xref: /netbsd-src/sys/arch/arm/ofw/ofw_irq.S (revision cac8e449158efc7261bebc8657cbb0125a2cfdde)
1/*	$NetBSD: ofw_irq.S,v 1.11 2008/04/27 18:58:45 matt Exp $	*/
2
3/*
4 * Copyright (c) 1994-1998 Mark Brinicombe.
5 * Copyright (c) 1994 Brini.
6 * All rights reserved.
7 *
8 * This code is derived from software written for Brini by Mark Brinicombe
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by Mark Brinicombe
21 *	for the NetBSD Project.
22 * 4. The name of the company nor the name of the author may be used to
23 *    endorse or promote products derived from this software without specific
24 *    prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Low level irq and fiq handlers
38 *
39 * Created      : 27/09/94
40 */
41
42#include "assym.h"
43#include <machine/asm.h>
44#include <machine/cpu.h>
45#include <machine/frame.h>
46#include <machine/irqhandler.h>
47
48	.text
49	.align	0
50
51/*
52 *
53 * irq_entry
54 *
55 * Main entry point for the IRQ vector
56 *
57 * This function is called only on timer ticks, passed on to the
58 * kernel from the OFW tick handler.
59 *
60 * For now, I am trying to re-use as much of the code from the
61 * IOMD interrupt-handler as possible.  In time, I will strip this
62 * down to something OFW-specific.
63 *
64 * Here's the original, IOMD-specific description:
65 * This function reads the irq request bits in the IOMD registers
66 * IRQRQA, IRQRQB and DMARQ
67 * It then calls an installed handler for each bit that is set.
68 * The function stray_irqhandler is called if a handler is not defined
69 * for a particular interrupt.
70 * If a interrupt handler is found then it is called with r0 containing
71 * the argument defined in the handler structure. If the field ih_arg
72 * is zero then a pointer to the IRQ frame on the stack is passed instead.
73 */
74
75Ldisabled_mask:
76	.word	_C_LABEL(disabled_mask)
77
78Lspl_masks:
79	.word	_C_LABEL(spl_masks)
80
81Lofw_ticktmp:
82	.word	_C_LABEL(ofw_ticktmp)
83
84Lirq_entry:
85	.word	irq_entry
86
87Lofwirqstk:			/* hack */
88	.word	ofwirqstk + 4096
89
90LOCK_CAS_CHECK_LOCALS
91
92AST_ALIGNMENT_FAULT_LOCALS
93
94/*
95 * Regsister usage
96 *
97 *  r4	- Address of cpu_info
98 *  r6  - Address of current handler
99 *  r7  - Pointer to handler pointer list
100 *  r8  - Current IRQ requests.
101 *  r9  - Used to count through possible IRQ bits.
102 *  r10 - Base address of IOMD
103 */
104
105ASENTRY_NP(irq_entry)
106	/*
107	 *  We come here following an OFW-handled timer tick.
108	 *
109 	 *  We are in the SVC frame, and interrupts are disabled.
110 	 *  The state of the interrupted context is partially in
111 	 *  the registers and partially in the global storage area
112 	 *  labeled ofw_ticktmp.  ofw_ticktmp is filled-in by the
113 	 *  tick callback that is invoked by OFW on the way out of
114 	 *  its interrupt handler.  ofw_ticktmp contains the following:
115 	 *
116 	 *      pc			// interrupted instruction
117 	 *      lr_usr
118 	 *      sp_usr
119 	 *      r1			// makes r1 available for scratch
120 	 *      r0			// makes r0 available for scratch
121 	 *      spsr_svc		// cpsr of interrupted context
122 	 *
123 	 *  The prologue of this routine must re-construct the
124 	 *  machine state that existed at the time OFW's interrupt-
125 	 *  handler fielded the interrupt.  That allows us to use
126 	 *  the rest of the code in this routine, and have it all
127 	 *  "just work."
128	 */
129
130	/*
131	 * Switch to IRQ mode.
132	 * First check the spsr in ofw_ticktmp to see what the FIQ bit should be.
133	 *
134	 * I need 2 scratch registers to do this.
135	 * Fortunately, r0 and r1 are already saved in ofw_ticktmp.
136	 * How convenient.
137	 */
138	ldr	r0, Lofw_ticktmp
139	ldr	r0, [r0]
140	and	r0, r0, #F32_bit
141	mov	r1, #(I32_bit | PSR_IRQ32_MODE)
142	orr	r1, r1, r0
143	msr	cpsr_all, r1
144
145	/* Now we're in IRQ mode. */
146	/* Restore contents of ofw_ticktmp. */
147	adr	r0, Lofwirqstk    /* Bummer!  Mitch hasn't left me a stack. */
148	ldr	sp, [r0]		/* I'll use my own for now... */
149	ldr	r0, Lofw_ticktmp	/* r0 now points to ofw_ticktmp[0] */
150	ldr	r1, [r0], #(4*3)	/* skip over saved {r0, r1} */
151	msr	spsr_all, r1		/* restore spsr */
152	ldmia	r0, {sp, lr}^		/* restore user sp and lr */
153	add	r0, r0, #(4*2)		/* previous instruction can't writeback */
154					/* this one can't use banked registers */
155	ldr	lr, [r0], #(-4*4)	/* restore pc; point r0 at ofw_ticktmp[1] */
156	add	lr, lr, #4		/* pc += 4; will be decremented below */
157	ldmia	r0, {r0, r1}		/* restore r0 and r1 */
158
159	/* OK, the machine state should be identical now to that when */
160	/* OFW fielded the interrupt.  So just fall through... */
161
162	sub	lr, lr, #0x00000004	/* Adjust the lr */
163
164	PUSHFRAMEINSVC			/* Push an interrupt frame */
165
166	/*
167	 *  Can't field this interrupt now if priority is IPL_CLOCK
168	 *  or higher.  For now, we'll just ignore the interrupt.
169	 *  Soon, we will have to schedule it for later action.
170	 */
171	ldr	r0, Lcurrent_spl_level
172	ldr	r0, [r4, #CI_CPL]
173	cmp	r0, #IPL_CLOCK
174	blt	ofwtakeint
175
176	PULLFRAMEFROMSVCANDEXIT
177	movs	pc, lr			/* Exit */
178
179 	/*
180 	 *  Stuff a bit-mask into r8 indicating which interrupts
181 	 *  are pending.  In our case, that is just the timer0
182 	 *  interrupt:  (1 << TIMER0).  The existing code will take
183 	 *  care of invoking that handler and the softint/ast stuff
184 	 *  which follows it.
185	 */
186ofwtakeint:
187#ifdef EXEC_AOUT
188	ldr	r0, [sp]		/* Fetch SPSR */
189#endif
190	ENABLE_ALIGNMENT_FAULTS
191
192	mov	r8, #0x00000001		/* timer interrupt pending! */
193	mov	r8, r8, lsl #IRQ_TIMER0
194
195	/*
196	 * Note that we have entered the IRQ handler.
197	 * We are in SVC mode so we cannot use the processor mode
198	 * to determine if we are in an IRQ. Instead we will count the
199	 * each time the interrupt handler is nested.
200	 */
201
202	ldr	r1, [r4, #CI_INTR_DEPTH]
203	add	r1, r1, #1
204	str	r1, [r4, #CI_INTR_DEPTH]
205
206	/* Block the current requested interrupts */
207	ldr	r1, Ldisabled_mask
208	ldr	r0, [r1]
209	stmfd	sp!, {r0}
210	orr	r0, r0, r8
211
212	/*
213 	 * Need to block all interrupts at the IPL or lower for
214	 * all asserted interrupts.
215	 * This basically emulates hardware interrupt priority levels.
216	 * Means we need to go through the interrupt mask and for
217	 * every asserted interrupt we need to mask out all other
218	 * interrupts at the same or lower IPL.
219	 * If only we could wait until the main loop but we need to sort
220	 * this out first so interrupts can be re-enabled.
221	 *
222	 * This would benefit from a special ffs type routine
223	 */
224
225	mov	r9, #(NIPL - 1)
226	ldr	r7, Lspl_masks
227
228Lfind_highest_ipl:
229	ldr	r2, [r7, r9, lsl #2]
230	tst	r8, r2
231	subeq	r9, r9, #1
232	beq	Lfind_highest_ipl
233
234	/* r9 = SPL level of highest priority interrupt */
235	add	r9, r9, #1
236	ldr	r2, [r7, r9, lsl #2]
237	mvn	r2, r2
238	orr	r0, r0, r2
239
240	str	r0, [r1]
241
242	ldr	r0, Lcurrent_spl_level
243	ldr	r1, [r4, #CI_CPL]
244	str	r9, [r4, #CI_CPL]
245	stmfd	sp!, {r1}
246
247	/* Update the irq masks */
248	bl	_C_LABEL(irq_setmasks)
249
250	mrs     r0, cpsr_all		/* Enable IRQ's */
251	bic	r0, r0, #I32_bit
252	msr	cpsr_all, r0
253
254	ldr	r7, Lirqhandlers
255	mov	r9, #0x00000001
256
257irqloop:
258	/* This would benefit from a special ffs type routine */
259	tst	r8, r9			/* Is a bit set ? */
260	beq	nextirq			/* No ? try next bit */
261
262	ldr	r6, [r7]		/* Get address of first handler structure */
263
264	teq	r6, #0x00000000		/* Do we have a handler */
265	moveq	r0, r8			/* IRQ requests as arg 0 */
266	beq	_C_LABEL(stray_irqhandler) /* call special handler */
267
268	ldr	r0, Lcnt
269	ldr	r1, [r0, #(V_INTR)]
270	add	r1, r1, #0x00000001
271	str	r1, [r0, #(V_INTR)]
272
273irqchainloop:
274	ldr	r0, [r6, #(IH_ARG)]	/* Get argument pointer */
275	teq	r0, #0x00000000		/* If arg is zero pass stack frame */
276	addeq	r0, sp, #8		/* ... stack frame */
277	mov	lr, pc			/* return address */
278	ldr	pc, [r6, #(IH_FUNC)]	/* Call handler */
279
280	teq	r0, #0x00000001		/* Was the irq serviced ? */
281	beq	irqdone
282
283	ldr	r6, [r6, #(IH_NEXT)]
284	teq	r6, #0x00000000
285	bne	irqchainloop
286	b	nextirq
287
288irqdone:
289	add	r3, r6, #IH_EV_COUNT	/* get address of ih's ev_count */
290	ldmia   r3, {r1-r2}		/* load ev_count */
291	adds	r1, r1, #0x00000001	/* 64bit incr (lo) */
292	adc     r2, r2, #0x00000000	/* 64bit incr (hi) */
293	stmia   r3, {r1-r2}		/* store ev_count */
294
295nextirq:
296	add	r7, r7, #0x00000004	/* update pointer to handlers */
297	mov	r9, r9, lsl #1		/* move on to next bit */
298	teq	r9, #(1 << 24)		/* done the last bit ? */
299	bne	irqloop			/* no - loop back. */
300
301	ldmfd	sp!, {r2}
302	str	r2, [r4, #CI_CPL]
303
304	/* Restore previous disabled mask */
305	ldmfd	sp!, {r2}
306	ldr	r1, Ldisabled_mask
307	str	r2, [r1]
308	bl	_C_LABEL(irq_setmasks)
309
310	bl	_C_LABEL(dosoftints)	/* Handle the soft interrupts */
311
312	/* Kill IRQ's in preparation for exit */
313	mrs     r0, cpsr_all
314	orr     r0, r0, #(I32_bit)
315	msr     cpsr_all, r0
316
317	/* Decrement the nest count */
318	ldr	r1, [r4, #CI_INTR_DEPTH]
319	sub	r1, r1, #1
320	str	r1, [r4, #CI_INTR_DEPTH]
321
322	LOCK_CAS_CHECK
323
324	DO_AST_AND_RESTORE_ALIGNMENT_FAULTS
325	PULLFRAMEFROMSVCANDEXIT
326	movs	pc, lr			/* Exit */
327
328Lcurrent_mask:
329	.word	_C_LABEL(current_mask)	/* irq's that are usable */
330
331
332ENTRY(irq_setmasks)
333	/* Do nothing */
334	mov	pc, lr
335
336
337Lcnt:
338	.word	_C_LABEL(uvmexp)
339
340Lirqhandlers:
341	.word	_C_LABEL(irqhandlers)	/* Pointer to array of irqhandlers */
342
343	.text
344	.global	_C_LABEL(dotickgrovelling)
345
346/*
347 *  Do magic to cause OFW to call our irq_entry
348 *  routine when it returns from its tick-handling.
349 *
350 *  This consists of two sub-tasks:
351 *    - save some machine state in ofw_ticktmp
352 *    - punch some new machine state into the
353 *      OFW-supplied frame
354 *
355 *  We are running in the IRQ frame, with
356 *  interrupts disabled.
357 *
358 *  r0 - base of saved OFW interrupt frame, which
359 *       has the following format:
360 *
361 *         pc			// interrupted instruction
362 *         lr			// lr of interrupted context
363 *         sp			// sp of interrupted context
364 *         r12
365 *         ...		// non-banked register values
366 *         ...		//   of interrupted context
367 *         r0
368 *         spsr		// psr of interrupted context
369 *
370 */
371
372_C_LABEL(dotickgrovelling):
373	/*assert((cpsr & PSR_MODE) == PSR_IRQ32_MODE);*/
374
375	stmfd	sp!, {r1-r5}		/* scratch registers r1-r5 */
376
377	/*
378	 *  Sub-task 1:
379	 *
380	 *    Our irq_entry routine needs to re-construct
381	 *    the state of the machine at the time OFW
382	 *    fielded the interrupt, so that we can use
383	 *    the rest of the standard interrupt-handling
384	 *    code.  Specifically, irq_entry needs to get
385	 *    at the following machine state:
386	 *
387 	 *      pc              // interrupted instruction
388 	 *      lr_usr
389 	 *      sp_usr
390	 *      r0-r12          // the non-banked registers
391	 *                      //   at the time of interruption
392 	 *      spsr            // cpsr of interrupted context
393	 *
394	 *    The non-banked registers will be valid at the
395	 *    time irq_entry is called, but the other values
396	 *    will not be.  We must save them here, in the
397	 *    ofw_ticktmp storage block.  We also save r0
398	 *    and r1 so that we have some free registers
399	 *    when it's time to do the re-construction.
400	 *
401	 *    Note that interrupts are not enabled before
402	 *    irq_entry is entered, so we don't have to
403	 *    worry about ofw_ticktmp getting clobbered.
404	 */
405	ldr	r1, Lofw_ticktmp		/* r1 points to ofw_ticktmp[0] */
406
407	ldr	r2, [r0, #0]			/* ofwframe[0] is spsr */
408	stmia	r1!, {r2}			/* put it in ofw_ticktmp[0] */
409
410	ldr	r2, [r0, #(4*1)]		/* ofwframe[1] is saved r0 */
411	stmia	r1!, {r2}			/* put it in ofw_ticktmp[1] */
412
413	ldr	r2, [r0, #(4*2)]		/* ofwframe[2] is saved r1 */
414	stmia	r1!, {r2}			/* put it in ofw_ticktmp[2] */
415
416	stmia	r1, {sp, lr}^		/* put {sp,lr}_usr in ofw_ticktmp[3,4]; */
417							/* the user registers are still valid */
418							/* because we haven't left IRQ mode */
419	add	r1, r1, #(4*2)		/* previous instruction can't writeback */
420							/* this one can't use banked registers */
421
422	ldr	r2, [r0, #(4*16)]		/* ofwframe[16] is pc */
423	stmia	r1!, {r2}			/* put it in ofw_ticktmp[5] */
424
425
426	/*
427	 *  Sub-task 2:
428	 *
429	 *    Diddle the OFW-supplied frame such that
430	 *    control passes to irq_entry when OFW does
431	 *    its return from interrupt.  There are 4
432	 *    fields in that frame that we need to plug:
433	 *
434	 *        pc			// gets irq_entry
435	 *        lr			// gets lr_svc
436	 *        sp			// gets sp_svc
437	 *        spsr		// gets (I32_bit | PSR_SVC32_MODE)
438	 *
439	 */
440	mov	r1, #(I32_bit | PSR_SVC32_MODE)
441	str	r1, [r0, #0]			/* plug spsr */
442
443	/* Sneak into SVC mode to get sp and lr */
444	mrs	r3, cpsr_all
445	bic	r3, r3, #(PSR_MODE)
446	orr	r3, r3, #(PSR_SVC32_MODE)
447	msr	cpsr_all, r3
448	mov	r4, lr				/* snarf lr_svc */
449	mov	r5, sp				/* snarf sp_svc */
450	bic	r3, r3, #(PSR_MODE)
451	orr	r3, r3, #(PSR_IRQ32_MODE)
452	msr	cpsr_all, r3
453	str	r5, [r0, #(4*14)]		/* plug sp */
454	str	r4, [r0, #(4*15)]		/* plug lr */
455
456	ldr	r1, Lirq_entry
457	str	r1, [r0, #(4*16)]		/* plug pc */
458
459	ldmfd	sp!, {r1-r5}
460	mov	pc, lr
461
462
463	.bss
464	.align 0
465
466_C_LABEL(ofw_ticktmp):
467	.space	4 * 6	/* temporary storage for 6 words of machine state */
468
469ofwirqstk:			/* hack */
470	.space	4096
471