xref: /netbsd-src/sys/arch/arm/rockchip/rk_spi.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: rk_spi.c,v 1.4 2020/04/01 20:37:32 tnn Exp $	*/
2 
3 /*
4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tobias Nygren.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: rk_spi.c,v 1.4 2020/04/01 20:37:32 tnn Exp $");
34 
35 #include <sys/param.h>
36 #include <sys/device.h>
37 #include <sys/systm.h>
38 #include <sys/bus.h>
39 #include <sys/intr.h>
40 #include <sys/kernel.h>
41 #include <sys/bitops.h>
42 #include <dev/spi/spivar.h>
43 #include <dev/fdt/fdtvar.h>
44 #include <arm/fdt/arm_fdtvar.h>
45 
46 #define SPI_CTRLR0		0x00
47 #define SPI_CTRLR0_MTM		__BIT(21)
48 #define SPI_CTRLR0_OPM		__BIT(20)
49 #define SPI_CTRLR0_XFM		__BITS(19, 18)
50 #define SPI_CTRLR0_FRF		__BITS(17, 16)
51 #define SPI_CTRLR0_RSD		__BITS(15, 14)
52 #define SPI_CTRLR0_BHT		__BIT(13)
53 #define SPI_CTRLR0_FBM		__BIT(12)
54 #define SPI_CTRLR0_EM		__BIT(11)
55 #define SPI_CTRLR0_RW		__BIT(10)
56 #define SPI_CTRLR0_CSM		__BITS(9, 8)
57 #define SPI_CTRLR0_SCPOL	__BIT(7)
58 #define SPI_CTRLR0_SCPH		__BIT(6)
59 #define SPI_CTRLR0_CFS		__BITS(5, 2)
60 #define SPI_CTRLR0_DFS		__BITS(1, 0)
61 #define SPI_CTRLR0_DFS_4BIT	0x0
62 #define SPI_CTRLR0_DFS_8BIT	0x1
63 #define SPI_CTRLR0_DFS_16BIT	0x2
64 
65 #define SPI_CTRLR1		0x04
66 #define SPI_CTRLR1_NDM		__BITS(15, 0)
67 
68 #define SPI_ENR			0x08
69 #define SPI_ENR_ENR		__BIT(0)
70 
71 #define SPI_SER			0x0c
72 #define SPI_SER_SER1		__BIT(1)
73 #define SPI_SER_SER0		__BIT(0)
74 
75 #define SPI_BAUDR		0x10
76 #define SPI_BAUDR_BAUDR		__BITS(15, 0)
77 
78 #define SPI_TXFTLR		0x14
79 #define SPI_TXFTLR_TXFLTR	__BITS(4, 0)
80 
81 #define SPI_RXFTLR		0x18
82 #define SPI_RXFLTR_RXFLTR	__BITS(4, 0)
83 
84 #define SPI_TXFLR		0x1c
85 #define SPI_TXFLR_TXFLR		__BITS(5, 0)
86 
87 #define SPI_RXFLR		0x20
88 #define SPI_RXFLR_RXFLR		__BITS(5, 0)
89 
90 #define SPI_SR			0x24
91 #define SPI_SR_RFF		__BIT(4)
92 #define SPI_SR_RFE		__BIT(3)
93 #define SPI_SR_TFE		__BIT(2)
94 #define SPI_SR_TFF		__BIT(1)
95 #define SPI_SR_BSF		__BIT(0)
96 
97 #define SPI_IPR			0x28
98 #define SPI_IPR_IPR		__BIT(0)
99 
100 #define SPI_IMR			0x2c
101 #define SPI_IMR_RFFIM		__BIT(4)
102 #define SPI_IMR_RFOIM		__BIT(3)
103 #define SPI_IMR_RFUIM		__BIT(2)
104 #define SPI_IMR_TFOIM		__BIT(1)
105 #define SPI_IMR_TFEIM		__BIT(0)
106 
107 #define SPI_ISR			0x30
108 #define SPI_ISR_RFFIS		__BIT(4)
109 #define SPI_ISR_RFOIS		__BIT(3)
110 #define SPI_ISR_RFUIS		__BIT(2)
111 #define SPI_ISR_TFOIS		__BIT(1)
112 #define SPI_ISR_TFEIS		__BIT(0)
113 
114 #define SPI_RISR		0x34
115 #define SPI_RISR_RFFRIS		__BIT(4)
116 #define SPI_RISR_RFORIS		__BIT(3)
117 #define SPI_RISR_RFURIS		__BIT(2)
118 #define SPI_RISR_TFORIS		__BIT(1)
119 #define SPI_RISR_TFERIS		__BIT(0)
120 
121 #define SPI_ICR			0x38
122 #define SPI_ICR_CTFOI		__BIT(3)
123 #define SPI_ICR_CRFOI		__BIT(2)
124 #define SPI_ICR_CRFUI		__BIT(1)
125 #define SPI_ICR_CCI		__BIT(0)
126 #define SPI_ICR_ALL		__BITS(3, 0)
127 
128 #define SPI_DMACR		0x3c
129 #define SPI_DMACR_TDE		__BIT(1)
130 #define SPI_DMACR_RDE		__BIT(0)
131 
132 #define SPI_DMATDLR		0x40
133 #define SPI_DMATDLR_TDL		__BITS(4, 0)
134 
135 #define SPI_DMARDLR		0x44
136 #define SPI_DMARDLR_RDL		__BITS(4, 0)
137 
138 #define SPI_TXDR		0x400
139 #define SPI_TXDR_TXDR		__BITS(15, 0)
140 
141 #define SPI_RXDR		0x800
142 #define SPI_RXDR_RXDR		__BITS(15, 0)
143 
144 #define SPI_FIFOLEN		32
145 
146 static const char * const compatible[] = {
147 #if 0 /* should work on RK3328 but untested */
148 	"rockchip,rk3066-spi",
149 	"rockchip,rk3328-spi",
150 #endif
151 	"rockchip,rk3399-spi",
152 	NULL
153 };
154 
155 struct rk_spi_softc {
156 	device_t		sc_dev;
157 	bus_space_tag_t		sc_bst;
158 	bus_space_handle_t	sc_bsh;
159 	void			*sc_ih;
160 	u_int			sc_spi_freq;
161 	struct spi_controller	sc_spi;
162 	SIMPLEQ_HEAD(,spi_transfer) sc_q;
163 	struct spi_transfer	*sc_transfer;
164 	struct spi_chunk	*sc_rchunk, *sc_wchunk;
165 	volatile bool		sc_running;
166 };
167 
168 #define SPIREG_READ(sc, reg) \
169     bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
170 #define SPIREG_WRITE(sc, reg, val) \
171     bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
172 
173 static struct spi_controller *rk_spi_get_controller(device_t);
174 static int rk_spi_match(device_t, cfdata_t, void *);
175 static void rk_spi_attach(device_t, device_t, void *);
176 
177 static int rk_spi_configure(void *, int, int, int);
178 static int rk_spi_transfer(void *, struct spi_transfer *);
179 
180 static void rk_spi_txfifo_fill(struct rk_spi_softc * const, size_t);
181 static void rk_spi_rxfifo_drain(struct rk_spi_softc * const, size_t);
182 static void rk_spi_rxtx(struct rk_spi_softc * const);
183 static void rk_spi_set_interrupt_mask(struct rk_spi_softc * const);
184 static void rk_spi_start(struct rk_spi_softc * const);
185 static int rk_spi_intr(void *);
186 
187 CFATTACH_DECL_NEW(rk_spi, sizeof(struct rk_spi_softc),
188     rk_spi_match, rk_spi_attach, NULL, NULL);
189 
190 static const struct fdtbus_spi_controller_func rk_spi_funcs = {
191 	.get_controller = rk_spi_get_controller
192 };
193 
194 static struct spi_controller *
195 rk_spi_get_controller(device_t dev)
196 {
197 	struct rk_spi_softc * const sc = device_private(dev);
198 
199 	return &sc->sc_spi;
200 }
201 
202 static int
203 rk_spi_match(device_t parent, cfdata_t cf, void *aux)
204 {
205 	struct fdt_attach_args * const faa = aux;
206 
207 	return of_match_compatible(faa->faa_phandle, compatible);
208 }
209 
210 static void
211 rk_spi_attach(device_t parent, device_t self, void *aux)
212 {
213 	struct rk_spi_softc * const sc = device_private(self);
214 	struct fdt_attach_args * const faa = aux;
215 	const int phandle = faa->faa_phandle;
216 	bus_addr_t addr;
217 	bus_size_t size;
218 	struct clk *sclk, *pclk;
219 	char intrstr[128];
220 
221 	sc->sc_dev = self;
222 	sc->sc_bst = faa->faa_bst;
223 	SIMPLEQ_INIT(&sc->sc_q);
224 
225 	if ((sclk = fdtbus_clock_get(phandle, "spiclk")) == NULL
226 	    || clk_enable(sclk) != 0) {
227 		aprint_error(": couldn't enable sclk\n");
228 		return;
229 	}
230 
231 	if ((pclk = fdtbus_clock_get(phandle, "apb_pclk")) == NULL
232 	    || clk_enable(pclk) != 0) {
233 		aprint_error(": couldn't enable pclk\n");
234 		return;
235 	}
236 
237 	sc->sc_spi_freq = clk_get_rate(sclk);
238 
239 	if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0
240 	    || bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) {
241 		aprint_error(": couldn't map registers\n");
242 		return;
243 	}
244 
245 	SPIREG_WRITE(sc, SPI_ENR, 0);
246 	SPIREG_WRITE(sc, SPI_IMR, 0);
247 
248 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
249 		aprint_error(": failed to decode interrupt\n");
250 		return;
251 	}
252 
253 	sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_VM, 0, rk_spi_intr, sc);
254 	if (sc->sc_ih == NULL) {
255 		aprint_error(": unable to establish interrupt\n");
256 		return;
257 	}
258 
259 	aprint_naive("\n");
260 	aprint_normal(": SPI\n");
261 	aprint_normal_dev(self, "interrupting on %s\n", intrstr);
262 
263 	sc->sc_spi.sct_cookie = sc;
264 	sc->sc_spi.sct_configure = rk_spi_configure;
265 	sc->sc_spi.sct_transfer = rk_spi_transfer;
266 	sc->sc_spi.sct_nslaves = 2;
267 
268 	fdtbus_register_spi_controller(self, phandle, &rk_spi_funcs);
269 	(void) fdtbus_attach_spibus(self, phandle, spibus_print);
270 }
271 
272 static int
273 rk_spi_configure(void *cookie, int slave, int mode, int speed)
274 {
275 	struct rk_spi_softc * const sc = cookie;
276 	uint32_t ctrlr0;
277 	uint16_t divider;
278 
279 	divider = (sc->sc_spi_freq / speed) & ~1;
280 	if (divider < 2) {
281 		aprint_error_dev(sc->sc_dev,
282 		    "spi_clk %u is too low for speed %u, using speed %u\n",
283 		     sc->sc_spi_freq, speed, sc->sc_spi_freq / 2);
284 		divider = 2;
285 	}
286 
287 	if (slave >= sc->sc_spi.sct_nslaves)
288 		return EINVAL;
289 
290 	ctrlr0 = SPI_CTRLR0_BHT | __SHIFTIN(SPI_CTRLR0_DFS_8BIT, SPI_CTRLR0_DFS);
291 
292 	switch (mode) {
293 	case SPI_MODE_0:
294 		ctrlr0 |= 0;
295 		break;
296 	case SPI_MODE_1:
297 		ctrlr0 |= SPI_CTRLR0_SCPH;
298 		break;
299 	case SPI_MODE_2:
300 		ctrlr0 |= SPI_CTRLR0_SCPOL;
301 		break;
302 	case SPI_MODE_3:
303 		ctrlr0 |= SPI_CTRLR0_SCPH | SPI_CTRLR0_SCPOL;
304 		break;
305 	default:
306 		return EINVAL;
307 	}
308 
309 	SPIREG_WRITE(sc, SPI_ENR, 0);
310 	SPIREG_WRITE(sc, SPI_SER, 0);
311 	SPIREG_WRITE(sc, SPI_CTRLR0, ctrlr0);
312 	SPIREG_WRITE(sc, SPI_BAUDR, divider);
313 
314 	SPIREG_WRITE(sc, SPI_DMACR, 0);
315 	SPIREG_WRITE(sc, SPI_DMATDLR, 0);
316 	SPIREG_WRITE(sc, SPI_DMARDLR, 0);
317 
318 	SPIREG_WRITE(sc, SPI_IPR, 0);
319 	SPIREG_WRITE(sc, SPI_IMR, 0);
320 	SPIREG_WRITE(sc, SPI_ICR, SPI_ICR_ALL);
321 
322 	SPIREG_WRITE(sc, SPI_ENR, 1);
323 
324 	return 0;
325 }
326 
327 static int
328 rk_spi_transfer(void *cookie, struct spi_transfer *st)
329 {
330 	struct rk_spi_softc * const sc = cookie;
331 	int s;
332 
333 	s = splbio();
334 	spi_transq_enqueue(&sc->sc_q, st);
335 	if (sc->sc_running == false) {
336 		rk_spi_start(sc);
337 	}
338 	splx(s);
339 
340 	return 0;
341 }
342 
343 static void
344 rk_spi_txfifo_fill(struct rk_spi_softc * const sc, size_t maxlen)
345 {
346 	struct spi_chunk *chunk = sc->sc_wchunk;
347 	size_t len;
348 	uint8_t b;
349 
350 	if (chunk == NULL)
351 		return;
352 
353 	len = MIN(maxlen, chunk->chunk_wresid);
354 	chunk->chunk_wresid -= len;
355 	while (len--) {
356 		if (chunk->chunk_wptr) {
357 			b = *chunk->chunk_wptr++;
358 		} else {
359 			b = 0;
360 		}
361 		bus_space_write_1(sc->sc_bst, sc->sc_bsh, SPI_TXDR, b);
362 	}
363 	if (sc->sc_wchunk->chunk_wresid == 0) {
364 		sc->sc_wchunk = sc->sc_wchunk->chunk_next;
365 	}
366 }
367 
368 static void
369 rk_spi_rxfifo_drain(struct rk_spi_softc * const sc, size_t maxlen)
370 {
371 	struct spi_chunk *chunk = sc->sc_rchunk;
372 	size_t len;
373 	uint8_t b;
374 
375 	if (chunk == NULL)
376 		return;
377 
378 	len = MIN(maxlen, chunk->chunk_rresid);
379 	chunk->chunk_rresid -= len;
380 
381 	while (len--) {
382 		b = bus_space_read_1(sc->sc_bst, sc->sc_bsh, SPI_RXDR);
383 		if (chunk->chunk_rptr) {
384 			*chunk->chunk_rptr++ = b;
385 		}
386 	}
387 	if (sc->sc_rchunk->chunk_rresid == 0) {
388 		sc->sc_rchunk = sc->sc_rchunk->chunk_next;
389 	}
390 }
391 
392 static void
393 rk_spi_rxtx(struct rk_spi_softc * const sc)
394 {
395 	bool again;
396 	uint32_t reg;
397 	size_t avail;
398 
399 	/* Service both FIFOs until no more progress can be made. */
400 	again = true;
401 	while (again) {
402 		again = false;
403 		reg = SPIREG_READ(sc, SPI_RXFLR);
404 		avail = __SHIFTOUT(reg, SPI_RXFLR_RXFLR);
405 		if (avail > 0) {
406 			KASSERT(sc->sc_rchunk != NULL);
407 			rk_spi_rxfifo_drain(sc, avail);
408 			again = true;
409 		}
410 		reg = SPIREG_READ(sc, SPI_TXFLR);
411 		avail = SPI_FIFOLEN - __SHIFTOUT(reg, SPI_TXFLR_TXFLR);
412 		if (avail > 0 && sc->sc_wchunk != NULL) {
413 			rk_spi_txfifo_fill(sc, avail);
414 			again = true;
415 		}
416 	}
417 }
418 
419 static void
420 rk_spi_set_interrupt_mask(struct rk_spi_softc * const sc)
421 {
422 	uint32_t imr = SPI_IMR_RFOIM | SPI_IMR_RFUIM | SPI_IMR_TFOIM;
423 	int len;
424 
425 	/*
426 	 * Delay rx interrupts until the FIFO has the # of bytes we'd
427 	 * ideally like to receive, or FIFO is half full.
428 	 */
429 	len = sc->sc_rchunk != NULL
430 	    ? MIN(sc->sc_rchunk->chunk_rresid, SPI_FIFOLEN / 2) : 0;
431 	if (len > 0) {
432 		SPIREG_WRITE(sc, SPI_RXFTLR, len - 1);
433 		imr |= SPI_IMR_RFFIM;
434 	}
435 
436 	/*
437 	 * Delay tx interrupts until the FIFO can accept the # of bytes we'd
438 	 * ideally like to transmit, or the FIFO is half empty.
439 	 */
440 	len = sc->sc_wchunk != NULL
441 	    ? MIN(sc->sc_wchunk->chunk_wresid, SPI_FIFOLEN / 2) : 0;
442 	if (len > 0) {
443 		SPIREG_WRITE(sc, SPI_TXFTLR, SPI_FIFOLEN - len);
444 		imr |= SPI_IMR_TFEIM;
445 	}
446 
447 	/* If xfer is done, then interrupt as soon as the tx fifo is empty. */
448 	if (!ISSET(imr, (SPI_IMR_RFFIM | SPI_IMR_TFEIM))) {
449 		SPIREG_WRITE(sc, SPI_TXFTLR, 0);
450 		imr |= SPI_IMR_TFEIM;
451 	}
452 
453 	SPIREG_WRITE(sc, SPI_IMR, imr);
454 }
455 
456 static void
457 rk_spi_start(struct rk_spi_softc * const sc)
458 {
459 	struct spi_transfer *st;
460 
461 	while ((st = spi_transq_first(&sc->sc_q)) != NULL) {
462 		spi_transq_dequeue(&sc->sc_q);
463 		KASSERT(sc->sc_transfer == NULL);
464 		sc->sc_transfer = st;
465 		sc->sc_rchunk = sc->sc_wchunk = st->st_chunks;
466 		sc->sc_running = true;
467 
468 		KASSERT(st->st_slave < sc->sc_spi.sct_nslaves);
469 		SPIREG_WRITE(sc, SPI_SER, 1 << st->st_slave);
470 
471 		rk_spi_rxtx(sc);
472 		rk_spi_set_interrupt_mask(sc);
473 
474 		if (!cold)
475 			return;
476 
477 		for (;;) {
478 			(void) rk_spi_intr(sc);
479 			if (ISSET(st->st_flags, SPI_F_DONE))
480 				break;
481 		}
482 	}
483 	sc->sc_running = false;
484 }
485 
486 static int
487 rk_spi_intr(void *cookie)
488 {
489 	struct rk_spi_softc * const sc = cookie;
490 	struct spi_transfer *st;
491 	uint32_t isr;
492 	uint32_t sr;
493 	uint32_t icr = SPI_ICR_CCI;
494 
495 	isr = SPIREG_READ(sc, SPI_ISR);
496 	if (!isr)
497 		return 0;
498 
499 	if (ISSET(isr, SPI_ISR_RFOIS)) {
500 		device_printf(sc->sc_dev, "RXFIFO overflow\n");
501 		icr |= SPI_ICR_CRFOI;
502 	}
503 	if (ISSET(isr, SPI_ISR_RFUIS)) {
504 		device_printf(sc->sc_dev, "RXFIFO underflow\n");
505 		icr |= SPI_ICR_CRFUI;
506 	}
507 	if (ISSET(isr, SPI_ISR_TFOIS)) {
508 		device_printf(sc->sc_dev, "TXFIFO overflow\n");
509 		icr |= SPI_ICR_CTFOI;
510 	}
511 
512 	rk_spi_rxtx(sc);
513 
514 	if (sc->sc_rchunk == NULL && sc->sc_wchunk == NULL) {
515 		do {
516 			sr = SPIREG_READ(sc, SPI_SR);
517 		} while (ISSET(sr, SPI_SR_BSF));
518 		SPIREG_WRITE(sc, SPI_IMR, 0);
519 		SPIREG_WRITE(sc, SPI_SER, 0);
520 		st = sc->sc_transfer;
521 		sc->sc_transfer = NULL;
522 		KASSERT(st != NULL);
523 		spi_done(st, 0);
524 		sc->sc_running = false;
525 	} else {
526 		rk_spi_set_interrupt_mask(sc);
527 	}
528 
529 	SPIREG_WRITE(sc, SPI_ICR, icr);
530 
531 	return 1;
532 }
533