct rk_spi_softc * const); 183 static int rk_spi_intr(void *); 184 185 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc), 186 rk_spi_match, rk_spi_attach, NULL, NULL); 187 188 static const struct fdtbus_spi_controller_func rk_spi_funcs = { 189 .get_controller = rk_spi_get_controller 190 }; 191 192 static struct spi_controller * 193 rk_spi_get_controller(device_t dev) 194 { 195 struct rk_spi_softc * const sc = device_private(dev); 196 197 return &sc->sc_spi; 198 } 199 200 static int 201 rk_spi_match(device_t parent, cfdata_t cf, void *aux) 202 { 203 struct fdt_attach_args * const faa = aux; 204 205 return of_compatible_match(faa->faa_phandle, compat_data); 206 } 207 208 static void 209 rk_spi_attach(device_t parent, device_t self, void *aux) 210 { 211 struct rk_spi_softc * const sc = device_private(self); 212 struct fdt_attach_args * const faa = aux; 213 const int phandle = faa->faa_phandle; 214 bus_addr_t addr; 215 bus_size_t size; 216 struct clk *sclk, *pclk; 217 char intrstr[128]; 218 219 sc->sc_dev = self; 220 sc->sc_bst = faa->faa_bst; 221 SIMPLEQ_INIT(&sc->sc_q); 222 223 if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL 224 || clk_enable(sclk) != 0) { 225 aprint_error(": couldn't enable sclk\n"); 226 return; 227 } 228 229 if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL 230 || clk_enable(pclk) != 0) { 231 aprint_error(": couldn't enable pclk\n"); 232 return; 233 } 234 235 sc->sc_spi_freq = clk_get_rate(sclk); 236 237 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0 238 || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { 239 aprint_error(": couldn't map registers\n"); 240 return; 241 } 242 243 SPIREG_WRITE(sc, SPI_ENR, 0); 244 SPIREG_WRITE(sc, SPI_IMR, 0); 245 246 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 247 aprint_error(": failed to decode interrupt\n"); 248 return; 249 } 250 251 sc->sc_ih = fdtbus_intr_establish_xname(phandle, 0, IPL_VM, 0, 252 rk_spi_intr, sc, device_xname(self)); 253 if (sc->sc_ih == NULL) { 254 aprint_error(": unable to establish interrupt\n"); 255 return; 256 } 257 258 aprint_naive("\n"); 259 aprint_normal(": SPI\n"); 260 aprint_normal_dev(self, "interrupting on %s\n", intrstr); 261 262 sc->sc_spi.sct_cookie = sc; 263 sc->sc_spi.sct_configure = rk_spi_configure; 264 sc->sc_spi.sct_transfer = rk_spi_transfer; 265 sc->sc_spi.sct_nslaves = 2; 266 267 fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs); 268 (void) fdtbus_attach_spibus(self, phandle, spibus_print); 269 } 270 271 static int 272 rk_spi_configure(void *cookie, int slave, int mode, int speed) 273 { 274 struct rk_spi_softc * const sc = cookie; 275 uint32_t ctrlr0; 276 uint16_t divider; 277 278 divider = (sc->sc_spi_freq / speed) & ~1; 279 if (divider < 2) { 280 aprint_error_dev(sc->sc_dev, 281 "spi_clk %u is too low for speed %u, using speed %u\n", 282 sc->sc_spi_freq, speed, sc->sc_spi_freq / 2); 283 divider = 2; 284 } 285 286 if (slave >= sc->sc_spi.sct_nslaves) 287 return EINVAL; 288 289 ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS); 290 291 switch (mode) { 292 case SPI_MODE_0: 293 ctrlr0 |= 0; 294 break; 295 case SPI_MODE_1: 296 ctrlr0 |= SPI_CTRLR0_SCPH; 297 break; 298 case SPI_MODE_2: 299 ctrlr0 |= SPI_CTRLR0_SCPOL; 300 break; 301 case SPI_MODE_3: 302 ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL; 303 break; 304 default: 305 return EINVAL; 306 } 307 308 SPIREG_WRITE(sc, SPI_ENR, 0); 309 SPIREG_WRITE(sc, SPI_SER, 0); 310 SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0); 311 SPIREG_WRITE(sc, SPI_BAUDR, divider); 312 313 SPIREG_WRITE(sc, SPI_DMACR, 0); 314 SPIREG_WRITE(sc, SPI_DMATDLR, 0); 315 SPIREG_WRITE(sc, SPI_DMARDLR, 0); 316 317 SPIREG_WRITE(sc, SPI_IPR, 0); 318 SPIREG_WRITE(sc, SPI_IMR, 0); 319 SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL); 320 321 SPIREG_WRITE(sc, SPI_ENR, 1); 322 323 return 0; 324 } 325 326 static int 327 rk_spi_transfer(void *cookie, struct spi_transfer *st) 328 { 329 struct rk_spi_softc * const sc = cookie; 330 int s; 331 332 s = splbio(); 333 spi_transq_enqueue(&sc->sc_q, st); 334 if (sc->sc_running == false) { 335 rk_spi_start(sc); 336 } 337 splx(s); 338 339 return 0; 340 } 341 342 static void 343 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen) 344 { 345 struct spi_chunk *chunk = sc->sc_wchunk; 346 size_t len; 347 uint8_t b; 348 349 if (chunk == NULL) 350 return; 351 352 len = MIN(maxlen, chunk->chunk_wresid); 353 chunk->chunk_wresid -= len; 354 while (len--) { 355 if (chunk->chunk_wptr) { 356 b = *chunk->chunk_wptr++; 357 } else { 358 b = 0; 359 } 360 bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b); 361 } 362 if (sc->sc_wchunk->chunk_wresid == 0) { 363 sc->sc_wchunk = sc->sc_wchunk->chunk_next; 364 } 365 } 366 367 static void 368 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen) 369 { 370 struct spi_chunk *chunk = sc->sc_rchunk; 371 size_t len; 372 uint8_t b; 373 374 if (chunk == NULL) 375 return; 376 377 len = MIN(maxlen, chunk->chunk_rresid); 378 chunk->chunk_rresid -= len; 379 380 while (len--) { 381 b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR); 382 if (chunk->chunk_rptr) { 383 *chunk->chunk_rptr++ = b; 384 } 385 } 386 if (sc->sc_rchunk->chunk_rresid == 0) { 387 sc->sc_rchunk = sc->sc_rchunk->chunk_next; 388 } 389 } 390 391 static void 392 rk_spi_rxtx(struct rk_spi_softc * const sc) 393 { 394 bool again; 395 uint32_t reg; 396 size_t avail; 397 398 /* Service both FIFOs until no more progress can be made. */ 399 again = true; 400 while (again) { 401 again = false; 402 reg = SPIREG_READ(sc, SPI_RXFLR); 403 avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR); 404 if (avail > 0) { 405 KASSERT(sc->sc_rchunk != NULL); 406 rk_spi_rxfifo_drain(sc, avail); 407 again = true; 408 } 409 reg = SPIREG_READ(sc, SPI_TXFLR); 410 avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR); 411 if (avail > 0 && sc->sc_wchunk != NULL) { 412 rk_spi_txfifo_fill(sc, avail); 413 again = true; 414 } 415 } 416 } 417 418 static void 419 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc) 420 { 421 uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM; 422 int len; 423 424 /* 425 * Delay rx interrupts until the FIFO has the # of bytes we'd 426 * ideally like to receive, or FIFO is half full. 427 */ 428 len = sc->sc_rchunk != NULL 429 ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0; 430 if (len > 0) { 431 SPIREG_WRITE(sc, SPI_RXFTLR, len - 1); 432 imr |= SPI_IMR_RFFIM; 433 } 434 435 /* 436 * Delay tx interrupts until the FIFO can accept the # of bytes we'd 437 * ideally like to transmit, or the FIFO is half empty. 438 */ 439 len = sc->sc_wchunk != NULL 440 ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0; 441 if (len > 0) { 442 SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len); 443 imr |= SPI_IMR_TFEIM; 444 } 445 446 /* If xfer is done, then interrupt as soon as the tx fifo is empty. */ 447 if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) { 448 SPIREG_WRITE(sc, SPI_TXFTLR, 0); 449 imr |= SPI_IMR_TFEIM; 450 } 451 452 SPIREG_WRITE(sc, SPI_IMR, imr); 453 } 454 455 static void 456 rk_spi_start(struct rk_spi_softc * const sc) 457 { 458 struct spi_transfer *st; 459 460 while ((st = spi_transq_first(&sc->sc_q)) != NULL) { 461 spi_transq_dequeue(&sc->sc_q); 462 KASSERT(sc->sc_transfer == NULL); 463 sc->sc_transfer = st; 464 sc->sc_rchunk = sc->sc_wchunk = st->st_chunks; 465 sc->sc_running = true; 466 467 KASSERT(st->st_slave < sc->sc_spi.sct_nslaves); 468 SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave); 469 470 rk_spi_rxtx(sc); 471 rk_spi_set_interrupt_mask(sc); 472 473 if (!cold) 474 return; 475 476 for (;;) { 477 (void) rk_spi_intr(sc); 478 if (ISSET(st->st_flags, SPI_F_DONE)) 479 break; 480 } 481 } 482 sc->sc_running = false; 483 } 484 485 static int 486 rk_spi_intr(void *cookie) 487 { 488 struct rk_spi_softc * const sc = cookie; 489 struct spi_transfer *st; 490 uint32_t isr; 491 uint32_t sr; 492 uint32_t icr = SPI_ICR_CCI; 493 494 isr = SPIREG_READ(sc, SPI_ISR); 495 if (!isr) 496 return 0; 497 498 if (ISSET(isr, SPI_ISR_RFOIS)) { 499 device_printf(sc->sc_dev, "RXFIFO overflow\n"); 500 icr |= SPI_ICR_CRFOI; 501 } 502 if (ISSET(isr, SPI_ISR_RFUIS)) { 503 device_printf(sc->sc_dev, "RXFIFO underflow\n"); 504 icr |= SPI_ICR_CRFUI; 505 } 506 if (ISSET(isr, SPI_ISR_TFOIS)) { 507 device_printf(sc->sc_dev, "TXFIFO overflow\n"); 508 icr |= SPI_ICR_CTFOI; 509 } 510 511 rk_spi_rxtx(sc); 512 513 if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) { 514 do { 515 sr = SPIREG_READ(sc, SPI_SR); 516 } while (ISSET(sr, SPI_SR_BSF)); 517 SPIREG_WRITE(sc, SPI_IMR, 0); 518 SPIREG_WRITE(sc, SPI_SER, 0); 519 st = sc->sc_transfer; 520 sc->sc_transfer = NULL; 521 KASSERT(st != NULL); 522 spi_done(st, 0); 523 sc->sc_running = false; 524 } else { 525 rk_spi_set_interrupt_mask(sc); 526 } 527 528 SPIREG_WRITE(sc, SPI_ICR, icr); 529 530 return 1; 531 } 532